
 

  

Abstract—This paper proposes an object detection method 

called "Down Up Coordinate Attention Fusion model 

(DUCAF-Net)" to address the challenges of object density and 

complex backgrounds in aerial images captured by drones. 

DUCAF-Net integrates coordinate attention at different 

resolutions, aiming to learn spatial coordinate information 

from feature maps at various resolutions, enhancing the 

expression capability of spatial features, and simultaneously 

reducing the diffusion of features from small dense objects and 

the phenomenon of feature coupling. DUCAF-Net introduces 

deformable convolutions and transposed convolutions, and 

designs an upsampling module to increase the receptive field of 

feature maps, better capturing the details of target features, 

thus improving the object detection performance. The AP 

score on the VisDrone2019 test set is 22.9. DUCAF-Net 

demonstrates satisfactory performance in medium-scale object 

detection and also performs well in small-scale object detection. 

The experimental results show that DUCAF-Net's performance 

is delightful. 

Index Terms—deep learning, Aerial images object detection, 

Attention mechanism, Convolutional neural networks (CNNs) 

I. INTRODUCTION 

n recent years, the development of unmanned aerial 

vehicle (UAV) aerial photography technology has led to 

an increasing number of high-quality images emerging. 

Aerial images have significant applications, including 

environmental monitoring, UAV-assisted maritime rescue, 

resource surveying, and more.Object detection is a crucial 

research area in computer vision, finding extensive 

applications across various domains. Target detection in 

aerial images captured by unmanned aerial vehicles (UAVs) 

finds wide application in tasks like military operations, 

agriculture, and rescue missions. Nevertheless, UAV aerial 

datasets present several challenges, including larger image 

resolutions and more complex backgrounds. Therefore, 

directly applying classical deep learning algorithms to 

accomplish the task of object detection is not feasible[1]. 

An increasing number of researchers are delving into 

UAV object detection through deep learning. Several 

methods have been introduced in this domain to cater to the 
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unique traits of aerial datasets. For example, in terms of 

network design, researchers utilize deeper networks and 

incorporate attention mechanisms to boost detection 

accuracy and coverage. In data augmentation, various 

techniques are employed by researchers to enrich data, 

tackling challenges like intricate backgrounds and sample 

imbalances in aerial datasets[2]. These innovative 

approaches consistently enhance the efficiency and 

performance of aerial image object detection, bolstering its 

application and evolution. 

This paper proposes the down up coordinate attention 

fusion model (DUCAF-Net) for target detection. The goal is 

to improve UAV image object detection performance, 

especially in scenarios with dense targets and intricate 

backgrounds. 

DUCAF-Net incorporates the coordinate attention 

mechanism and introduces the multi-resolution coordinate 

attention fusion module (MCAF). This module integrates 

coordinate offset weights from various resolutions and 

dimensions, dynamically capturing the aspect ratios of 

targets. The module not only efficiently extracts feature 

maps across multiple scales but also seamlessly merges 

global information from low-resolution images with detailed 

insights from high-resolution images, significantly 

enhancing the network's detection accuracy. 

DUCAF-Net introduces the DcUp upsampling module. 

This module combines deformable convolution and 

transposed convolution techniques, effectively enlarging 

feature map dimensions. The module adapts to targets of 

different scales and shapes. This design enables the model to 

capture target details with heightened sensitivity and 

bolsters recognition capabilities. Additionally, the module 

reduces feature diffusion and enhances detection accuracy 

and stability. 

II. RELATED WORK 

A. Object Detection Methods 

The task of object detection is to identify the presence of 

objects in an image and output their categories and locations. 

Based on the deep learning detection process, object 

detection can be categorized into two main methods: Two-

Stage and One-Stage [3]. The Two-Stage method consists of 

two phases: region proposal and object detection. While it 

offers superior performance, its execution speed is slower. 

The One-Stage method processes both region proposals and 

object detection within a single network. Compared to Two-

Stage, it operates faster but with slightly reduced accuracy. 

Faster R-CNN [4], a representative Two-Stage object 

detection network, uses the region proposal network (RPN) 

to speed up model convergence, supplanting the traditional 

region proposal method. RPN predicts both detection 

regions and object confidence simultaneously. Its strength is 
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in sharing convolutional layers with the object detection 

network, reducing detection time. Conversely, Yolov3 [5] is 

a One-Stage network model with superior detection 

performance, preferring binary cross-entropy loss to 

Softmax loss. To enhance detection, Yolov3 integrates 

residual modules, employs darknet-53 as its core structure, 

deepens the network, and leverages a feature pyramid for 

multi-scale detection. However, traditional object detection 

struggles with small objects, often yielding unsatisfactory 

results. 

