
 

  

Abstract—Bayesian analysis was applied to small area 

models with overdispersed response variables. The benefits of 

implementing this strategy by Markov Chain Monte Carlo 

methods make inference straightforward and computationally 

feasible. In this paper, we apply the strategy into area-level 

modeling to predict the under-five mortality rate at the district 

level in Java Island, the most populated region in Indonesia. 

The result shows that the zero-inflated negative binomial model 

yields the reduced relative standard error and relative mean 

squared error when compared to district estimates, the zero-

inflated generalized Poisson and Poisson models. 

 
Index Terms—Count Data, Hierarchical Bayesian, 

Overdispersion, Zero-inflated, Under-five Mortality Rate 

 

I. INTRODUCTION 

n order to meet the growing demand for accurate small-

area estimation (SAE) in the public and private sectors, 

theoretical and practical approaches to small-area estimation 

have been actively and thoroughly explored [1]. Various data 

sources, including continuous and discrete (binary and count) 

data, have been extensively employed in small area estimates. 

Additionally, this sector has generated a type of data known 

as zero-inflation, which has a semi-continuous distribution 

with a mix of positive and negative values disspersed 

constantly. If we pay attention to these data characteristics, 

issues with inference can arise due to the zero-inflation on 

the data and can invalidate the assumptions of the model. 

In relation to a data count, the Poisson Regression model 

is the simplest and most basic model. In order to determine 

the number of events which occur at a particular time, a 

Poisson regression model can be used  [2]. It is assumed that 

the mean and variance are the same, a fundamental 

characteristic of this model. The observed variance is 

typically higher than expected, a condition is known as 

overdispersion, hence, this only sometimes holds. If the 

observed variance is greater than the theoretical variance 
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predicted by the assumed distribution, overdispersion occurs. 

Overdispersion may occur for several causes. The major 

cause of overdispersion is the excessive number of zero 

observations (referred to as zero excess” or “zero-inflation”). 

Not accounting for the overdispersion may lead to 

underestimating the standard error and the test statistic has 

an excessive rate of type I error and poor confidence interval 

coverage.  

The zero-inflated model is also called the two-part model 

in the generalized linear mixed model (GLMM), and it 

models nonzero values independently. The existence of zero 

values contributes greatly to the explanation of excess zeros 

in the data, see [2], and [3]. According to the SAE model, 

excess zeros are more significant in a small area than in a 

large area, particularly when the total sample size is large [3]. 

The best linear unbiased predictor (EBLUP) was found to be 

unsuitable for areas with a large number of zeros in other 

studies [4]. In addition, this method was also implemented by 

Irlandia et al. [5] by using the K-medoids cluster to estimate 

parameters. Furthermore, the SAE employing a Bayesian 

approach in a two-part random effects model was carried out 

by Chandra and Chambers [6]. The log-transformed linear 

mixed model (LMM) for nonzero data was developed by 

Pfeffermann et al. [7] in contrast to the frequentist approach 

in this study. In subsequent research, Kreig et al. [8] 

developed an SAE method for data with many zero-inflated 

values.  

Estimating model parameters to calculate response 

variable data using the Bayesian model approach has begun 

to be widely used to solve SAE problems. In particular, 

according to Ghosh et al. [9], the hierarchical Bayesian (HB) 

and empirical Bayesian (EB) approaches have been applied 

to model the systematic component of the local area. The 

theory and application of the HB and EB methods used for 

the SAE have been widely discussed by Ghosh and Maiti 

[10], [11], Datta et al. [12], [13], and Torabi and Rao [14].  

The HB model extends Fay-Herriot's model, as well as 

generalized linear models, by using two prior distributions on 

the target parameters. The benefits of implementing this 

strategy include a simple definition and the ability to consider 

many sources of variation and inference, both of which are 

obvious and, In most cases, the common Markov Chain 

Monte Carlo (MCMC) technique is computationally 

practical. When the target variable is quantified using this 

method, other model specifications can be examined. The 

posterior mean of the target parameter is used to estimate it, 

while the posterior variance is used to establish its precision. 

The posterior distribution is used to make the inference. The 

Bayesian model approach to the count data is applied to 
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estimate the mortality rate. For example, an alternative 

model for estimating the mortality rate according to specific 

age variables in one category of cancer in the United States 

has also been carried out by Nandram et al. [15]. They 

utilized the Bayesian approach to test four alternative 

models. Each model assumes that fatalities in a specific area 

and age group are Poisson distributed. The results showed 

that their proposed model could capture small area and 

regional effects well and detect residual spatial correlations, 

thus facilitating the parameter estimation. Nandram et al. 

