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Abstract—This study aims to explore the impact of wave
resonance in basins, which can cause damage to harbors and
shorelines. To mitigate this risk, researchers propose the use of
submerged breakwaters. The study’s objective is to develop a
mathematical model that examines wave resonance in a basin
with two submerged breakwaters. The model will determine
the basin’s natural resonant frequency and generate a resonant
wave. A numerical model based on the Linearized Shallow
Water Equations (LSWE) will also be solved using a staggered
finite volume method to simulate the phenomenon. The study’s
findings suggest that constructing two rectangular submerged
breakwaters in the basin is sufficient to prevent wave resonance.

Index Terms—shallow water equations, wave resonance, semi
closed basin, finite volume, resonant period, submerged break-
water, oscillations

I. INTRODUCTION

THE presence of wave resonance in basins may result in
damages to shoreline or harbors. Building a submerged

breakwater on the basin is one way to reduce the risk posed
by this event. The objective of this study is to develop
a mathematical model to investigate the presence of wave
resonance in a basin containing two submerged breakwaters.
A model will be developed to derive the natural resonant fre-
quency for basin, which will be used to induce an incoming
resonant wave into the basin. A numerical model will also
be proposed to simulate the phenomenon numerically. Both
models will use the Linearized Shallow Water Equations as
their foundation (LSWE). The numerical results proposed in
this study suggested that the construction of two rectangular
submerged breakwater on basin is sufficient to prevent the
wave resonance.

Numerous research have also determined the wave reso-
nant period for semi-closed basins with constant width [1],
[2], [3], [4], [5]. Additionally, researchers have investigated
phenomena associated with wave resonance, such as sloshing
inside a basin [6], [7], [8], [9].

The construction of a submerged breakwater is one ap-
proach to preventing the occurrence of the resonance phe-
nomenon in a basin. However, despite its significance, rela-
tively few studies and publications examine the influence of
submerged breakwater construction on resonance phenomena
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of basins. Recent studies in this topics only observed only
one rectangular submerged breakwater block in a basin with
zero friction [10], which was found to be ineffective at
preventing the wave resonance phenomenon. It also has
been discovered that the addition of sufficient friction to the
submerged breakwater surface was able to prevent the water
wave from resonating. In this observation, we will identify
the effects of two submerged rectangular breakwater blocks
on the wave resonance phenomena in basins with smooth
surface. The primary model for this study is the Linearized
Shallow Water Equations, or LSWE. The SWE is known
to be performing really well to perform simulation even
in complex topographic areas [11]. To acquire the natural
period of a basin, we converted the PDE system LSWE
into an ordinary differential equation. Following that, we
will solve the ODE to obtain the basin’s natural period.
Using the obtained basin’s natural period, we will perform
a number of numerical simulations to observe the presence
of resonance phenomena in basins. The numerical approach
is based on the method of staggered finite volume discussed
in [12], [13]. Other phenomena have also been simulated
using the similar method, such as wave amplitude attenuation
because of porous media [14], [15], [16], wave shoaling and
refraction [17], wave run-up [18], dam break problems [19],
[20], [21], [22], and heat transfer phenomena [23], [24].

The following outline will be used to organize the re-
maining of the paper. The base mathematical model will
be discussed in the Section II. After that, we will derive
the final equation linked to the analytical solution in the
Section III and numerical solution for the governing equation
in the Section IV. The numerical simulation results with
its analysis will be presented in the Section V. Lastly, the
closing conclusion will be presented in the Section VI of the
paper.

II. MATHEMATICAL MODEL

Fig. 1. An illustration of the fluid flow in a semi-closed basin.

This section will examine the mathematical model utilized
to simulate the phenomenon of resonance in a basin with
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submerged breakwaters. Linearized Shallow Water Equations
(LSWEs) form the basis of the mathematical model below:

ηt + (hu)x = 0, (1)

ut + gηx = 0 (2)

where η represents the wave height, h represents the water
thickness, and u denotes the horizontal water wave velocity.
We assume that the total water thickness h(x, t) can be
approximated by h(x, t) ≈ d(x) given the fact that the value
of water wave height is insignificant to water depth d(x).
Therefore, we are reffering the water thickness as d(x).

