
 

 

  
Abstract—The quality of micro-milling parts is greatly 

influenced by surface roughness. However, the evaluation of 
surface roughness solely based on two-dimensional (2D) 
parameters is limited. In order to more comprehensively reflect 
the processing quality and surface performance in the 
micro-milling process, this paper selected three representative 
parameters, namely Sa, Sq, and Sdr, as the characterization 
parameters for three-dimensional surface roughness (3D-SR). 
The mapping relationship between the 3D-SR and spindle 
rotational velocity, feed velocity, radial machining depth, axial 
machining depth was experimentally investigated, then the 
relationship models were established using response surface 
method (RSM). Subsequently, this study employed the 
backpropagation neural network (BPNN) to predict the 3D-SR. 
While maintaining the same BPNN topology, we introduced 
particle swarm optimization (PSO) as well as genetic algorithm 
(GA) to enhance the initial thresholds and connection weights of 
the network. This allowed us to establish three prediction 
models for 3D-SR. The results indicate that the PSO-BPNN 
prediction models have better prediction performance than 
other models of this paper. 
 

Index Terms—milling, 3D-SR forecasting, response surface 
method, neural network optimization 

I. INTRODUCTION 
illing is a common machining technology in the 
manufacturing industry, which has the ability to 

produce complex geometric shapes. The machining accuracy 
and quality of a workpiece are directly influenced by the 
milling process parameters, making them crucial to the 
overall product quality [1]. The interaction between the 
cutting tool and the work material during the milling 
operation directly impacts the surface morphology of the 
work material, which in turn affects the resulting surface 
roughness [2]. Therefore, the control of milling process 
parameters is of great importance to enhance tool life and 
product quality. 

The research on milling processing mostly adopts the 
experimental method, which is accurate but time-consuming 
and labor-intensive [3]. Consequently, the forecast of 
roughness has attracted the attention of scholars. Prabhakar 
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[4] developed an integrated approach using Fast Fourier to 
predict surface roughness for milled surfaces. Zhang [5] 
proposed a method using a least squares support vector 
machine to predict Ra of machined surfaces and demonstrated 
the algorithm's feasibility. Kong [6] achieved effective 
prediction of Ra in milling process by employing Bayesian 
linear regression method. Scholars' research on surface 
roughness of milling mainly focuses on two-dimensional (2D) 
surface roughness. Obtained from the contour trajectory, 2D 
surface roughness cannot reflect the surface topography of 
the geometric information. Three-dimensional (3D) surface 
roughness is obtained from the surface and has ability to 
characterize the contour and characteristics of the workpiece 
surface more comprehensively [7]. Molnár [8] determined 
the minimum evaluation areas of a few frequently used 3D 
height parameters which contributed to saving measurement 
time and enabling large scale production. Jayabarathi [9] 
established a relationship between characteristic features and 
3D-SR. Hoła [10] conducted a study to assess the usefulness 
of 3D-SR in nondestructive evaluation for pull-off adhesion 
in concrete layers. 

Currently, most scholars focus on the prediction of 2D 
surface roughness, with limited research dedicated to the 
prediction of 3D-SR. We aim to address this research gap in 
this study. The organization for this study is as outlined 
below: Three representative 3D-SR parameters, namely Sa, Sq, 
and Sdr, were selected as the research objects. Then, the 
influence of machining parameters on 3D-SR was analyzed 
based on response surface method (RSM). Subsequently, the 
3D-SR forecasting models based on BPNN were established. 
Then we employed genetic algorithm as well as particle 
swarm optimization improve the BPNN model. By doing so, 
we aimed to enhance the performance and reliability of the 
prediction models. Finally, we conducted a comparative 
analysis to assess the performance of different models and 
evaluated the precision of the prediction models.  

II. MATERIALS AND METHODS 

A. Experimental scheme 
7075 aluminum alloy, known for its high strength and 

corrosion resistance, finds extensive applications in various 
industries including aerospace, ships, automobiles, etc. In 
this study, 7075 alloy was milled with the tool of 1 mm in 
diameter. The experiment was designed using the 
Box-Behnken Design. The machining parameters considered 
were spindle rotational velocity (n), feed velocity (vf), radial 
cutting depth (ae), as well as axial cutting depth (ap). Three 
levels were selected for each parameter according to the 
machining experience. The scheme is shown in Table 1. 