[16] also performed a model similar to what has been done 

previously. However, the model was applied to estimate the 

mortality rate according to specific age variables in one 

chronic obstructive pulmonary disease category in the United 

States. Trevisani and Torelli [17] developed an SAE for the 

count data using the HB approach.  

A likelihood approach for estimating parameters in small 

area modeling for a child mortality estimate has been carried 

out [18]. This study applied a model to overcome 

equidispersion violations in the Poisson Regression model. 

The models used were Poisson, quasi-Poisson, and ZIP 

models. The quasi-Poisson model produces better 

predictions than the other models. 

This study investigated how to estimate model parameters 

and predictions with a high precision and accuracy while 

considering the overdispersion issue, the Poisson 

distribution, and the non-normal data distribution. We used 

three models to address the overdispersion issue brought on 

by an excess of zeros. The zero-inflated generalized Poisson 

(ZIGP) model, the zero-inflated negative binomial (ZINB) 

model, and the Poisson Regression model are compared, and 

the goal is to improve the fit of the model. We hope that the 

three models can manage overdispersion and zero inflation. 

In other words, when the overall dispersion parameter or 

zero inflation is insufficient, the model we apply can handle 

the problem. In contrast to Istiana et al. [18], we decided 

that the HB technique was the best option for parameter 

estimation.  

The statistical model would be applied in estimating the 

under-five mortality rate (U5MR) Using data from the 2017 

Indonesia Demographic and Health Survey (IDHS), at the 

district level on Java Island. We considered the specifications 

of the relevant HB model. for this case, considering the 

properties of the quantity to be estimated, i.e., infant 

mortality rate. In addition, the model that we would show 

was the best version of the three models. This model was 

undoubtedly a model that could handle overdispersion in the 

count data that we used. 

The following is how the paper is structured: Section 2 

introduces the Poisson mixed model at the area level and 

details the SAE for zero-inflated data; Section 3 explains the 

hierarchical Bayesian technique; and Section 4 reports on the 

real data application; and Section 5 concludes with a brief 

discussion. 

II. THE AREA-LEVEL POISSON MIXED MODEL 

We introduced the Poisson mixed model at the area level 

in this part. Let's suppose that there is a finite population that 

contains elements, and each subpopulation or domain is 

further subdivided into samples that contain elements 

according to some sampling strategies. The sample size and 

population size in the i-th area are represented by 
i

n and 
i

N . 

The observed value of the response variable for the i-th area 

is denoted by 
i

y . The explanatory variables are assumed to 

be available for each area level with area-specific data 

vectors denoted as ( )
'

,...,
i D

x x=x . Let dv be a set of 

random effects, in matrix notation, we have 

( ) ( )
'

, ..., 0,
i D D D

v v v N= I  where  is the unit 

D D unit matrix. We assume that the target variable's 

distribution iy  conditionally on the random effect iv  is 

( ) , 1,...,
i i i

y v Poisson i D =  (1) 

Within the framework of Poisson Regression, it is 

assumed that variance is proportional to the mean in terms of 

the statistical model, specifically ( ) ( )var Y E Y = = . If 

1 = , the variance equals the mean, the Poisson Regression 

is used. If 1  , the model has over-dispersion in 

comparison to Poisson. If 1  , we would have under-

dispersion, although this is uncommon. 

The empirical data frequently exhibit more zeros than 

anticipated under either model, a phenomenon known as 

zero-inflation, which is another frequent issue with count 

data models, including the Poisson Regression model. This 

model has two different types of zeroes: random zeroes from 

one class and structural zeroes from the always-zero class. 

Frequentist and Bayesian approaches were developed for this 

sort of data by Chandra and Sud [19] and Pfeffermann et al. 

[7]. Kreig et al. [8] considered both approaches in their 

research. Instead of utilizing simulated and actual data, the 

EBLUP estimator and the two small area estimators are 

constructed using models that explicitly account for zero-

inflation. The results indicated that when dealing with 

variables with zero-inflation, all of the SAE estimators 

outperformed the design-based techniques in terms of 

accuracy. Nevertheless, the outcomes of the two procedures 

were nearly identical. The downside of the Bayesian 

technique is that the computing time is longer, however, the 

benefit is that information on forecast accuracy follows 

directly. Thus yet, no formula for the mean squared error has 

been found for the frequentist method. 