III. ANALYTICAL SOLUTIONS

In this section, we will solve the analytical solution derived
from Eqs. (1)–(2) to obtain the analytical natural period T1

of the basin. First, we reduce the partial differential equations
system (1) and (2) into an ordinary differential equation. We
define the following ansatz:

η(x, t) = F (x)e−iωt, (3)

u(x, t) = G(x)e−iωt, (4)

based on the oscillating motion of a monochromatic wave
with an angular frequency of ω. Through substituting Eqs.
(3)–(4) into Eqs. (1)–(2), we obtained the two equations
coupling F and G:

−iωF (x) + hxG(x) + hGx(x) = 0, (5)

Gx(x) = − ig

ω
Fxx(x). (6)

Substituting Eq. (6) into the Eq. (5) yields a second-order
ODE:

ω2F (x) + gFx(x)hx + hgFxx(x) = 0. (7)

We will use Eq. (7) to determine the analytical natural
period T1 of the basin. Here is a basin with two block

Fig. 2. Basin containing a pair of submerged rectangular breakwaters.

of rectangular submerged breakwater, with smooth bottom
surface all over the R1, R2, R3, R4, R5 areas. The basin’s
depth is then described as:

h(x) =


h1, x ∈ R1 ∪R3 ∪R5

h2, x ∈ R2

h3, x ∈ R4,

with

R1 = {x ∈ R | −L1 ≤ x < 0}
R2 = {x ∈ R | 0 ≤ x < L2}
R3 = {x ∈ R | L2 ≤ x < L3}
R4 = {x ∈ R | L3 ≤ x < L4}
R5 = {x ∈ R | L4 ≤ x ≤ L5}

with h1 = mh2, h1 = nh3 for some constants m,n. The an-
alytical natural period T1 of this basin will be determined. To
reach the desired result, we will apply Eq. (7) to each basin
area. We can obtain consecutively the following analytical
solutions for regions R1, R2, R3, R4, R5:

F1(x) = A sin

(
ωx√
mgh2

)
+B cos

(
ωx√
mgh2

)
, (8)

F2(x) = C sin

(
ωx√
gh2

)
+D cos

(
ωx√
gh2

)
, (9)

F3(x) = E sin

(
ωx√
mgh2

)
+ F cos

(
ωx√
mgh2

)
, (10)

F4(x) = G sin

(√
n

m

ωx√
gh2

)
+H cos

(√
n

m

ωx√
gh2

)
,

(11)

F5(x) = I sin

(
ωx√
mgh2

)
+ J cos

(
ωx√
mgh2

)
, (12)

with variables A,B,C,D,E, F,G,H, I, J that are un-
known. To create a connection between Eqs. (8)–(12), we can
utilize the water flow continuity conditions in conjunction
with the basin’s boundary conditions. Continuity condition of
flow in a basin necessitates that the water level on both sides
of a step be identical, resulting in the following conditions:

η(0−, t) = η(0+, t), (13)

η(L−
2 , t) = η(L+

2 , t), (14)

η(L−
3 , t) = η(L+

3 , t), (15)

η(L−
4 , t) = η(L+

4 , t), (16)

Flow continuity also stipulates that the mass flow rate of
water entering one region from another must be identical,
thereby imposing the following additional conditions:

dM1

dt

∣∣∣∣
x=0

=
dM2

dt

∣∣∣∣
x=0

, (17)

dM2

dt

∣∣∣∣
x=L2

=
dM3

dt

∣∣∣∣
x=L2

, (18)

dM3

dt

∣∣∣∣
x=L3

=
dM4

dt

∣∣∣∣
x=L3

, (19)

dM4

dt

∣∣∣∣
x=L4

=
dM5

dt

∣∣∣∣
x=L4

. (20)

Now we will construct a boundary condition for the basin.
The water flow encounters a solid wall at x = −L1.
Consequently, at x = −L1 the horizontal flow velocity must
be zero. According to [2], the water level η at x = L5 must
remain at a minimum of η = 0. The following boundary
conditions were obtained:

u(−L1) = 0, (21)