Numerical Modelling and Optimization of 3D 
Surface Roughness Forecasting in Milling 

Juanjuan Zhao, Yanzhi Guan, and Zhen Chen 

M 

Engineering Letters, 31:4, EL_31_4_02

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



 

 

B. Data processing 
This paper selected three representative 3D-SR parameters 

for prediction in the parameters of ISO-25178-2, including Sa, 
Sq and Sdr. In the scale-limited surface, arithmetical mean 
height (Sa) indicates how much the contour deviates from 
reference surface. Root mean square height (Sq) shows 
standard deviation of surface height distribution. The 
developed interfacial area ratio (Sdr) measures overall 
performance of surface and can distinguish between surfaces 
with similar amplitudes and average roughness. To obtain 
3D-SR, we used a confocal sensor to scan the measuring area 
of the workpiece surface, and the resulting data is presented 
in Table 1. To avoid the fitting error caused by the difference 
in the data range and the dimensional unit, it is necessary to 
standardize the data as shown in formula (1): 

                                           (1) 
where x is data before normalization, X is data after 
normalization; Xmin is minimum value in X, Xmax is maximum 
values in X. 

III. ESTABLISHMENT OF 3D-SR PREDICTION MODELS 

A. 3D-SR prediction model based on the BPNN 
BPNN is a typical multi-layer feedforward network, which 
consists of an input layer, a hidden layer, as well as an output 
layer. According to error of the output, connection weight 
and the threshold value of each layer are continuously 
adjusted and corrected through training [11]. In general, the 
prediction results of multi-layer networks in large sample 
space are more precise than that of one-layer networks, but 
the required time is greatly increased. In this study, a 
three-layer BP n topology with 3D-SR parameters was 
established for a small sample space, as shown in Fig. 1. Out 
of the 29 experimental data points, 5 were repeated 
experiments. To account for this, we took the average value 
of these 5 results and used it as the result for the 7th 
experiment. We then moved the serial numbers of the 
remaining experiments forward successively, resulting in a 
total of 25 unique experiments. The first 17 experiments were 
taken to train the network, and the remaining 8 experiments 
were predicted. The input layer of the network consists of 
four nodes, namely spindle rotational velocity, feed velocity, 
radial machining depth, as well as axial machining depth. 
And the number of nodes in hidden layer is twice that in input 
layer, plus one. The output node is the 3D-SR parameter. The 
main parameters of prediction model are displayed in Table 
2. 

B. 3D-SR prediction model based on GA-BPNN and 
PSO-BPNN 

The original thresholds and weights of BPNN generally 
adopt system default values or are determined based on 
experience, which can significantly impact the model and 
may reduce the prediction precision and convergence rate 
[12]. Thus, we introduced GA as well as PSO to optimize the 
original thresholds and weights of BPNN.  

GA simulates the evolutionary rules of nature. Its basic 
idea is "survival of the fittest" and "natural selection". There 
are three operational operations of selection, crossover, and 
mutation, thus leaving excellent varieties and eliminating 
inferior varieties [13]. The search mechanism belongs to the 
parallel search. Compared with serial search mechanism of 
the neural network [14] ~ [16], GA-BPNN has a good global 
search ability to prevent falling into local minimum values. In 
BPNN optimized by GA, the connection thresholds and 

( ) ( )min max minx X X X X= - -

TABLE II 
MAIN PARAMETERS OF THE BPNN PREDICTION MODEL 

Input 
layer 
nodes 

Hidden 
layer 
nodes 

Output 
layer 
node 

Learning 
velocity 

Maximum 
number of 

training 

Training 
requirements 

precision 
4 9 1 0.1 10000 0.00001 

 