III. SAE FOR ZERO-INFLATED DATA  

The ZIGP distribution is defined in the same way as the 

ZIP distribution, with the addition of a zero-inflated 

parameter. Recently, the ZIGP regression models have 

proven to be beneficial for assessing count data with a high 

percentage of zeros [20]. This model has three parameters 

and will be denoted by ( ), ,ZIGP    . One of its key 

advantages is this model's ability to accommodate 

overdispersion in two ways: a zero-inflation parameter 

and an additional overdispersion parameter  . This can 

be demonstrated by reducing it to Poisson Regression when 

1 =  and 0 = are present. 
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 We denote the ZIGP regression model with response 
i

y , 

auxiliary variables ( )
'

,...,
i D

x x=x , ( )
'

,...,
i D

  =  for 

overdispersion and ( )
'

1
1, ,...,

i D
z z z= for zero-inflation is 

defined as 

( ) ( ) ( ), 1 , , , 0
i i i i i i i i

P Y y x z f y y   =  = + − =  

( ) ( )1 , , , 0
i i i i

f y y  = −   (2) 

where ( ), , , 0,1,2,...
i i i

f y y  =  is the GP model as 

follows: 

( )
( )

1
1

, ,
1

i i
y y

ii

i i

i i

y
f y

y


 



−
+

= 
+ 

 
 
 

 

( )1
exp

1

i i

i

y 



− +

+

 
 
 

 (3) 

and 0 1
i

  . The function ( )i i i
x = and 

( )i i i
z =  satisfy ( )

1
log

D

i i i ii
x v 

=
= + and 

( )  ( )
1

1
log log 1

D

i i i i i ii
it z u   

−

=
= − = + . The 

mean and variance are given, respectively by 

( ) ( ) ( )1
i i i i i

E y x x  = − and 

( ) ( ) ( )
2

1
i i i i i i i

V y x E y x y   =  + + 
 

 

The distribution of iy exhibits overdispersion when 0
i

  . 

The ZINB regression model is derived from the Poisson 

Gamma mixed distribution. This distribution was chosen 

because the probability is simple to compute; nevertheless, 

this simplicity does not ensure a good fit. [21]. It is 

acceptable to use this model to model count data or discrete 

data that contains large numbers of zero values in the 

response variable (zero-inflation) because this model uses a 

large number of zero values in the response variable, thus 

reducing the chances of an overdispersion problem [22].  

In the ZINB regression, there are two states. The first is a 

zero-valued state, whereas the second is a negative binomial 

state. The ZINB regression model's probability function is 

expressed as follows: 

( ) ( ) ( ), 1 , , , 0
i i i i i i i i

P Y y x z g y y   =  = + − =  

( ) ( )1 , , , 0
i i i i

g y y  = −   (4) 

where 0 1, 0,i i     is the dispersion parameter and 

( ). is the gamma function, ( ), ,
i i

g y  is the probability 

function of the negative binomial distribution 

( )
( )

( ) ( )

1
1

1

1
, ,

11
i i

ii

y
g y

y




 


−
−

−

 +
= 

+  +

 
 
 

 

1

iy

i

i



+

 
 
 

 (5) 

IV. HIERARCHICAL BAYES ESTIMATOR 

There are several ways for estimating small area models, 

one of which is to employ hierarchical HB models. This 

difficulty is addressed in this work by using HB modles when 

small area estimates consist of counts. Bayesian 

specifications are derived form traditional models for the 

SAE, such as the Fay-Herriot model or, more specifically, a 

generalized kinear Poisson Regression model.  

The Bayesian theorem approach in statistical inference has 

recently been very developed. In contrast to traditional 

statistical theory, Bayesian statistics consider all unknown 

parameters to be random variables. In Bayesian theorem, 

estimation is done by considering and combining information 

from both the sample and other available information.  

In general, the Fay-Herriot model using the HB method 

produces the following specifications: 

( )ˆ , ,
i i i i i

N       (6) 

( )'
, ,

i i
N     x  (7) 

( ), ,p     (8) 

For each area i , with ˆ,
i i

  and ix identifying the features of 

interest, survey estimate (where available), and possible 

supplementary data. Linking models have mixed coefficients, 

which means that they consist of fixed coefficients  , which 

account for the effects that are applied to the entire 

population, and random coefficients iv which account for the 

effects that are applied to individual areas. It is important to 

estimate the parameters  and   as sampling variances, 

i
 which are normally considered to be known. Sampling 

models (6) and linking model (7) remain intact compared to 

the different hyperprior stages required in a full HB strategy. 

In order to perform a full Bayesian analysis, it would be 

appropriate to use a prior distribution that is sufficiently 

informative about the hyperparameters. We frequently utilize 

noninformative priors when we need to get more informed or 

want the conclusion entirely based on the available data. 

Priors are typically thought to prevent posterior density from 

being incorrect and dispersed but precise (otherwise said, 

less informative). A reasonable conclusion is guaranteed by 

such a choice, which, nonetheless, requires a careful study, 

mainly when models are hardly known generally. 