B. Methods for Detecting Medium and Small Objects 

Advances in deep learning have significantly improved 

the performance of small and medium object detection[6]. 

However, detecting small and medium objects remains 

challenging, especially when the objects have low contrast, 

are blurry, or obscured. Researchers are dedicated to 

developing new object detection models to enhance 

performance. Researchers have employed various strategies 

to improve object detection models, such as introducing 

attention mechanisms, refining feature pyramid algorithms, 

and optimizing loss functions. These strategies have 

enhanced the detection of small objects. 

Liu et al [7] optimized the anchoring method and feature 

fusion of Yolov3 and introduced the GIou loss. Their 

proposed Cross-PaNet replaced the FPN in Yolov3. While it 

improved maritime object detection accuracy, the bounding 

box detection for small objects remained imprecise. Kang et 

al [8] introduced an alignment matching strategy to enhance 

the semantic output layer, considering aspect ratio and 

center distance, replacing the Iou matching in SSD, thereby 

improving small object detection. Liu et al  [9] refined 

Yolov5, launching Yolov5-Tassel with a bidirectional feature 

pyramid and robust attention module. This enhanced cross-

scale feature fusion, especially excelling in detecting small 

corn tassels. Addressing feature scale and task 

contradictions, Yang et al [10] and colleagues proposed a 

detection framework based on RetinaNet and RBox. They 

used scale calibration to align the main and target feature 

map ratios. However, this method exhibited significant 

feature diffusion in complex background detection. Sun et al 

[11] introduced the category position (CP) module, 

optimizing the positional regression features of fcos. They 

generated guiding vectors from classification features, 

enhancing object localization in complex scenarios. To 

address blurred areas during training, they redesigned 

classification and bounding box regression to minimize the 

impact of blurred regions. However, this increased the 

computational complexity of the model, affecting training 

speed. 

C. Aerial Object Detection Methods 

With the proliferation and application of drone 

technology, the number of drone aerial photography datasets 

continues to grow. This provides researchers in the 

computer vision field with a wealth of data resources. Many 

researchers have begun exploring how to effectively apply 

traditional natural image object detectors to the task of 

object detection in drone aerial images. Due to the specific 

perspectives, resolutions, and background characteristics of 

drone aerial images, traditional object detection algorithms 

need to be adjusted or optimized. Consequently, these 

researchers have started to apply deep learning models to 

drone aerial images to enhance the accuracy and efficiency 

of object detection. 

Nehru et al [12] proposed an enhanced Yolo-based 

algorithm to address specific challenges of object detection 

in drone imagery. They conducted a thorough analysis of the 

traditional Yolo algorithm's limitations in drone image 

object detection, highlighting issues like low accuracy, slow 

detection speed, missed detections, and false alarms. To 

tackle these challenges, they implemented various 

innovative strategies. They applied bounding box dimension 

clustering to enhance the accuracy of predicting object 

positions and sizes. Moreover, they used pre-trained 

networks for classification, leveraging a large annotated 

dataset to boost the model's initial performance. To enhance 

detection capabilities across various scales, they 

incorporated multi-scale detection training. However, 

although the approach performs well in most situations, it 

requires further refinement for dense object detection. 

Luo [13] et al  developed the Yolo-Drone detection 

method, a novel approach tailored for object detection 

challenges in drone aerial imagery. The method harnesses 

the unique properties of activation functions, choosing 

distinct functions for both shallow and deep networks. For a 

more accurate computation of bounding box regression loss, 

they adopted the EIou loss. Additionally, they integrated the 

improved efficient channel attention (IECA) module and 

utilized the pyramid pooling module to bolster the model's 

adaptability to intricate backgrounds and detection precision. 

These design enhancements specifically target the 

challenges of detection accuracy in drone aerial imagery 

stemming from complex backgrounds. 

Addressing the challenges posed by noise and other 

interferences in infrared aerial imagery with complex 

backgrounds, Fang et al [14] proposed a novel method.   

This approach shifts the focus from object detection in small 

drones to predicting residual images. The model is designed 

to learn directly from input infrared images and map them to 

their corresponding residual images. For a more effective 

capture of local and contextual structural information, they 

incorporated both global and local dilated residual 

convolution blocks, leading to a deep fusion of features. 