 
Fig. 1.  BP neural network topology 

TABLE I 
EXPERIMENTAL PARAMETER SCHEDULE AND MEASUREMENT RESULTS 

No. n 
(r/min) 

vf 
(mm/
min) 

ap 
(μm) 

ae 
(mm) Sa Sq Sdr 

1 8000 100 40 0.1 0.161  0.207  0.030  

2 8000 300 60 0.2 0.211  0.271  0.033  

3 6000 200 40 0.1 0.164  0.212  0.031  

4 10000 200 20 0.2 0.145  0.189  0.027  

5 6000 200 60 0.2 0.199  0.256  0.040  

6 8000 200 60 0.1 0.142  0.188  0.018  

7 8000 200 40 0.2 0.137  0.178  0.026  

8 8000 200 20 0.1 0.166  0.211  0.031  

9 8000 200 40 0.2 0.152  0.198  0.030  

10 8000 100 40 0.3 0.153  0.199  0.027  

11 10000 200 40 0.1 0.151  0.200  0.028  

12 8000 200 40 0.2 0.141  0.184  0.028  

13 10000 100 40 0.2 0.147  0.190  0.025  

14 8000 200 20 0.3 0.201  0.261  0.033  

15 6000 100 40 0.2 0.135  0.177  0.026  

16 10000 200 60 0.2 0.180  0.242  0.042  

17 10000 300 40 0.2 0.180  0.232  0.030  

18 8000 100 20 0.2 0.130  0.168  0.024  

19 8000 200 40 0.2 0.159  0.218  0.032  

20 6000 200 20 0.2 0.159  0.206  0.035  

21 8000 200 60 0.3 0.192  0.250  0.033  

22 8000 200 40 0.2 0.145  0.191  0.030  

23 6000 300 40 0.2 0.233  0.302  0.052  

24 8000 100 60 0.2 0.141  0.184  0.027  

25 8000 300 20 0.2 0.168  0.222  0.032  

26 6000 200 40 0.3 0.223  0.290  0.038  

27 8000 300 40 0.1 0.157  0.202  0.030  

28 10000 200 40 0.3 0.143  0.183  0.027  

29 8000 300 40 0.3 0.234  0.302  0.042  
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weights of neural networks are encoded as populations. The 
MSE that between estimated output and forecasted output is 
used as a fitness function. Through a process of chromosome 
selection, crossover, and mutation, fitness function is applied 
to judge the fitness in the populations and optimize the 
connection weights and thresholds of neural network. 

PSO is a variety of random search algorithm which based 
on group collaboration in bird groups. Both PSO and GA 
belong to parallel search mechanism, which can be used for 
global optimization. The GA shares information between the 
chromosomes and the entire population moves towards the 
optimal region. PSO relies on information sharing between 
individuals to constantly move to find the global optimal 
solution. In contrast to GA, PSO preserves the optimal 
solution from the previous iteration and compares it with the 
optimal solution from the current iteration to achieve 
stepwise optimization. It is easier to implement and has faster 
convergence than GA. In this paper, we used the PSO 
algorithm is used to improve the origin thresholds and 
weights of BPNN and established PSO-BPNN prediction 
model.  

IV. DISCUSSION 

A. Parameter Influencing Analysis 
The mapping relationship between design parameters and 

target response is obtained through regression analysis by 
RSM, which is typically represented by a second-order 
regression model. We obtained the mapping relationship 
between RSM-based processing parameters and 3D-SR as 
follows: 

 

 (2) 

 (3) 

 (4) 

The variance of the 3D-SR regression models based on 
RSM was analyzed to test the fitting accuracy of the models. 
The p-value indicates reliability. The p-values of Sa, Sq, Sdr 
are 0.0006, 0.0009, 0.0306, respectively, all of which are less 
than 0.05, In contrast, the p-values of the lack of fit are all 
greater than 0.05, that is, the three models are significant and 
the lack of fit terms are not significant, indicating that 
regression models are well fitted and reliable. 