The MCMC algorithms used in the HB approach make 

inference simple and computationally practical. Therefore, 

more realistic models (i.e. generalized linear models) for the 

SAE problems [9] are also made much more feasible within 

the HB approach than the alternative methods. 

Our research yields domain mean estimates as MCMC 

approximations of the posterior means, such as 

*

, .1

1
ˆ

r

i mcmc i RR
y y

r −
=        (9) 

The posterior predictive as follows 

* * *

. . .1

1
ˆiN

i R i R i Ri
i

y y
N


=

=   (10) 
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where 
*

.i R is the Bernoulli distribution for the The ZIP 

model and the ZINB model's negative binomial distribution. 

We define 

1, 0

0, 0

i

i

i

y

y



=

=





  (11) 

The first model in the estimator above is a linear mixed 

model, describing the distribution of the non-zero target 

variable, 
*

.
ˆ

i Ry . Furthermore is the general linear mixed 

model for the binary zero indicators, 
*

.
ˆ

i Rp . We define nz as 

the nonzero portion of the population or sample in the 

model. The subscript nz is used to denote the nonzero 
part of the population or sample. 

* ' *

. . . . . . .
ˆ

i R nz i nz R nz i R i R i R
y x v e = + +           (12) 

and 

( )
( )

'

. . .

. '

. . .

exp
ˆ

1 exp

z i z R z R

i R

z i z R z R

x v
p

x v





+
=

+ +
                 (13) 

Both models resulting in the estimates 

. , . . , . . . . . . .
ˆ ˆˆ ˆ ˆ ˆ ˆ, , , ,

nz R nz R z R z R v nz R e nz R v z R
v v     . 

The approximated mean square error of the model, 

,
ˆ

i mcmcy  takes the form 

( ) ( )*

, . ,1

1
ˆ ˆ

r

i mcmc i R i mcmcR
mse y y y

r −
= −          (14) 

In all models, we have taken iteration 

1,..., , 10.000R r r= = swith a burning of 600 (default) and 

thinning by retaining each 10th iteration. 

 

V. UNDER-FIVE MORTALITY RATE ANALYSIS 

This paper presents the application of the SAE model for 

Poisson distributed data with overdispersion problems. This 

model estimates the U5MR in provinces of Java Island (the 

Special District of Jakarta, West Java, Central Java, the 

Special District of Yogyakarta, East Java, and Banten) using 

data from the 2017 IDHS. There were 119 districts, with six 

districts that were not sampled. The total figure of the under-

five in this study was 25,339 children from 49,627 women of 

childbearing age in 47,963 households. 

The U5MR is an indicator that is directly related to the 

child survival target and reflects the social, economic, and 

environmental conditions in which children live including 

their health care. Conceptually, the U5MR is the number of 

deaths of children aged 0-4 years (0-59 months) in a given 

year per 1000 children of the same age in the middle of the 

same year (including infant deaths). This figure is also one of 

the 100 primary health indicators in the World Health 

Organization's (WHO) Global Reference List and is the third 

goal of the Sustainable Development Goals (SDGs). This 

indicator connects universally-known objectives for 

children's rights and general development standards. As 

stated by the WHO, this indicator is significant as it provides 

a baseline to measure how a nation is doing concerning 

granting children's rights, particularly those to life, health 

care, nourishment, water, social security, and protection. 

The indicator (U5MR) estimates were obtained from the 

2017 IDHS data in the Special Capital District of Jakarta, 

West Java, Central Java, the Special District of Yogyakarta, 

East Java, and Banten. Not all of the districts (119) had the 

same sample size sufficient to estimate the U5MR at the 

district level. This is because there were districts with a very 

small sample of children under five, and even six districts 

were not selected as examples. For this reason, if a direct 

U5MR estimation was carried out at the district level, it 

would produce an estimate with a large error. 

The calculation of U5MR estimates used seven variables. 

There was the century month code for the date of birth of  

the child (b3, the year when the survey was fielded (year), 

the variable indicating the primary sampling unit (v021), a 

weighting factor to produce a representative estimate (v005), 

the age of the child at death in months (b7), century month 

code for the date on which the interview took place (v008), 

the relative wealth of the household where the woman lived, 

divided into quintiles from the poorest to the richest (v190).  

The data used were obtained from individual women's data 

(IDIR), the 2017 IDHS. 

First of all, we explored data. Of 113 districts with a 

sample, 44 districts (38.94%) had a U5MR estimate of zero 

from districts in Java Island. This does not mean there were 

no under-five deaths in the districts, but it could be due to 

the small sample size. The percentage of zero value in the 

direct estimation of the quite large U5MR indicated the 

presence of an excess of zero which is one of causes of 

overdispersion in the Poisson Regression model. For this 

reason, we carried out statistical tests to detect these 

problems. As a result, we obtained a p-value of 2.22e-16. 

