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Abstract—A cleaning model based on clustering by fast 

search and find of density peaks (CFSSFDP) is proposed to 

address the problem of many data types and low data quality in 

the distribution network fault database. First, auto-extraction 

model of fault data features based on 1D convolutional 

auto-encoder is established to obtain fault features of massive 

fault data. Next, the fault data features are clustered by 

CFSSFDP, the incorrect and invalid fault features are isolated, 

and the incorrect and invalid fault data in the database are 

cleaned. Finally, the effectiveness and accuracy of the model for 

cleaning of fault data in distribution network is verified 

through the experimental analysis of the cleaning of Simulink 

simulation fault data. 

 
Index Terms—Data cleaning; Distribution network faults; 

CFSFDP; Feature extraction 

 

I. INTRODUCTION 

he current distribution network is developing at a high 

speed toward a smart grid with scale, complexity, and 

intelligence. Higher voltage levels, greater transmission 

capacity, closer multi-regional interconnections, and rapid 

development of auxiliary monitoring and distribution 

secondary systems are other improvement directions. 

However, the probability of faults and the amount of fault 

 
Manuscript received Nov. 3, 2022; revised Mar. 1, 2023. 

Xiaoli Duan is a senior engineer of Electric Power Research Institute of 

State Grid Hunan Electric Power Co., Ltd, Changsha 410036, China(e-mail: 

272139237@qq.com) 

Sanwei Liu is a senior engineer of Electric Power Research Institute of 

State Grid Hunan Electric Power Co., Ltd, Changsha 410036, China(e-mail: 

604208086@qq.com) 

Fuyong Huang is a senior engineer of Electric Power Research Institute 

of State Grid Hunan Electric Power Co., Ltd, Changsha 410036, 

China(e-mail: 2429534301@qq.com) 

Daoyuan Zhang is a senior engineer of Electric Power Research Institute 

of State Grid Hunan Electric Power Co., Ltd, Changsha 410036, 

China(e-mail: 1305981795@qq.com) 

Jianjia Duan is a senior engineer of Electric Power Research Institute of 

State Grid Hunan Electric Power Co., Ltd, Changsha 410036, China(e-mail: 

6854759280@qq.com) 

Zeyu Zeng is a senior engineer of Electric Power Research Institute of 

State Grid Hunan Electric Power Co., Ltd, Changsha 410036, China(e-mail: 

3657481289@qq.com) 

Ting Yu is a senior engineer of Electric Power Research Institute of 

State Grid Hunan Electric Power Co., Ltd, Changsha 410036, 

China(4582265476@qq.com) 

Yan Zhao is a graduate student of Chongqing University of Posts and 

Telecommunications, Chongqing 400065 ， China (e-mail: 

8616198@qq.com). 

Lipeng Zhong is a senior engineer of Hunan University, Changsha 

410082, China (e-mail: 6248962546@qq.com). 

Bin Dai is a senior engineer of State Grid Yueyang Power Supply 

Company, Yueyang 414021, China (e-mail: 754796325@qq.com). 

 

data in such a large and complex smart grid have increased 

dramatically [1, 2]. Some real faults are recorded in the 

massive transient fault data. Other errors and invalid fault 

records caused by various factors also exist, such as 

interference from external conditions and ageing of the 

equipment itself. As a result, the fault data received by the 

main distribution station have a large base and a low 

qualification rate. They also contain a large number of errors 

and invalid data. These conditions affect the accurate 

determination of actual faults on the line by operation and 

maintenance personnel. The analysis of specific fault events 

is also affected [3, 4]. Inaccurate or severely deviated fault 

event analysis results in incorrect fault characterization, 

which leads to deterioration and proliferation of real faults. 

Serious cases of deterioration and proliferation can cause 

damage to distribution equipment in the distribution system. 

This condition results in large and prolonged power outages 

and serious economic losses. Therefore, studying the 

cleaning model of fault data in distribution network is 

important to maintain the security of the power network. 

The initial construction of the power system 

transmission and distribution equipment system is completed 

based on the great development of the power industry. The 

sharing technology of big data cloud platform also provides 

conditions for fault information fusion and fault data 

diagnosis of multi-data source. Meanwhile, the power 

industry is also faced with the technical difficulties of rapid 

analysis and processing of massive operational data [5]. 