Addressing the challenges posed by scale variability in 

geospatial objects and the complexity of aerial imagery 

backgrounds, Guo et al.[15] and his team developed the 

DA2FNet, a new anchor-point detection network leveraging 

density maps and attention mechanisms. Using image-level 

supervision, the network estimates probabilities, providing a 

comprehensive understanding of target scales. They 

integrated a composite attention network to boost detection 

accuracy, emphasizing foreground objects and achieving 

superior performance in many scenarios. However, the 

network's performance can improve when detecting 

occluded objects. 

III. RESEARCH METHOD 

This section presents a comprehensive overview of the 

method named down up coordinate attention fusion model 

(DUCAF-Net), proposed in this paper and illustrated in 

Figure 1. The data flow of this method starts by passing 

through the backbone network, then proceeds through the 

MCAF module and DcUp module, and finally goes through 

the detection head. 

Specifically, In the MCAF module, the process starts with 

the selection of the feature map with the highest resolution 

from four feature maps with coordinate attention, the chosen  
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Figure 1. The framework of DUCAF-Net.  in the MCAF module represents the concatenation operation. 
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Figure 2 Coordinate attention 

 

feature map serves as the reference. Then, the other feature 

maps are resized to match the size of the reference feature 

map, and finally, all the feature maps are fused together to 

obtain the fused feature map with multi-resolution 

coordinate attention. 

The DcUp module begins by downsampling the feature 

map to reduce its dimension. Deformable convolution and 

transpose convolution are then applied to the normalized 

feature map to enhance the network's non-linearity and 

increase the receptive field of the feature map. Finally, this 

module outputs the resulting feature map. 

In this paper, we adopt three loss functions, namely the 

key loss, size loss, and offset loss, to form the final loss 

function. The sum of the three loss values is used as the 

overall loss function. The process of calculating the loss will 

be introduced in Section 3.4. 

A. Backbone 

DUCAF-Net utilizes ResNet50 as the backbone network, 

employing residual learning to achieve a deeper network 

architecture and improve the model's performance. 

ResNet50 consists of four stages. In this paper, we utilize 

the output of each stage as the initial source for further 

feature enhancement, as illustrated in Figure 1. The 1F  

feature map has a size of 128 128 , the 2F  feature map has 

a size of 64 64 , the 3F  feature map has a size of 32 32 , 

and the 4F  feature map has a size of 16 16 . 

B. CA Module 

Coordinate attention is an effective method that can 

improve object detection performance[16]. As shown in 

Figure 2, by incorporating spatial and channel information 

to adjust attention weights, coordinate attention can capture 

the correlation between different pixel positions, enabling 

the model to more accurately locate and recognize regions 

of interest, thus improving overall object detection 

performance. In this paper, we use two average pooling 

layers with pooling kernel sizes of ( ,1)H and (1, )W  , 

respectively. For each channel of the input feature map, 

position encoding is performed in both the height and width 

directions. This process can be referred to as formula 1 and 

formula 2, respectively. 

 c

0

1
y ( ) ( , )

W
h

c

m

h x h m
W =

=  ， (1) 

 c

0

1
y ( ) ( , )

H
w

c

n

w x n w
H =

=  ， (2) 

where 
cx is the input, 

cyh represents the encoding of the C-th 

channel with height h .
cyw  represents the encoding of the C-

th channel with weight w . 

The position encoding information for both width and 

height directions is concatenated and computed using a 

convolutional transformation function, shown in formula 3. 

 
1(F ([y ,y ]))h wf = ， (3) 

where,  represents applying the non-linear transformation 

function ReLU to the normalized feature. 
1F  represents the 

convolution operation performed on the concatenated 

feature map, with a kernel size of 1×1. f represents the 

feature map that interacts with width and height position 

encoding information. 

Continuing, we further calculate the weights hp and wp in 
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the width and height directions respectively by using f , the 

original height and width of the image. Refer to formulas 4 

and 5 for the calculation. 

 ( ( ))h h

hp F f= ， (4) 

 ( ( ))w w

wp F f= ， (5) 

where, represents the Sigmoid activation function, hf and
wf respectively represent the feature maps in the height and 

width directions, while
hF and

wF represent two convolution 

kernels that operate as 1x1 convolutions.  