5 4

3 8

8 5

6 3

3 9 2

6 2

0.30468 2.25 10 1.41 10

2.38792 10 0.29925 8.05 10

3.6875 10 8.4125 10

4.0625 10 2.1275 10

1.9375 10 3.12396 10

1.15208 10 2

a f

p e f

p e

f p f e

p e

f

S n v

a a n v

n a n a

v a v a

a a n

v

- -

- -

- -

- -

- -

-

= - ´ × - ´ ×

- ´ × - × - ´ × ×

- ´ × × - ´ × ×

+ ´ × × + ´ × ×

+ ´ × × + ´ ×

+ ´ × + 5 2 2.35208 10 1.59833p ea a-´ × + ×
5 5

3 7

8 4

6 3

3 9 2

0.34738 2.61358 10 3.72333 10

3.00367 10 0.17815 1.03875 10

1.8125 10 1.19125 10

4.15 10 2.7125 10

1.5375 10 3.83583 10

1.24558 10

q f

p e f

p e

f p f e

p e

S n v

a a n v

n a n a

v a v a

a a n

- -

- -

- -

- -

- -

= - ´ × - ´ ×

- ´ × - × - ´ × ×

+ ´ × × - ´ × ×

+ ´ × × + ´ × ×

+ ´ × × + ´ ×

+ ´ 6 2 5 2 22.84521 10 1.87183f p ev a a- -× + ´ × + ×
5 4

4 8

8 6 7

4 3

10 2 8 2

0.08106 1.23275 10 1.59017 10

8.09083 10 0.03965 2.6125 10

5.75 10 8.75 10 3.5 10

3.9 10 1.5875 10

9.49375 10 9.475 10

1.8

dr f

p e f

p e f p

f e p e

f

S n v

a a n v

n a n a v a

v a a a

n v

- -

- -

- - -

- -

- -

= - ´ × + ´ ×

- ´ × - × - ´ × ×

+ ´ × × - ´ × × - ´ × ×

+ ´ × × + ´ × ×

+ ´ × + ´ ×

+ 6 2 20625 10 0.01275p ea a-´ × - ×

 
a) Impact of spindle speed upon Sa    b) Impact of feed rate upon Sa   c) Impact of axial cutting depth upon Sa   d) Impact of radial cutting depth upon Sa 

 
e) Impact of spindle speed upon Sq      f) Impact of feed rate upon Sq    g) Impact of axial cutting depth upon Sq   h) Impact of radial cutting depth upon Sq 

 
i) Impact of spindle speed upon Sdr        j) Impact of feed rate upon Sdr           k) Impact of axial cutting depth upon Sdr   l) Impact of radial cutting depth on Sdr 

Fig. 2. Influence of main process parameters upon 3D surface roughness parameters. 
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To investigate the impact of various process parameters on 
3D-SR during micro-milling and understand the variation of 
3D-SR within the processing parameters studied, this section 
presents the relationship between process parameters and 
3D-SR based on the RSM models, which is illustrated in Fig. 
2. 

Figure 2(a), 2(e), and 2(i) indicate that when radial cutting 
depth, the feed rate, as well as axial cutting depth are constant, 
Sa, Sq and Sdr exhibit similar variation trends. As spindle 
speed rises, the residual height and the feed per tooth 
decrease, while the tool chatter will be intensified. All three 
parameters gradually decrease and then increase, reaching a 
minimum value around a spindle speed of 9000 r/ min. 
Similarly, in Fig. 2(b), 2(f), and 2(j), when spindle rotational 
velocity, radial machining depth as well as axial machining 
depth, are constant, an increase in feed rate results in 
increased feed per tooth and surface residual height, with Sa, 
Sq and Sdr gradually increasing. According to Fig. 2(c), 2(g), 
and 2(k), the trends of Sa, Sq and Sdr are similar. If the cutting 
thickness falls below the minimum cutting threshold, size 
effect will occur, resulting in failure to control surface quality. 
Sa, Sq and Sdr gradually decrease and then increase as axial 
cutting depth ap rises, reaching a minimum point near the 
axial cutting depth of 30μm. Finally, according to Fig. 2(d), 
2(h), and 2(l), when feed rate, the spindle speed, as well as 
axial cutting depth, are held constant, increasing the radial 
cutting depth initially leads to a decrease in Sa and Sq. 
However, they eventually reach a minimum value around a 
radial cutting depth of 0.05 mm before increasing again. In 
contrast, Sdr increases almost linearly with increasing radial 
cutting depth. 

B. Prediction accuracy result 
Fig. 3 presents the forecast and experimental results for the 

three forecasting models in this paper. It demonstrates that 
predicted output values of the three neural network models 
closely match the actual values, indicating that they are 
capable of accurately predicting Sa, Sq and Sdr. 