Currently, three main cleaning methods are used to clean the 

condition data of distribution network equipment: the first 

one is to clean the missing and disturbing data by 

establishing a mapping relationship between fault data and 

characteristics. This method is simple and straightforward, 

but it will damage the continuity of the condition data [6, 7]. 

The second method is to replace the data columns with 

normal and valid data. This method is completed by 

detecting and identifying errors and abnormal data in the 

columns. The method can effectively protect the continuity 

of the data columns and reduce the corruption rate of the 

time series data. However, data replacement without 

identifying the data properties and patterns will lead to the 

loss of the original data series characteristics and affect the 

final data cleaning [8, 9]. The third is the use of artificial 

intelligence unsupervised self-learning techniques for 

collective feature differentiation and cleaning of large-scale 

data [2, 10]. This method makes up for the shortcomings of 

the second method. It also facilitates the cleaning of datasets 

with large data size and difficulties in manual data feature 

identification. Currently, the method has good prospects for 

application. 
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Fig. 1. Simulation model of distribution network 

 

The main reasons are threefold. First, the high sampling 

frequency of electrical transient fault data in the distribution 

network, the large data dimension, the long data time 

series,and the random acquisition time. Second, the multiple 

different states (steady, transient, and new steady) on each 

long time series. Third, the data types that include various 

real faults (single-phase grounding, multi-phase short circuit, 

and overvoltage), as well as different forms of errors, 

high-frequency interference fault data, obscure single data 

characteristics (the fault waveform only appears as 

individual anomalies), and other problems [3, 11, 12]. 

Therefore, studying cleaning methods of transient fault data 

and establishing a clean, high-quality fault database are 

important for the fusion and analysis of multiple data sources 

in the distribution network. They are also vital for 

subsequent fault identification, fault event analysis, and 

incident rescue. 

This study presents a cleaning model of fault data in 

distribution network based on clustering by fast search and 

find of density peaks (CFSFDP) algorithm. First, local 

features of transient fault data are auto-extracted using 

convolutional auto-encoder (CAE) and principal component 

analysis (PCA). Then, the transient fault data are cleaned by 

CFSFDP algorithm. This method effectively eliminates the 

error and disturbance data in the distribution network dataset. 

It also effectively improves the cleanliness of the transient 

fault database through the hierarchical cleaning of the error 

and disturbance fault data in the distribution network. 

Meanwhile, the comparative experimental analysis of 

unsupervised learning multi-cluster cleaning model is 

launched to demonstrate the effectiveness and accuracy of 

the self-extraction and cleaning model of transient fault data 

features. 

II. ACQUISITION OF TRANSIENT FAULT DATA IN 

DISTRIBUTION NETWORK  

As shown in Fig.1, the transient fault data of the 

simulation model in this study are based on a transmission 

line of 220 kV and 50 Hz with a length of 200 km to 

simulate a three-phase power system network. The entire 

network is modeled in the MATLAB environment. The 

transmission line of the designed network is connected to a 

three-phase voltage source with positive and zero-sequence 

resistances of 0.01273 and 0.3864 Ω/km, respectively. Line1 

and Line2 are the grid lines. The line voltage and current 

signals are obtained from the three-phase voltage source side. 

B1 and Bus modules are the line electrical quantity data in 

the distribution network. The B1 and Bus modules are the 

display and acquisition modules for the voltage and current 

signals collected to provide the data required for detecting 

and cleaning transmission line faults. The fault block is the 

fault setting module, and the three-phase loads are RLC-type 

loads. 

As shown in Table I, the design parameters of the 

network are considered to achieve the various types of faults. 

Thus, the common seven kinds of fault data are obtained, 

namely, AG, BG, CG (AG, BG and CG refer to single-phase 

grounding of phase A, phase B and phase C respectively), 

AB, ABG and ACG (AB refers to two-phase short circuit of 

phase A and phase B, ABG and ACG refer to two-phase 

grounding of phase A and phase B, phase A and phase C 

respectively) and interference, error fault data. Interference 

and error fault data for the simulation of fault indicators and 

line operation process by external interference or their own 

equipment problems are generated by a class of high- and 

low-frequency invalid fault data. Fig 2 shows part of the fault 

data. 