Finally, the two weights are multiplied to the original 

feature map, and the calculation is expressed by formula 6. 

 ( , ) ( , ) ( ) ( )h w

c c c cz m n x m n m np p = ， (6) 

C. MCAF Module 

This paper introduces a multi-resolution coordinate 

attention fusion method called MCAF module. The method 

adapts to the sampling positions of each pixel in the input 

image on the feature map through learning variable 

coordinate offsets. This enables the network to capture 

channel information and focus on coordinate positions in the 

feature map simultaneously. The module combines high-

resolution and low-resolution feature maps to enhance the 

model's feature representation ability and alleviate feature 

diffusion and coupling issues in the network. 

The MCAF module takes 1F , 2F , 3F and 4F  of the 

backbone network as input, and utilizesthe feature map of 

the highest resolution 1F  as the reference. The smaller 

feature maps 2F , 3F , and 4F are resized to match  the size 

of the reference feature map. For example, when provided 

with the input image 2F , the MCAF module performs 

horizontal and vertical interpolation to obtain the 

interpolated image 
2oI , as shown in formula 7. 

 2 )

1

( , ) (1 ) (1 ) ( , ) (1 ( , 1)

(1 ) ( , ) ( , 1)1

o x

x

I i j I n I n

I n n

m

I

m

m m

   

   

= −  −  +  −  +

++ −   +   ++ ，

(7) 

where m  denotes the integer obtained by rounding i k down

wards, n  denotes the integer obtained by rounding j k  do

wnwards, i k m = −  and k nj = −  represents weights. 

k  represents the scaling factor. k is the ratio of the input im

age size to the feature map size. 

Finally, the four feature maps (
1F ,

2oI ,
3oI and 

4oI ), each 

with a size of 128  128, are concatenated to form a highly 

expressive feature map, as shown in formula 8. The output 

feature map 
oy  has a size of 3840*128*128 . 

 
1 2 3 4[ , , , ]o o o oy F I I I= ， (8) 

D. DcUp Module 

To further extract feature maps from section 3.3, this 

paper introduces an upsampling module called the DcUp 

module. Firstly, the input data is processed using a 1*1  

convolutional kernel to reduce its dimension. Then, 

deformable convolution is introduced, replacing the sliding 

window sampling of traditional convolution with 

deformable sampling, adapting to various target 

deformations and scale changes. During deformable 

convolution, learnable offsets are incorporated, allowing 

each convolutional kernel to have variable sampling 

positions, enhancing the model's perception of targets. The 

reference formula is formula 9. 

 0 0( )( ) ( )
n

n n nq R
y q w q x q q q


=  + +   (9) 

where, 
0q represents a specific position in the feature map, a 

represents a 3x3 convolution kernel with positional offsets, 

{( 1, 1),( 1,0),( 1,1),...,(1,0),(1,1)}R = − − − − , 
nq  represents 

the offset values and w  is the weight. 

Finally, the receptive field of the feature map is expanded 

further, enhancing the network's understanding of input data 

and improving its performance in handling complex image 

objects. Transpose convolution is employed to upsample the 

feature map, resulting in an output image size of z , as 

specified in formula 10. 

 ( 1) 2inz s y p k=  − − +  (10) 

where, 2s =  represents the convolution kernel size stride, 

iny  is the size of the input feature map, 1p =  represents stri

-de, and 4k =  is the size of the convolution kernel. 

E. Loss function 

This section introduces the loss functions used in the 

paper. The loss functions comprise three parts: the center 

point loss function, the offset loss function, and the width-

height loss function.  

The center point loss is utilized to assess the precision of 

center point predictions, and detailed references are 

available in formula 11. 

 
(1 ) log( ) 11

(1 ) ( ) log(1 )

pre pre gt

xyc xyc xyc

key gt pre prexyc
xyc xyc xyc

a a a

a a a otherwiseN



 

 − =
= − 

− −
  (11) 

where, 
gt

xyca a represents the weight of the distance between 

the target center point and the x , y  position, N  is the 

number of keypoints, and c  represents the number of 

classes. [0,1]
h w

c
pre R R
xyca

 

  represents the confidence that the 

output pixel of the network is a center point, where R  

denotes the scaling factor. In this paper, we set the 

hyperparameters 2 =  and 4 = . 

The offset loss is employed to assess the accuracy of 

predicting the offset of the center point position. During the 

scaling process, the model generates the center point 

position's offset, thereby introducing the offset loss as 

referenced in formula 12. 