This means that the SAE model in the Poisson Regression 

could not handle an excess of zero values (or zero-inflation). 

Under this investigation, alternative models ZIGP and 

ZINB would be used. The ability of this class of regression 

models to manage overdispersion and zero-inflated is what 

piqued our interest in them. Here, we permitted regression 

on the overdispersion and zero-inflation factors in addition to 

the mean. In situations in which the general dispersion or 

zero-inflation parameter is insufficient, the goal is to increase 

the model's fit. For all the three models, we applied a HB 

method (Poisson, ZIGP, and ZINB). 

This section estimates U5MR by district, excluding the six 

districts not sampled. Three models (Poisson, ZINB and 

ZIGP) were implemented using several auxiliary variables. 

These auxiliary variables include the density of health 

facilities, health centers, and health workers. From the census 

data, three variables were obtained, the 2018 Potensi Desa 

(PODES). This data was the only village-level database 

conducted two years prior to the Indonesian population 

census. 

The stationarity of the selected posterior distribution and 

whether the Markov Chain has reached must be determined 

using the HB inference. Convergence diagnostics were 

applied to carry out this process by taking a trace plot or 

other pertinent statistical measurements. If the distribution of 

a Markov Chain's points does not alter along with the 

Markov Chain, the chain is said to be stationary. In this 

instance, it is visible through the trace plot, which, compared 
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to the probability density plot and the autocorrelation 

function plot between cases, is quite constant between mean 

and variance. This requirement was met in the study. 

We used direct estimates of the domain means as 

responses in area-level models in three different models 

based on the direct estimates of the domain means. A 

comparison of the direct and U5MR estimates for the 

Poisson mixed model, the generalized Poisson mixed model, 

and the mixed model area-level zero-level negative binomial 

is shown in Figure 1. We observed that three estimators had 

almost the same pattern. We needed to find the best model 

for the U5MR prediction in this condition. 

We also compared the RMSE values (Fig. 2). Considering 

the previous results that the Poisson model has an excess of 

zero, or in other words, there is an overdispersion problem, 

we would only compare the two models, namely ZINB and 

ZIGP. The RMSE values in the ZINB model are below the 

EMSE values in the ZIGP model. Furthermore, if seen from 

the average value, the average RMSE of the ZINB model is 

smaller at 14.65, while the average RMSE of the ZIGP 

model is 17.38.  

Model evaluation is done by looking at the relative 

standard error (RSE) and root mean squared error (RMSE) 

values. For simplicity, we used a notation 1-113 for districts. 

Figure 4 shows a plot of the RSE values of the three models, 

Poisson (top), ZIGP (center), and ZINB (bottom), against 

the direct estimator. The Poisson model's RSE value has a 

larger range than the other models. When comparing the 

ZINB and ZIGP models, both have narrower ranges than the 

Poisson model. However, if we look more closely, the ZINB 

model has a narrower range of 17.62-67.68 and a range of 

39.89-144.12 for the ZIGP model. This result was reinforced 

by the average RSE value of the ZINB model and the ZIGP 

model, respectively, which were 37.62 and 79.19, in other 

words, the ZINB model is better. The diversity of the ZINB 

model also can be considered smaller than the other models. 

In our study, the Poisson Regression model could not be 

utilized to estimate the U5MR. This is because the model 

had a dispersion problem and zero overload occurred. 

Therefore, we applied two alternative models to deal with 

the problem. As we explained earlier, we explored the ZIGP 

and ZINB models to obtain the best model. Both models 

actually could deal with the problem of overdispersion. 

However we selected one model for us to use in estimating 

unsampled districts. The small RMSE and RSE values were 

used as the basis for selecting the best model, and the ZINB 

model was selected. 

Table I presents the proposed ZINB model's calculated 

regression parameters. It also contains the appropriate p-

value. We observe this for the zero-inflation ratio model, the 

health center is negatively related to the U5MR, which 

means that each additional one percent of health center 

facilities will reduce the probability of the number of the 

under-five deaths by 1.0864 assuming other variables are 

constant. While, health workers have a positive effect on the 

U5MR in Java. 

We consider the U5MR predictions using the best model, 

namely ZINB. Table II presents the U5MR predictions with 

a 95% confidence interval and the values of RMSE and RSE. 

Six districts estimated are Kepulauan Seribu, Pangandaran, 

Banjar, Probolinggo, Madiun, and Batu. The length of the 

confidence interval indicates the accuracy of our estimation. 