 
TABLE I SIMULATION NETWORK PARAMETERS 

Parameter type Parameter name Parameter value 

Fault Fault type AG, BG, CG, AB, 

ABG, ACG, E-Fault 

Fault distance (km) 1–200 

Fault resistance (Ω) 0.1, 1, 5, 10, 50 

Fault phase angle (°) 45, 135, 270 

Line Positive sequence and zero 

sequence resistors (Ω/km) 

0.01273 and 0.3864 

Positive sequence and zero 

sequence inductors (H/km) 

0.9337e-3 and 

4.1264e-3 

Positive sequence and zero 

sequence capacitors (F/km) 

12.74e-9 and 7.751e-9 

Voltage source Inter-phase voltage 220 kV 

Base voltage 220 kV 

Baseline power 60 MVA 

III. CFSFDP CLEANING MODEL FRAMEWORK 

A. CAE feature extraction network 

Auto-encoding is an unsupervised learning process that 

reconstructs input data by encoding and decoding. Moreover, 
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it extracts low-dimensional feature from the data. 1-D CAE 

uses a convolutional layer to replace the traditional fully 

connected layer. Fig 3 shows that the 1-D CAE consists of a 

convolutional layer, a pooling layer, an unpooling layer, and 

a deconvolutional layer [13]. In the process of feature 

extraction, the local perception and weight sharing 

characteristics of 1-D CAE can obtain more accurate data 

features and realize more efficient computing [14]. 

Convolutional layer: The convolution kernel is used to 

perform convolution calculation on the input signal of the 

previous layer and output the feature map of this layer by 

activation function. Thereafter, the feature learning of the 

convolution layer is completed. The convolution calculation 

expression is 

 ( ) ( ) ( ) ( )

( ) ( )

1

( )
N

l l l l

out i out i i i

i

x f x k b


   (1) 

where ( )

( )

l

out ix  represents the i-th feature map in layer l, N 

represents the number of feature map, ( )l

ik  represents the 

i-th convolution kernel in layer l, ( )l

ib  represents the bias of 

layer l, ⊙ represents convolution operation, and f is the 

activation function. 

The activation function is expressed as 

 

 ( ) max(0, )f x x  (2) 

The output size of the convolutional layer is expressed 

as 

 2
1

W P F
Width

S

 
   (3) 

where Width is the convolution output size of this layer, W is 

the input signal size of the upper layer, P is the filling in the 

convolution process, F is the size of the convolution kernel, 

and S is the convolution step length. 

Pooling layer: The pooling layer has no parameters to 

be learned. The number of channels does not change as well. 

The pooling layer is used to reduce the resolution of 

convolutional feature maps, compress the dimension of data 

and parameters, and improve the fault tolerance of the model. 

It is expressed as  
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Fig. 2. Partial failure data 
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Fig. 3. 1-D CAE structure 
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 ( ) ( 1)max( )l l

i ja x   (4) 

where ( )l

ia is the i-th pooling value of layer l, and ( 1)l

jx  is 

the element in the pooling window. 

The output size of the pooling layer is expressed as 

 1
W F

Width
S


   (5) 

where Width is the output size of the pooling layer, W is the 

size of the upper input signal, F is the size of the pooling 

window, and S is the pooling step length. 

Deconvolution layer: The data are upsampled using the 

transposed convolution matrix. The output size of the 

deconvolution layer is expressed as 

 ( 1) 2Width S W P F     (6) 

where Width is the output size, W is the size of the upper 

input signal, P is the filling in the convolution process, F is 

the size of the convolution kernel, and S is the convolution 

step length.  

Unpooling layer: Unpooling can restore the main 

information of the data by supplementing bits. This layer has 

the opposite effect to the pooling layer [15]. 

B. Clustering by fast search and find of density peaks 

The CFSFDP algorithm is a data density-based 

clustering algorithm. It can quickly determine the number of 

class clusters and class cluster centers through decision 

diagrams. The algorithm can also rapidly detect the peak 

class cluster density points, that is, data class cluster centers, 

for any data shape [16]. The CFSFDP algorithm can 

highlight anomalous data points and discrete points in a 

dataset and isolate them effectively. It is suitable for 

clustering analysis of larger datasets and only requires one 

traversal for different data to achieve different classes of data 

clusters. The algorithm is also simpler and more efficient 

than other iterative clustering algorithms [17]. 

CFSFDP has some drawbacks in certain cases. For 

example, different calculation methods are used to calculate 

the density of different discrete and continuous data in the 

database when calculating the sample density of the data. 