 
1 ˆ ( )Off m

m

m
k m

N R
= − −  (12) 

where, ˆ
mk  represents the predicted offset of the model and 

m  represents the center point. 
m

m
R

− is the offset of the true 

center point calculated after downsampling, where 4R =  is 

the downsampling factor. 

The width-height loss penalizes the model's inaccuracies 

in predicting the differences between the predicted and true 

width and height. This loss function facilitates a more 

accurate fitting of the target's size and shape by the model, 

as described in formula 13. where, C represents the number 

of classes, 

 
1

1 C
pre gt

size i i

i

S S
C =

= −  (13) 

( )2 1 2 1,gt i i i i

iS x x y y= − −  The width and height of a specific 

sample's ground truth.
2

W H

pre R R
iS

 

  is the result of the 

network's regression. W is represents width, H  represents 

height， R represents stride. 
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The total loss function of the model shown in formula 14, 

where 1off = and 0.1size = represents the hyperparameter. 

 
loss Key off off size size = + + ， (14) 

IV. EXPERIMENTAL ANALYSIS 

A. DataSets 

VisDrone [17] is a comprehensive visual benchmark 

dataset designed for object detection. The dataset comprises 

10 classes: pedestrian, person, bicycle, car, truck, van, 

tricycle, awning-tricycle, bus, and motor, with professional 

annotations. The dataset contains 6,471 training images, 548 

validation images, and 3,190 testing images. Among them, 

1,610 images are publicly available for testing, while 1,580 

images are unopened and considered challenging. Images in 

the dataset have a maximum resolution of 2000×1500. 

The VisDrone2019 dataset includes diverse aerial scenes, 

such as urban, traffic, rural, and coastal scenarios, with 

numerous interferences and complex backgrounds. The 

network model must accurately detect objects amidst these 

intricate backgrounds. Figure 3 shows that the dataset 

exhibits diverse object sizes, indicating a large number of 

small and medium-sized objects in the VisDrone2019 

dataset. However, accurately detecting these small and 

medium-sized objects can be challenging, thus requiring the 

model to be sensitive to them. 

In this paper, we define the sizes of the objects based on 

the MSCOCO dataset, where small objects have sizes less 

than 32 32 , medium-sized objects have areas between 

32 32  and 96 96 , and large objects have sizes greater 

than 96 96 . 

B. Evaluation Metrics 

We selected AP50, AP70, AP75, mAP[0.5:0.95], APlarge, 

APmedium, and APsmall as evaluation metrics to assess the 

overall performance of the network. 

Precision refers to the ratio of true positive samples to all 

samples classified as positive samples. The formula for 

calculating precision is given by formula 15. 

 
TP

Precision
TP FP

=
+

 (15) 

where, TP represents true positives, indicating the number 

of samples correctly predicted as positive by the model, 

while FP represents false positives, indicating the number of 

negative samples incorrectly predicted as positive by the 

model. Recall refers to the proportion of true positive 

samples out of all positive samples.  

Recall is the proportion of correctly predicted positive 

samples among all positive samples. The calculation method 

for Recall can be found in formula 16. 

 
TP

Recall
TP FN

=
+

 (16) 

where, FN represents the positive samples incorrectly 

predicted as negative by the model. 

Iou is used to quantify the overlap between the predicted 

box and the ground truth box. It is calculated by taking the 

intersection area of the predicted box and the ground truth 

box and dividing it by their union area, as show formula 17. 

 
pre gt

pre gt

area area
IOU

area area


=


 (17) 

where,
prearea represents the predicted box and 

gtarea  is  

ground truth. 

Average precision (AP) is a crucial performance metric in 

object detection tasks. It ranges from [0,1]AP , with 

higher values indicating better model performance. In object 

detection tasks, various Iou thresholds are commonly used 

to calculate AP. Common thresholds include 0.5 and 0.75. 

AP50 and AP75 are calculated with all class-specific Iou 

thresholds set to 0.5 and 0.75, respectively. The calculation 

method for AP can be found in formula 18. 

 11
( )

N

n n nn
AP R R P−=

= −   (18) 

where, N represents the number of positive samples, 
nR  

represents the recall of the top n  samples, and 
nP  

represents the precision of the top n  samples. 

The mean Average Precision (mAP) is the average of the 

AP values for all categories, and its formula is shown in 

formula 19. 