If the range is narrow, the margin of error is small, which 

means that the estimate obtained is between reasonable 

values, or that this estimate is correct. However, if the 

interval is wide and the margin of error is significant, the final 

estimate is less accurate. Banjar has a wide confidence 

interval compared to the other five districts, ranging from 

13.5686 to 71.3773. This value means the under-five 

mortality rate in Banjar ranges from 14 to 72 for every 1,000 

live births. In addition to having a wide confidence interval, 

Banjar has a RSE value of 44.2953, which requires anyone 

to be careful in using the estimated results obtained. 

However, the overall RSE value of the six districts, none of 

them is greater than 50, which means it is still acceptable. 

We only show models addressing the overdispersion 

problem: the ZIGP and ZINB models in the 113 sample 

districts (See TABLE III). It is important to note that the 

RMSE and RSE values from the ZINB model are smaller 

than the direct estimates, as well as the Poisson Regression 

and the ZIGP models. Furthermore, apart from dealing with 

the overdispersion problem, the ZINB model can better 

estimate the U5MR. The RSE value measures the feasibility 

of using the resulting data. As much as 37.1681% of 113 

districts have 25%RSE  , which means that the U5MR 

estimate is accurate, or in other words, the results can be 

interpreted very well. Then, 59.2920% of 113 districts have 

25% 50%RSE  , which means that a caution is 

TABLE I 

SUMMARY MODEL ZINB 

Parameter Estimate Std. Error z value Pr (>|z|) 
 

Conditional model:    
 

0
  

3.4468 0.1948 19.7150 <2e-16 **** 

1
  

0.0008 0.0038 0.2170 0.8280  

2
  

0.0101 0.0090 1.1290 0.2590  

3
  

-0.0018 0.0216 -0.0850 0.9320  

Zero-inflation model:    

0
  

-1.2624 0.5188 -2.4330 0.0150 ** 

1
  

0.0141 0.0081 1.5660 0.1174  

2
  

-0.0876 0.0431 -2.0350 0.0419 ** 

3
  

0.0829 0.0437 1.8980 0.0576 * 

 

TABLE II 

PREDICTED OF U5MR FOR NIRSAMPLE DISTRICS IN JAVA 

Districts/ 

Municipality .
ˆ

nir ZINBy  
Lower 

bounds 

Upper 

bounds 
RMSE RSE 

Kepulauan Seribu 44.27 25.86 77.16 13.24 29.91 

Pangandaran 42.41 25.09 70.00 11.51 27.14 

Banjar 34.32 13.57 71.38 15.20 44.29 

Probolinggo 41.00 22.21 60.26 9.34 22.78 

Madiun 59.80 33.30 87.68 13.72 22.94 

Batu 36.53 21.45 53.51 8.19 22.42 
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needed in using the estimated results obtained, the remaining 

four districts have 50%RSE  , which means that the 

estimation results obtained are not accurate. 

Figure 3 shows that districts in Java with the lowest 

U5MR (in white) are mostly spread across the top. Most 

districts in Java have values in the range of 32 to 53.  

VI. CONCLUSION 

In this study, we have explored the response variable, the 

U5MR data. It was shown that the data experienced 

overdispersion, in particular excess zero, so that the Poisson 

model could not be applied. Therefore, we apply alternative 

models that are ZIGP and ZINB to solve the problem. 

Furthermore, we discovered that our proposed model 

enhances the accuracy of both direct estimates and the 

Poisson model. In other words, both models can overcome 

overdispersion. However, when compared to all other 

models, the ZINB model performs the best, as evidenced by 

decreasing RSE and RMSE values. 

The auxiliary variable in the present study is assumed to 

measure without error. However, if the error is not 

accounted for in the model, the results may be worse than 

the direct estimator, or the resulting parameter estimator may 

be biased. For this reason, auxiliary variables measured with 

errors can be used as materials for further research. As a 

result, in our next study, we will investigate the structure of 

an SAE model for data generated while taking into account 

the overdispersion issue in the response variable, and the 

auxiliary variable is supposed to be measured with error. We 

use data sources from multiple surveys (census, surveys, and 

administrative data), the census of the population, the IDHS, 

and Potensi Desa. Accordingly, the question for further 

research is on how to obtain the best estimator if it considers 

measurement errors in both the response and explanatory 

variables and the multiple surveys used in the study.  
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                                    Fig. 1.  Direct Estimate ( )ˆ diry  and ŷ for three estimators, Poisson, ZIGP, and ZINB 

 

  

 
 

                                       Fig. 2.  RMSE plot for direct against three estimators, Poisson, ZIGP, and ZINB 

 

 

  

 
 