Moreover, the truncation distance of the dataset may be 

different if the sample size of the database is small, which 

affects the overall clustering effect. In addition, when 

clustering non-cluster-center data, the non-cluster-center data 

points that are less dense are clustered in a cluster that is 

denser and closest to them. The accuracy of the clustering 

algorithm is reduced [18]. However, this study considers the 

shortcomings of this particular case and uses a transient fault 

dataset with a certain amount of data. This way avoids the 

effect of smaller data samples on the difference in truncation 

distance. Multiple experiments are conducted on the same 

dataset with random disruption to determine the accuracy of 

the clustering algorithm for the chain effect of continuous 

sample data when cluster occurs. Fig. 4 shows the flowchart 

of the CFSFDP algorithm. 

The CFSFDP algorithm is based on two assumptions. 

One is that the local density of the cluster centers is greater 

than the local density of the non-center members of the class 

cluster. The other is that the centroids with equally high local 

densities are distant from each other. CFSFDP calculates two 

important parameters for each piece of data, namely, the 

local density ρi and the distance δi, to quickly search for class 
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Fig. 4. Flowchart of CFSFDP algorithm 

 

clusters and class cluster centers that meet the above   

assumptions. For example, data xi in a certain dataset Q={x1, 

x2, x3, … , xn} with key parameters ρi, δi depending on dij. 

 ( )

2
,i j

ijd x x i j   , (7) 

where 
2

  is the Euclidean norm. i, j = 1, 2, ..., m, which 

is i ≠ j. 

The local density ρi is given by 
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where dc is the cut-off distance greater than zero, which is 

often set artificially before clustering is conducted. As 

clustering databases vary, the cut-off distance is often set 

indirectly by setting the average percentage of neighbors P. 

dc is set as 

 
1( ) ,

100
c N k

N p
d D k


  , (9) 

where DN,1 is the dij of all data in the database in ascending 

order. N is the total amount of data in the database. The 

k-value can be obtained by setting the average percentage 

of neighborhood P to determine the truncation distance. 

The value is generally set at 1%–2% of all data points in 

the database. 

The data point distance δi is calculated as 
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 (10) 

The display results for ρi and δi can be derived by 

calculating the local density ρi and the distance δi for each 

data. A visual display of the class cluster core of the database 

is performed by decision tree construction and the product of 

the local density and the distance from the data points. Fig 5 

shows the local density ρi and distance δi of the fault sample 

data after the CFSFDP algorithm. Fig 5 (a) shows the 

relationship between local density ρi and distance δi. The 

purple data points in this figure are the class cluster cores in 

the clustering process. They have a high local density ρi and 

a large distance δi. Fig 5 (b) shows the method of 
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determining the number of class cluster cores in decreasing 

order γi=ρi×δi. The yellow shaded area in this figure is the 

corresponding class cluster centroid highlighted by the red 

data points in Fig 5 (a). 

After the cluster cores for each class of clusters are 

determined, the feature points need to be assigned to 

different class clusters based on their own ρi and δi. Fig 6 

shows that the feature points around the cluster cores are 

either classified as neighboring class clusters or designated 

as overlapping points. Those classified as neighboring class 

clusters are true kernel elements, and others are designated 

as overlapping points because the truncation distance 

between multiple class clusters overlap and do not belong to 

any class cluster. 

C. CFSFDP cleaning model 

A transient fault data cleaning model based on the 

CFSFDP clustering algorithm is built to eliminate errors and 

disturbances in the transient database of the distribution 

network. Clustering algorithms such as decision trees, 

support vector machines, and K-means can be used at this 

stage to directly determine the number of clustering centers 

in the feature set and complete the clustering of fault data. 

However, some peripheral discrete fault data features in the 

transient dataset that are less dense locally and farther from 

the cluster centers are also grouped into relatively adjacent 

clusters. Obviously, such small local densities and distant 

from the cluster centers are erroneous, which disturbs 

transient fault data in the distribution network. If such data 

are not isolated prior to formal clustering, then discrete fault 

data will be mixed into the real fault data or high-frequency 

error data clusters. This condition reduces the effectiveness 

of the transient fault data cleaning. Therefore, completing the 

pre-cleaning of discrete data points in the periphery of the 

transient fault dataset prior to full clustering is necessary to 

achieve the best cleaning effect on transient fault data. The 

CFSFDP cleaning model is shown in Fig 7. The model has 

the following three main components. 