 
1

1 n

i

i

mAP AP
n =

=  ， (19) 

C. Experiment Details 

DUCAF-Net was developed using Pytorch 1.11. During 

the training phase, the model underwent 300 epochs on a 

3080TI image processor. The initial learning rate was set at 

6.25e−4, with a 10% reduction at epochs 150 and 200. We 

used a pretrained ResNet50, trained on the ImageNet dataset, 

as the backbone network. Data augmentation techniques, 

such as image flipping, scaling, and saturation adjustment, 

were applied to the input data. These techniques are proven 

effective for object detection. The post-processing shape of 

the model's input images is 3 512 512  . 

 
Figure 3 The data distribution graph of the VisDrone2019 dataset
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D. Baseline 

This paper compares a total of 11 baseline models, 

comprising single-stage, two-stage, anchor-based, and 

anchor-free object detection methods. Detailed information 

about these models is provided in the following sections. 

1) Libra R-CNN[18] employs a novel region box 

regression method. In particular, it incorporates a learnable 

scale factor to adjust the size of region boxes and a learnable 

translation factor to modify their position, enabling adaptive 

resizing and repositioning of the region boxes to 

accommodate objects of different scales. 

2) Yolov3 utilizes DarkNet-53 as the backbone network 

for feature extraction. By incorporating multiple detection 

heads at different scales, Yolov3 enhances detection 

accuracy and coverage. This approach enables Yolov3 to 

detect objects across various scales effectively. 

3) In the first stage, Cascade-RCNN[19] uses a region 

proposal network to generate a large number of candidate 

regions. In the second stage, Cascade-RCNN employs 

cascaded detectors to refine and classify the candidate 

regions. Each cascaded detector comprises multiple sub-

networks, and each sub-network further refines and adjusts 

the output of the previous sub-network to achieve more 

accurate detection results. 

4) CenterNet[20] adopts DLA-34 as the backbone 

network. The DLA network features a multi-branch 

structure and inter-layer connections, demonstrating 

excellent performance in image feature extraction. 

CenterNet utilizes an efficient algorithm, unlike traditional 

anchor-based methods, to represent the object's position 

using a single center point. By predicting the coordinates, 

width, and height of this center point, it detects the object. 

5) FCOS [21] employs a feature pyramid network to 

improve the algorithm's detection capabilities for objects of 

different sizes, as well as its ability to process high-

resolution images. The key idea behind the FCOS network 

is to view object detection as a dense prediction task. 

6) The ATSS [22] network utilizes a highly flexible 

strategy that employs statistical methods to assign positive 

and negative samples. By dynamically adjusting the sample 

selection strategy based on their importance, the network 

can better handle challenging and noisy samples, thereby 

improving the detection of hard-to-identify objects. 

7) The TridentNet[23] network architecture comprises 

three branches, each having different convolution kernel 

sizes, to handle distinct receptive fields. However, these 

three branches share a common feature map. This allows 

each branch to concentrate on processing objects of varying 

scales, thus enhancing detection accuracy. 

8) YOLOv5 utilizes an innovative adaptive convolution 

module that dynamically adjusts the size and shape of the 

convolutional kernel according to the targets' size and shape 

in the feature map, thus enhancing detection accuracy. 

9) SAMFR-Cascade RCNN [24] employs an adaptive 

multi-scale fusion mechanism that selectively chooses 

multiple scales from the feature map and cascades them, 

enhancing the model's detection capability. 

10)EfficientDet [25]utilizes a novel composite coefficient 

to optimize the network's complexity. This approach not 

only enhances the model's detection performance but also 

improves its accuracy. 

11) FE-YOLOv5 [26] is composed of two parts: the first 

part is a cross-layer interaction module designed for shallow 

features, and the second part employs a cross-layer 

recombination approach to construct modules for deep 

features. This architecture enhances the detection capability 

for small objects 

E. Comparative Experiments 

We compares the methods from recent years. Please refer 

to Table 1 for details. The experiments show that the 

DUCAF-Net model demonstrates good performance 

compared to mainstream models in recent years. 

DUCAF-Net demonstrates excellent overall performance 

compared to other popular one-stage object detection 

networks. For instance, compared to the original Yolov3, 

DUCAF-Net achieves a 66% improvement in detection 

accuracy, and compared to the original Yolov5, it achieves a 

25.8% improvement in detection accuracy. DUCAF-Net 

achieves a 35.5% improvement in detection accuracy 

compared to CenterNet, a one-stage object detector with the 

DLA-34 backbone. DUCAF-Net achieves a 28% 

improvement in detection accuracy compared to the FCOS 

network. DUCAF-Net has achieved a 7.0% improvement in 

detection accuracy compared to the EfficientDet network. 