Fig. 4.  The under-five mortality rate estimated mapping of districts in Java 
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                                  Fig. 3.  RSE plot for direct against three estimators, Poisson (top), ZIGP (middle), ZINB (bottom)  
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TABLE III 

PREDICTED OF U5MR WITH CORRESPONDING RSE OBTAINED WITH ZIGP AND ZINB MODEL  

Districts 
ZIGP ZINB 

Districts 
ZIGP ZINB 

ŷ  RSE RMSE  RSE RMSE ŷ  RSE RMSE ŷ  RSE RMSE 

Jakarta 

Selatan 24.73 66.19 16.37 22.19 30.22 6.71 
Grobogan 

2.82 106.53 3.00 39.05 43.48 16.98 

Jakarta Timur 28.47 66.02 18.80 25.39 25.96 6.59 Blora 2.84 106.20 3.01 45.06 42.97 19.37 

Jakarta Pusat 21.97 68.44 15.04 24.61 62.72 15.43 Rembang 2.78 108.14 3.01 54.09 43.80 23.69 

Jakarta Barat 35.59 62.84 22.37 31.35 23.00 7.21 Pati 2.41 112.57 2.71 43.79 43.62 19.10 

Jakarta Utara 36.32 62.27 22.61 31.73 22.74 7.22 Kudus 43.49 62.99 27.40 45.99 20.73 9.53 

Bogor 38.80 61.16 23.73 33.99 23.14 7.87 Jepara 3.00 105.84 3.18 34.59 42.59 14.73 

Sukabumi 44.68 59.27 26.48 42.94 21.07 9.05 Demak 24.10 71.14 17.15 28.52 34.06 9.72 

Cianjur 68.25 53.78 36.70 62.88 25.78 16.21 Semarang 3.03 106.59 3.23 44.57 43.25 19.28 

Bandung 27.77 63.44 17.62 26.38 32.16 8.48 Temanggung 2.81 107.89 3.03 54.73 43.60 23.86 

Garut 44.60 59.76 26.65 44.14 21.37 9.43 Kendal 32.77 70.58 23.13 40.76 24.42 9.96 

Tasikmalaya 3.39 99.32 3.37 41.31 42.83 17.69 Batang 2.83 110.27 3.12 48.55 43.51 21.12 

Ciamis 2.95 106.1 3.13 42.60 42.86 18.26 Pekalongan 2.91 107.92 3.14 48.09 42.41 20.40 

Kuningan 27.71 70.29 19.48 33.83 30.66 10.37 Pemalang 20.35 69.12 14.07 24.49 41.41 10.14 

Cirebon 54.77 60.02 32.87 55.79 21.15 11.80 Tegal 33.09 67.14 22.21 35.21 23.53 8.28 

Majalengka 42.14 65.85 27.75 47.25 20.49 9.68 Brebes 31.42 66.49 20.89 32.31 24.70 7.98 

Sumedang 16.97 69.98 11.88 38.24 48.93 18.71 Magelang 2.19 117.10 2.57 8.83 209.22 18.47 

Indramayu 26.75 66.74 17.85 28.85 34.79 10.04 Surakarta 3.17 101.94 3.23 38.32 43.40 16.63 

Subang 3.31 102.8 3.40 38.17 43.03 16.42 Salatiga 96.81 51.52 49.88 84.69 37.19 31.50 

Purwakarta 3.32 100.3 3.33 37.43 42.60 15.95 Semarang 22.71 69.36 15.75 23.88 33.35 7.96 

Karawang 21.46 67.85 14.56 25.08 42.20 10.58 Pekalongan 3.70 98.49 3.64 34.17 43.21 14.77 

Bekasi 20.70 66.85 13.84 21.89 39.20 8.58 Tegal 89.94 51.00 45.87 61.90 46.78 28.96 

Bandung 

Barat 33.87 61.89 20.96 32.55 25.81 8.40 
Kulon Progo 

3.36 100.68 3.38 54.35 43.56 23.67 

Bogor 37.55 58.25 21.87 35.72 29.59 10.57 Bantul 27.28 65.46 17.85 27.50 30.56 8.40 

Sukabumi 120.6 39.89 48.13 116.0 19.38 22.48 Gunungkidul 55.19 55.55 30.66 54.28 19.58 10.63 

Bandung 29.32 62.53 18.33 27.60 27.61 7.62 Sleman 33.14 65.38 21.67 34.53 23.30 8.05 

Cirebon 106.1 44.27 46.98 100.5 17.62 17.71 Yogyakarta 37.45 64.38 24.11 39.41 21.91 8.63 