(1) Local features of transient fault data in distribution 

network are obtained by CAE and PCA techniques. 

(2) Pre-cleaning of the transient fault data is conducted by 

CFSFDP algorithm with discrete points. 

(3) The CFSFDP algorithm is used again to achieve the 

complete cleaning of transient fault data. 

Fig 8 shows the CFSFDP clustering cleaning process. 

In the local feature auto-extraction phase of the transient 

fault data, the transient fault dataset in the 1D distribution 

network is first extracted locally by convolutional 

auto-coding network and PCA. In this stage, different types 

of transient fault data are entered into the feature extraction 

network to train the weights and bias parameters of the 

convolutional auto-coding feature auto-extraction. The 

principal components in PCA are also efficiently acquired in 

this way. 

In the pre-cleaning stage of transient fault data, the 

CFSFDP algorithm is used to cluster the fault data features 

obtained in the first part. Then, it locates the discrete points 

of the fault data by building a ρ–δ relationship decision tree 

and ρi in descending order. Finally, the algorithm isolates the 

fault data corresponding to the discrete points for error fault 

cleaning in the transient fault dataset. 

In the complete cleaning stage of the transient fault data, 

the CFSFDP clustering based on the pre-cleaning in the 

second stage is performed again on the features of the 

transient fault dataset by isolating the discrete fault data at 

the periphery. Then, each class cluster is identified, and the 

transient fault data type represented by the centroid of each 

class cluster is detected. The fault type of the centroid of the 

cluster represents the overall fault data type of the cluster. 

The high-frequency error fault class cluster data are located 

by the error or invalid fault type expressed by the cluster 

centroids. Finally, the fault data corresponding to the error 

fault clusters are cleaned to achieve a complete cleaning of 

the transient fault database. 
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Fig. 5 CFSFDP diagram for transient fault data in distribution network 
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Fig. 7 CFSFDP fault data cleaning model
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Fig. 8 Flowchart of CFSFDP fault data cleaning 

 
 

IV. CFSFDP CLEANING IMPLEMENTATION 

A. Self -extraction of the transient fault data 

1-D CAE is used to study the feature extraction of fault 

data samples. The TensorFlow and Python are used, and the 

computer configuration is Intel Core i710700CPU@2.9GHz, 

The memory is 8GB. 1-D CAE framework is built in the 

TensorFlow, the convolutional coding layer and decoding 

layer are obtained. The training data samples are imported, 

the convolution model is compiled, the network structure 

parameters are optimized. The structure of the 1-D CAE 

consists of an input layer, an output layer, two convolution 

pooling layers and deconvolution pooling layers. The 

two-layer network are enough to obtain the features of the 

sample data. Due to the low noise of the data, the 

convolution core size in the network is small. The network 

has good feature extraction ability. As discussed in our 

previous work [19], different loss functions are used to show 

the reconstruction degree of the network in the training 

process. When the training times reach the fifth time, the 

binary cross entropy (BCE) loss function value converges to 

about 0.63. The mean square error (MSE), mean absolute 

error (MAE) and mean square logarithmic error (MSLE) loss 

function value converges to approximately 0. In addition, 

The MSE loss function converges faster than MSLE and 

MAE. The convergence value of MSE is smaller than those 

of MSLE and MAE. Thus, the MSE is used as the model 

objective function. The stable and approximate zero loss 

function value shows that the error between the output and 

input of the model reconstruction is very small. The 

reconstruction effect of 1-D CAE is good.  

B. Fault pre-cleaning for distribution networks based on 

CFSFDP 

The data are visualized, as shown in Fig. 9, after the 2D 

feature vector of transient fault data from the distribution 

network is obtained through the 1D convolutional 

self-encoder local feature self-extraction technique. The 

transient fault data corresponding to the 2D feature vector 

are cleaned by clustering. According to the CFSFDP 

algorithm, the average neighborhood percentage P is 

generally set to 1%–2% of all data points in the database. 