η(L5, t) = 0. (22)
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By substituting the Eqs. (13)–(20) into the Eqs. (8)–(12)
and through several extensive mathematical operations, we
finally arrived at the final analytical solution:

cos

(
X√
m

)[√
n

(
a2 sin

(
X√
m

)
+ b2 cos

(
X√
m

))
cos

(
βX√
m

)
+

ε sin

(√
n

m
βX

)
−Zε cos

(√
n

m
βX

)]
−
√
n sin

(√
n

m
βX

)[
Zε sin

(√
n

m
βX

)
+ ε cos

(√
n

m
βX

)
−
(
a2 sin

(
X√
m

)
+ b2 cos

(
X√
m

))
sin

(
βX√
m

)]
= 0,

(23)

with

a1 = sin

(
γX√
m

)
− tan

(
δX√
m

)
cos

(
γX√
m

)
, (24)

b1 =
√
n

[
cos

(
γX√
m

)
+ tan

(
δX√
m

sin

(
γX√
m

))]
, (25)

Z =

−a1 sin

(√
n

m
γX

)
− b1 cos

(√
n

m
γX

)
−a1 cos

(√
n

m
γX

)
+ b1 sin

(√
n

m
γX

) , (26)

a2 = −
√
m tan

(
δX√
m

)
sin(X) + cos(X), (27)

b2 = − tan

(
δX√
m

)
cos(X)− 1√

m
sin(X), (28)

ε =

a2 sin

(
X√
m

)
+ b2 cos

(
X√
m

)
a3 sin

(
βX√
m

)
+ b3 cos

(
βX√
m

) . (29)

a3 = Z sin

(√
n

m
βX

)
+ cos

(√
n

m
βX

)
, (30)

b3 =
1√
n

[
Z cos

(√
n

m
βX

)
− sin

(√
n

m
βX

)]
. (31)

X =
ωL2√
gh2

, h1 = mh2, h1 = nh3, L1 = αL2, L3 =

βL2, L4 = γL2 and L5 = δL2 for some constants

m,n, α, β, γ, δ. Since ω =
2π

T1
, the basin’s analytical natural

period T1 can be found by locating the root X of Eq. (23).
Next, we will determine if the phenomenon of resonance

occurs for different basin topographies when two blocks
of submerged breakwaters are present. For the simulations,
we will adjust the parameters α, β, γ, δ,m, n to modify the
brekwater’s shape. The Table I provides the T1 values of
basins with various values of parameters:

IV. NUMERICAL METHOD

In this section, we provide the numerical scheme to
simulate the water wave motion in a basin to confirm the
existence of resonance phenomenon. By using the stag-
gered method, we discretize the basin’s domain into 0 =
x1/2, x1, x3/2, x2, .., xNx , xNx+1/2 = L. As shown in Fig.
3, the mass conservation equation (1) is stored in the cells
with dashes, whereas the other cells are used for computation

TABLE I
THE ANALYTICAL NATURAL PERIOD T1 FOR DIFFERENT BASIN

TOPOGRAPHIES.

No m n α β γ δ Analytical T1 (s)

(a) 2 2 1 2 3 4 3.035732
L2√
gh2

(b) 1.5 2 1 2 3 4 3.0366492
L2√
gh2

(c) 2 1.5 1 2 3 4 3.0359882
L2√
gh2

(d) 2 2 2 3 4 6 2.416610
L2√
gh2

(e) 1.5 2 2 3 4 6 2.385925
L2√
gh2

(f) 2 1.5 2 3 4 6 2.396915
L2√
gh2

(g) 2 2 3 4 5 7 2.595538
L2√
gh2

(h) 1.5 2 3 4 5 7 2.619326
L2√
gh2

(i) 2 1.5 3 4 5 7 2.618074
L2√
gh2

Fig. 3. Illustration of finite volume method on a staggered grid.

of the momentum balance equation (2). A staggered grid
discretization was constructed as follows: the half-grid points
xj+1/2, with j = 0, 1, 2, .., Nx will contain the information
of u(x, t), while the full-grid points xj with j = 1, 2, .., Nx

will stores the values of wave elevation η(x, t) and h(x).
The approximation of Eqs. (1)-(2) obtained by using the

Finite Volume Method is expressed as:

ηn+1
i − ηni

∆t
+

(∗hu)n
i+ 1

2

− (∗hu)n
i− 1

2

∆x
= 0, (32)

un+1
i+ 1

2

− un
i+ 1

2

∆t
+ g

ηn+1
i+1 − ηn+1

i

∆x
= 0. (33)

Because the basin’s water depth h is defined only on the full
grid, the (∗hu)i+ 1

2
value is unknown. To estimate h’s value

on the half-grids using the First Order Upwind Method, we
may write

∗hn
j+ 1

2
=

{
hn
j , for uj+ 1

2
> 0

hn
j+1, for uj+ 1

2
≤ 0

(34)

√
ghmax∆t/∆x ≤ 1 is the stability condition for the

numerical scheme proposed above, with hmax denotes the
highest water depth h(x) of basin [12].