To assess the accuracy of the models, we selected three 
performance indicators including MAE, MSE, and MAPE, as 
shown in Table 3. MAE avoids the mutual offset of errors, 
thus reflecting the actual level of error. MSE can evaluate the 
degree of change of data. MAPE describes the accuracy of 
the model. For these three roughness parameters, the values 
of the three performance indicators in the prediction models 
based on BPNN are less than those of the forecasting models 
which based on the GA-BPNN as well as PSO-BPNN, 
indicating that optimizing the origin thresholds and weights 
of the neural network can result in better accuracy. 

 (5) 

 (6) 

 (7) 

where Yi is measurement value for the i-th experiment, Oi is 
prediction value for the i-th experiment. 

After conducting extensive experiments, it was discovered 
that not all models achieved the desired accuracy. When 
using BPNN prediction models, the origin thresholds and 
connection weights of the network are randomly generated, 

which can significantly impact the results. During the 
training process, the fitness value may stick in a small-scale 
minimum, leading to reduced accuracy. Both the GA-PSO 
and PSO-BPNN prediction models refine the origin 
thresholds and connection weights for the network, resulting 
in good prediction results with little difference in accuracy. 
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a) Results for Sa 

 
b) Results for Sq 

 
c) Results for Sdr 

Fig. 3.  Iteration speed of BPNN prediction models. 
TABLE III 

MAIN PARAMETERS OF THE BPNN PREDICTION MODEL 

Parameters Models MAE MSE MAPE 

Sa 

BPNN 0.0197 0.0005 0.1033 

GA--BPNN 0.0170 0.0004 0.0878 

PSO-BPNN 0.0145 0.0002 0.0832 

Sq 

BPNN 0.0251 0.0010 0.1124 

GA--BPNN 0.0212 0.0006 0.0936 

PSO-BPNN 0.0208 0.0006 0.0850 

Sdr 

BPNN 0.0042 2.8079×10-5 0.1173 

GA--BPNN 0.0034 1.4043×10-5 0.0997 

PSO-BPNN 0.0031 1.4888×10-5 0.0891 
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However, in the optimization process of the origin thresholds 
and connection weights for the network, although genetic 
operation for GA can reduce possibility of falling into a 
minimum value, it may also lead to deviation from the 
optimal solution, thereby increasing training time. Similar to 
GA, the PSO algorithm is also susceptible to becoming 
trapped in a local minimum. In the next section, we will 
explore the speed of model iteration. 

C. Model convergence analysis 
The iteration speed of GA-BPNN and PSO-BPNN is 

shown in Fig.4, which illustratess that PSO algorithm 
generally achieves better convergence than GA. As a matter 
of fact, GA tends to converge before reaching a given 
precision or needs more time to find the optimal solution. In 
comparison, PSO is easier or faster to find the optimal 
solution than GA. 

V. CONCLUSIONS 
The objective in this paper is to explore the correlation 

between the 3D-SR parameters and four machining 
parameters, namely spindle rotational velocity, feed velocity, 
radial machining depth, as well as axial machining depth, 
utilizing RSM method. In view of the current rare 3D-SR 
prediction problem, this paper applied BPNN theory to the 
prediction of milling 3D-SR, and set up four milling 3D-SR 
prediction models. The effectiveness of the forecasting 
model was assessed by calculating the corresponding 
performance parameters and comparing the iterative 
convergence. This paper draws the following main 
conclusions through experiments and theoretical analysis: 

(1) This study investigated the impact of micro-milling 
parameters on 3D-SR by establishing relationship models 
between 3D-SR parameters and machining parameters using 

the RSM method. The influence of various processing 
parameters on 3D-SR was analyzed based on these models. 

(2) Sa, Sq and Sdr of milling were predicted by BPNN, GA 
and PSO were introduced to fine-tune the origin thresholds 
and connection weights for BPNN respectively, which 
improves accuracy as well as optimization speed for the 
model. 

(3) Among all the prediction models of three 3D-SR 
parameters, the 3D-SR prediction models based on 
PSO-BPNN achieve optimal performance and a certain level 
of robustness, exhibiting the most satisfactory results 
comprehensively. 
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     a) Results of GA-BPNN for Sa          b) Results of PSO-BPNN for Sa 

 
c) Results of GA-BPNN for Sq            d) Results of PSO-BPNN for Sq 

 
e) Results of GA-BPNN for Sdr          f) Results of PSO-BPNN for Sdr 

Fig. 4.  Comparison of iteration speed between GA and PSO. 
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