The average neighborhood percentage P=2 is set to meet the 

truncation distance value. 
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Fig. 9 Visualization of transient fault data features (P=2, x and y denote the 

first and second features extracted, respectively) 

Engineering Letters, 31:4, EL_31_4_03

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



 

 

Based on the set mean neighborhood percentages, the 

truncation distance of the sample dataset is calculated using 

Equation (7), the local density ρi and distance δi 

corresponding to each feature are obtained using Equations 

(8) and (9), and the decision tree of the ρ–δ relationship is 

constructed as in Fig 10 (a). The yellow areas with small 

local densities and large distances represent the discrete 

points in the fault sample dataset. These discrete points, 

which are relatively small in number and far from the center 

of the cluster, are likely to be interference data in the fault 

data collected by the distribution network. They also need to 

be isolated as much as possible. The discrete points in the 

sample dataset can be obtained by ranking the local density 

of the fault data feature points. Fig 11 (a) shows the local 

density ranking of the fault data feature points. As shown in 

the figure, the last section of the sample data points has the 

lowest local density and is all close to 1. Therefore, these 

data are discrete points that are far from other classes of 

clusters. Fig 11(b) shows a zoomed-in view of the local 

density ranking of the sample data points in this section. The 

red area formed by the local density of the fault data feature 

points (ρ<1.2) is the discrete area. The transient fault data 

corresponding to the feature points in this area are judged as 

error and interference data, and such data are isolated. The 

blue area with local density ρ>1.2 is the normal class 

element area, which represents the real fault data. The local 

density threshold here is not fixed and can be adjusted in 

conjunction with the ρ–δ relationship decision tree and the 

distribution in Fig 11(b). The main consideration for the 

selection of the ρ threshold is the rapid decrease in local 

density to a stable value close to 1. 
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Fig. 10 Building a decision tree (P=2) 

 

After the discrete point data are located and the 

isolation is completed, the ρ–δ relationship decision tree is 

again constructed as in Fig 10 (b). Comparison indicates that 

the discrete points corresponding to the yellow areas in the 

original figure are effectively isolated. Table Ⅱ shows the 

data types corresponding to the isolated discrete points. 
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Fig. 11 ρi in descending order 

 

The calculation shows that the pre-cleaning cleaning 

precision (CP) of the distribution network transient fault data 

is 84.2%, the correct cleaning accuracy (CA) is 11.4%, and 

the mistake cleaning rate (MCR) is 0.05%. 

Amount of error fault data cleaned

Total error fault data
CA   

Amount of error fault data cleaned

Total amount of data cleaned
CP   

Total real fault data for miscleaning

Total real fault data
MCR   

 

TABLE Ⅱ PRE-CLEANING RESULTS 

Total pre-cleaned fault 

data 
Error fault data 

Real failure 

data 

19 16 3 

 

C. Fault complete cleaning for distribution networks 

based on CFSFDP 

The transient fault data in distribution network are 

pre-cleaned to isolate some of the errors and interference 

fault data in the dataset. However, the cleaning cannot be 

completed for the clusters formed by some high-frequency 

error fault data. Thus, complete cleaning is needed for the 

error fault clusters. 

After the pre-cleaning is completed, the seven feature 

points with high local density and large distance in Fig 10 (b) 

are used as the class cluster centers. The assignment of the 

remaining feature points is completed as well. Fig 12 shows 

the clustering results of each class of clusters for different 

fault types. As observed, the seven clusters represented by 

the seven fault types are presented as seven regions in the 

diagram. The data that are clearly assigned to a region are 

the core elements of the clusters. They have a high local 

density and are in the central part of the clusters. Region 8 

represents the overlap between clusters, that is, the overlap 

points between clusters. The overlap points are related to the 

truncation distance set in the clustering process. They have a 

small local density and do not belong to any of the clusters. 

Table Ⅲ, which presents the elements that each cluster has, 
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Area 4 

Area 6 

shows intersection points between clusters 4 and 5. The 

overlap points occur between clusters 4 and 5 of the two real 

fault data clusters. Thus, they do not affect the number of 

kernel elements in cluster 7 of the high-frequency error 

clusters. Accordingly, the overlap points present here do not 

influence the fault data cleaning effect. 

 
TABLE Ⅲ ANALYSIS OF CLUSTERING ELEMENT RESULTS 

Clustered 

clusters 

Total number of 

elements 

Nuclear 

elements 

Overlapping 

points 

1 997 997 0 

2 999 999 0 

3 1028 1028 0 

4 1001 997 4 

5 973 971 2 

6 1002 1002 0 

7 121 121 0 

 

The fault data represented by central elements of the 

clusters are identified. The type of fault represented by each 

cluster can be obtained. According to Fig. 12, the distance 

between cluster 7 and the other clusters are significantly 

higher than those between any two clusters except cluster 7. 