V. SIMULATION RESULTS AND DISCUSSION

Using the numerical scheme presented in the previous
section, we will conduct multiple numerical simulations in
this section. Using the MATLAB program, all of the results
presented in this section were obtained through numerical
simulations. We will validate the presence of the resonance
phenomenon based on the results of these simulations. The
simulations have the following parameters: : h2 = 1.25 m

Engineering Letters, 31:3, EL_31_3_45

Volume 31, Issue 3: September 2023

 
______________________________________________________________________________________ 



for basins with (α, β, γ δ) = (1, 2, 3, 4) and h2 = 2.5 m
for basins with (α, β, γ δ) = (2, 3, 4, 6) and (α, β, γ δ) =
(3, 4, 5, 7), L2 = 5 m, T = 400 s, ∆x = 0.1, ∆t =

∆x√
ghmax

, and g = 9.81 m/s2. We imposed the following

initial and boundary conditions: u(0, t) = 0, η(x, 0) = 0
and u(x, 0) = 0. We also used L = 25 m for basins with
(α, β, γ δ) = (1, 2, 3, 4) and L = 40 m for basins with
(α, β, γ δ) = (2, 3, 4, 6) and (α, β, γ δ) = (3, 4, 5, 7). On
each iteration of the simulation, consider a wave with 10 cm
amplitude and period of T1 s enters the basin from the right.
The left end of the basin is bounded by a solid wall.

For each parameter listed in Table I, we will measure the
water’s elevation at the left boundary of the basin (x = −L1).
Figure 4 provides a summary of the outcomes.

Fig. 4. Water level at basin boundary (x = −L1) for a variety of
parameters

As illustrated in the graph presented in Figure 4, there
is no further amplification of the elevation of water waves
over time since the water elevation continues to fluctuate up
and down. Hence, numerical simulations indicated that no
resonance phenomenon occurred for any combination of the
parameters provided in the Table I.

Additionally, we will conduct additional experiments to
verify the effectiveness of two rectangular submerged break-
water blocks in preventing the wave resonance phenomenon.
By [10], the presence of one submerged rectangular breakwa-
ter was found to be ineffective at preventing the resonance
phenomenon. We set the m and n parameters in Eq. (23)
to m = 2 and n = 1 to describe a basin containing
a single rectangular submerged breakwater. The Table II
provides the T1 values for basins with various parameters
and (m,n) = (2, 1). We conduct another set of numerical

TABLE II
ANALYTICAL NATURAL PERIOD T1 FOR DIFFERENT BASIN

TOPOGRAPHIES WITH (m,n) = (2, 1).

α β γ δ Analytical T1 (s)

1 2 3 4 2.8571
L2√
gh2

2 3 4 6 3.3128
L2√
gh2

3 4 5 7 2.6400
L2√
gh2

simulations, using same parameter values as the previous
simulations except the T = 250 s. For each numerical
simulation iteration, we suppose that a wave with amplitude
of 0.1 m with period of T1 s listed in the Table II enters the
basin from the right side. Similar to previous simulations,

we will observe the water level at the left boundary of the
basin (η(−L1, t)). The simulation results are provided in the
Figure 5.

Fig. 5. Water level at (x = −L1) for a number of parameters with
(m,n) = (2, 1).

As shown in the Figure 5, the water elevation η(−L1, t) on
the basin containing a single submerged rectangular breakwa-
ter block is amplified over time, indicating the presence of the
water wave’s resonance. By constructing another rectangular
submerged breakwater, we can demonstrate that the elevation
of the water wave has been prevented.

VI. CONCLUSION

The shallow water equations simulated using the finite
volume method on staggered grids works well to simulate
the effect of submerged breakwater on basin’s wave reso-
nance phenomenon. Moreover, the proposed model solves
the model numerically with no generation of damping error.
In a semi-closed basin, the existence of two rectangular
breakwater blocks submerged prevented the occurrence of
any resonance phenomenon.
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