Bekasi 3.44 98.99 3.40 29.56 42.78 12.65 Pacitan 2.91 109.19 3.18 46.79 41.83 19.58 

Depok 16.98 70.20 11.92 18.51 43.96 8.14 Ponorogo 2.56 110.87 2.84 46.12 43.38 20.01 

Cimahi 3.34 99.08 3.31 27.96 43.79 12.24 Trenggalek 64.25 58.06 37.30 64.52 25.65 16.55 

Tasikmalaya 3.42 100.2 3.43 36.98 43.02 15.91 Tulungagung 2.75 108.05 2.97 41.03 42.78 17.55 

Cilacap 56.27 58.83 33.10 56.78 22.06 12.52 Blitar 2.91 104.62 3.05 40.42 42.58 17.21 

Banyumas 40.02 63.18 25.29 43.21 21.87 9.45 Kediri 2.98 105.28 3.14 37.71 43.11 16.26 

Purbalingga 2.52 115.0 2.89 43.04 43.47 18.71 Malang 29.21 65.52 19.14 29.68 26.80 7.96 

Banjarnegara 35.60 65.14 23.19 40.65 25.51 10.37 Lumajang 3.18 102.25 3.26 39.23 43.76 17.17 

Kebumen 35.55 67.65 24.05 44.66 25.52 11.40 Jember 39.40 60.32 23.77 37.01 22.29 8.25 

Purworejo 2.71 112.0 3.04 73.60 44.35 32.64 Banyuwangi 43.50 60.78 26.44 43.19 21.02 9.08 

Wonosobo 60.18 58.98 35.49 67.34 19.66 13.24 Bondowoso 106.5 49.59 52.80 93.03 37.40 34.80 

Magelang 57.25 58.93 33.74 63.10 18.84 11.89 Situbondo 3.14 103.31 3.25 43.66 42.92 18.74 

Boyolali 45.02 63.18 28.44 52.14 20.14 10.50 Probolinggo 3.13 102.03 3.19 40.44 43.14 17.45 

Klaten 2.57 111.9 2.88 59.12 43.91 25.96 Pasuruan 46.73 60.31 28.18 46.73 20.37 9.52 

Sukoharjo 2.44 114.2 2.79 43.84 43.55 19.09 Sidoarjo 19.63 72.17 14.16 24.10 38.71 9.33 

Wonogiri 26.90 66.01 17.76 43.07 50.40 21.71 Mojokerto 86.65 54.74 47.44 75.12 39.51 29.68 
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Karanganyar 3.09 105.50 3.26 45.54 43.24 19.69 Jombang 30.56 65.88 20.14 35.11 29.27 10.28 

Sragen 37.49 99.67 24.78 43.20 22.98 9.93 Nganjuk 2.98 105.70 3.15 39.67 43.67 17.33 

Madiun 43.69 65.37 28.56 50.73 20.38 10.34 Malang 3.04 104.69 3.18 30.76 43.18 13.28 

Magetan 1.95 118.14 2.30 47.84 44.21 21.15 Pasuruan 49.11 59.80 29.37 48.60 20.66 10.04 

Ngawi 3.01 104.37 3.15 43.63 42.37 18.49 Mojokerto 2.39 112.89 2.70 40.52 43.41 17.59 

Bojonegoro 33.06 67.20 22.22 37.99 24.58 9.34 Surabaya 12.04 69.03 8.31 31.15 44.32 13.81 

Tuban 23.97 68.02 16.30 29.09 39.81 11.58 Pandeglang 78.26 53.14 41.59 74.31 26.47 19.67 

Lamongan 49.60 66.87 33.17 61.59 19.86 12.23 Lebak 45.93 60.26 27.68 48.08 20.37 9.79 

Gresik 32.88 69.05 22.70 38.37 22.90 8.79 Tangerang 37.27 62.72 23.37 34.33 22.09 7.58 

Bangkalan 2.99 108.18 3.24 38.60 43.01 16.60 Serang 34.86 64.04 22.32 34.60 23.93 8.28 

Sampang 26.07 66.70 17.39 26.61 30.13 8.02 Tangerang 33.92 64.57 21.90 30.89 23.15 7.15 

Pamekasan 136.83 44.56 60.97 61.35 52.05 31.93 Cilegon 3.25 104.52 3.39 33.04 42.13 13.92 

Sumenep 44.26 64.04 28.35 49.38 20.68 10.21 Serang 54.72 54.72 37.03 32.56 67.68 18.91 

Kediri 
3.07 102.98 3.16 40.88 43.54 17.80 

Tangerang 

Selatan 67.82 67.82 14.79 36.07 21.81 6.58 

Blitar 1.24 144.12 1.79 6.99 268.77 18.80 
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