The data represented by central elements in cluster 7 are 

fault. According to the similarity of clustering, the core 

elements in cluster 7 are the same fault type. Therefore, the 

fault data represented by this cluster should be eliminated 

from the dataset. Then, the complete cleaning of the transient 

fault data is finished. 

Area 1

Area 2

Area 3

Area 4

Area 5

Area 6

Area 7

Area 8

Fig. 12 Complete clustering cleaning results (P=2, x and y denote the first 

and second features extracted, respectively) 

 

The actual data types of the cleaned cluster elements 

are shown in Table Ⅳ, which shows that all the core 

elements of the clusters are fault data. As shown in Fig 13, 

the total CP is 97.9%, the CA is 97.9%, and the MCR is 

0.05% for the transient fault data through two incremental 

cleaning processes, namely, pre-cleaning and complete 

cleaning. 

The results of direct cleaning of transient fault data by 

CFSFDP are shown in Fig 14. These results are obtained by 

identifying the error fault cluster 7 and cleaning the transient 

fault data corresponding to the database. Table Ⅴ shows the 

actual data types corresponding to the elements of the direct 

cleaning clusters. As shown in the table, the CP for direct 

cleaning of transient fault data is 100%, the CA is 92.1%, 

and the MCR is 0. The direct cleaning has a good CP, but the 

CA for all error fault data in the database is low, which 

results in a certain amount of error data in the transient fault 

database. The fault database still contains a certain amount 

of erroneous fault data. Therefore, comparison of the 

progressive cleaning mode of pre-cleaning and complete 

cleaning with the direct cleaning mode shows that the 

two-level progressive cleaning can effectively improve the 

cleaning quality and cleanliness of the transient fault 

database. 
 

TABLE Ⅳ COMPLETE CLEANING RESULTS 

Cleaning data volume Error fault data Real fault data 

121 121 0 
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Fig. 13 Results of CFSFDP fault data cleaning 
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Fig. 14 Results of direct cleaning of CFSFDP fault data 

 

TABLE Ⅴ DIRECT CLEANING RESULTS 

Cleaning data volume Error fault data Real fault data 

129 129 0 

 

V. EXPERIMENTAL ANALYSIS OF DISTRIBUTION 

NETWORK FAULT DATA CLEANING 

The CFSFDP clustering and cleaning results are 

compared with those of K-means clustering, density-based 

spatial clustering of applications with noise (DBSCAN), and 

other common clustering algorithms for experimental 

comparison to verify the superiority of the CFSFDP 

clustering algorithm in clustering and cleaning of transient 

fault data in distribution networks. 

The K-means clustering algorithm is a common 

unsupervised iterative clustering algorithm that measures the 

similarity between two or more datasets by the Euclidean 

distance between the data or the cosine similarity metric. 

Area 1 

Area 2 

Area 7 

Area 6 

Area 3 

Area 4 

Area 8 

Precleaning 

Completely 

clean 

Cleaning the 

sum 

Area 7 

Area 5 

Area 1 

Area 2 

Area 6 

Area 4 

Area 5 

Area 8 

Area 3 

Engineering Letters, 31:4, EL_31_4_03

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



 

 

Notably, the smaller distance between the data means greater 

similarity and more likely for them to be regarded as the 

same class of feature data [20]. The aim is to group the entire 

dataset into n clusters, with the center of mass of each cluster 

being calculated based on the mean of all the data in this 

cluster. The algorithm first selects n random data points from 

the dataset as the center of mass according to the 

predetermined number of clusters. Then, it calculates the 

distance from each number in the dataset to each center of 

mass, and the data points are assigned to the nearest cluster 

of the center of mass according to the distance to the center 

of mass. Next, it recalculates the location of the center of 

mass of the cluster according to the data of the cluster, and 

the previous step is repeated several times to continuously 

update the center of mass of the cluster. Finally, the cluster 

core is designated as the final cluster core when the position 

of the cluster cores no longer changes or the distance of each 

update is less than a set threshold [21]. 

Four clustering states are set manually for the number 

of clusters n=2, 3, 5, 7 to evaluate the clustering performance 

of K-means algorithm on transient fault data. Fig 15 shows 

the visualization in the 2D features of transient fault data 

under the four clustering states, where x and y are the first 

and second features extracted from the fault data, 

respectively. Regardless of the number of clusters set in 

K-means, the discrete points in the data cannot be 

pre-cleaned and are grouped into clusters that are closer 

together. For the clusters of incorrect and invalid fault data 

in the top right of the figure, the same amount of fault data is 

clustered in each clustering state. The isolated cleaning is 

also calculated to produce a CP of 100% for K-means, 

92.1% for CA, and 0% for MCR [22]. 

The DBSCAN algorithm is also a density-based spatial 

clustering algorithm, and it is commonly used in cluster 

analysis and image recognition. It can perform multi-class 

cluster clustering on arbitrarily shaped datasets and can 

classify datasets into core points, boundary points, and 

outliers [23]. The algorithm also does not require a manual 

setting of the number of clusters. However, it needs to set the 

neighborhood radius ε and the minimum number of data 

points in the neighborhood P. The DBSCAN algorithm 

usually starts by detecting the number of data points in a 

defined neighborhood for each data point. If the number of 

points is greater than P, then a cluster is created with the 

centroid as the core; otherwise, it is marked as an outlier. 

Next, it iteratively calculates the core points that can form 

the clusters and combines the closer clusters. The data 

clustering is completed until no new data points are added to 

either class of clusters [24]. 

The minimum number of data points P in the clustering 

neighborhood is adjusted and the 2D visualization of the 

fault features corresponding to the minimum number of data 

points P in the clustering neighborhood is shown in Fig 16 

for 2, 10, 30, and 60 for verifying the clustering performance 

of the DBSCAN algorithm on transient fault data. Here, x 

and y are the first and second features extracted from the 

fault data, respectively. As observed, the number of clusters 

increases for smaller and larger P settings. Clustering is also 

ineffective despite the isolated pre-cleaning of the anomalies 

followed by clustering cluster cleaning. Specifically, the 

clustering is optimal when P = 10, with a CP of 97.8%, a CA 

of 93.8%, and an MCR of 0.15%. The CA of the DBSCAN 

clustering algorithm for transient fault data is close to that of 

the CFSFDP algorithm. However, the accuracy rate of fault 

data cleaning has decreased, and the overall effect is slightly 

inferior to that of the CFSFDP algorithm. 

As shown in Table VII, compared the proposed 

CFSFDP with K-means and DBSCAN, the K-means 

clustering algorithm is less adjustable and has a lower CA. 

The K-means is unsuitable for cleaning the transient fault 

data of distribution network. DBSCAN can achieve effective 

cleaning of fault data, but its CP is lower and is not the best 

choice. Therefore, the proposed CFSFDP considers both CA 

and CP of transient fault data. Accordingly, the CFSFDP can 

effectively eliminate disturbing and erroneous data in 

massive transient fault data. 
 

TABLE Ⅶ COMPARISON RESULTS OF DIFFERENT CLUSTERING METHODS 

Clustering 

methods 
CP CA MCR 

K-means 100% 92.1% 0% 

DBSCAN 93.8% 97.8% 0.15% 

CFSFDP 97.9% 97.9% 0.05% 

 

(a) n=2 (b) n=3

(c) n=5 (d) n=7  
Fig. 15 K-means clustering results 
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(a) P=2 (b) P=10

(c) P=30 (d) P=60  
Fig. 16 DBSCAN clustering results 

 

VI. CONCLUSION 

In this study, a transient fault data cleaning model 

based on density peak fast search clustering is proposed to 

clean the error and disturbance data in the massive transient 

fault data and establish a clean and effective fault database. 

This work lays a solid data foundation for the subsequent 

work of fault identification, fusion, location, and event 

analysis of distribution network. It is also particularly 

important for the future development of power system 

toward smart grid. The local features of transient fault data 

are obtained by convolutional self-coding network and PCA 

techniques. CFSFDP clustering cleaning experiments under 

transient fault data are conducted as well. The progressive 

cleaning strategy of CFSFDP for pre-cleaning and complete 

cleaning of fault data is proposed, and the CP and CA reach 

97.9%, and the MCR is 0.05%. Comparison experiments of 

K-means, DBSCAN, and CFSFDP clustering algorithms are 

performed based on the same fault data to further validate 

the usability and superiority of CFSFDP clustering algorithm 

in the field of transient fault data of distribution network. 
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