These results demonstrate that DUCAF-Net is a highly 

performant one-stage object detection network. 

DUCAF-Net exhibits remarkable performance in 

detection accuracy compared to two-stage object detection 

networks. Compared to the original Cascade-RCNN, 

DUCAF-Net achieves a 42.4% improvement in detection 

accuracy. Compared to SAMFR-Cascade RCNN, DUCAF-

Net achieves a 7.0% improvement in detection accuracy. 

Moreover, DUCAF-Net achieves a 15.7% improvement in 

detection accuracy compared to TridentNet. While DUCAF-

Net does not surpass SAMFR-Cascade RCNN in AP50 

scores, two-stage object detection algorithms have been 

proven to be more advantageous than one-stage algorithms 

in most cases, mAP score indicates DUCAF-Net performs 

better with a 13.5% improvement in detection accuracy. 

Compared to feature-enhancement methods ATSS, 

DUCAF-Net demonstrates superior performance, achieving 

a 12.3% increase in mAP score. DUCAF-Net shows a 9.0% 

improvement in mAP score compared to FE-Yolov5. 

Nonetheless, FE-Yolov5 slightly outperforms DUCAF-Net 

in terms of APlarge score. FE-Yolov5's ability to use the 

GAU module contributes to its performance in detecting 

large objects. The module processes feature information 

from neighboring regions around each pixel, establishing 

long-range feature dependencies. However, despite this 

advantage, DUCAF-Net outperforms FE-YOLOv5 when 

comparing other evaluation metrics.  

Overall, DUCAF-Net performs well. It exhibits excellent 

performance, especially in terms of APmedium score, with 

an additional improvement in APsmall score. These results 

indicate that DUCAF-Net performs well in detecting small 

and medium-sized objects. Moreover, the overall 

comprehensive performance of the network has been 

improved, further confirming the good performance of 

DUCAF-Net. To vividly demonstrate the effectiveness of 

the proposed method, we present a visual comparison of the 

results in Figure 4. The leftmost three images in Figure 4 

display the annotation results of the original dataset. The 

middle three images represent the detection results of the 

CenterNet network. The rightmost three images show the 

detection results of the DUCAF-Net model. By comparing 

the original annotated data with the detection results of Cent 
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TABLE 1.  
CONTRAST EXPERIMENT 

Shows the performance comparison on the visdrone2019 test-det dataset, with bold indicating the best performance. 

Method mAP AP50 AP75 APsmall APmedium APlarge 

Libra R-CNN[26] 

Cascade-RCNN[27] 
TridentNet[26] 

SAMFR-Cascade RCNN[28] 

EfficientDet (B5)[28] 

14.70 

16.09 
19.80 

20.18 

21.40 

24.60 

31.91 
35.00 

40.03 

38.60 

15.40 

15.01 
19.50 

18.42 

20.20 

6.10 

- 
11.40 

- 

- 

25.20 

- 
29.60 

- 

- 

31.40 

- 
36.60 

- 

- 
Yolov3[27] 13.80 30.43 11.18 - - - 

CenterNet[27] 16.90 32.10 15.50 - - - 

FCOS[26] 17.90 30.40 18.30 9.20 27.60 35.40 
Yolov5[26] 18.20 32.90 17.40 10.40 27.00 35.30 

ATSS[26] 20.40 33.80 20.90 11.60 31.70 36.70 

FE-YOLOv5[26] 21.00 37.00 20.70 13.20 29.50 39.10 

DUCAF-Net(ours) 22.91 39.38 23.10 13.52 33.30 38.92 

 

   

   

   

ORIGINAL ANNOTATION CENTERNET DUCAF-NET 

Figure 4 Comparison of experimental visualization results. Displaying the original annotations of different roads in aerial 

images and the detection results of two different models. The black boxes indicate the detection differences between the two 

models, while the different color boxes within the black boxes represent the detected categories. 

 
TABLE 2. 

THE ABLATION EXPERIMENTS OF DUCAF-NET 
The checkmark (√) indicates that a module was added and the hyphen (-) indicates that a module was not added. 

Resnet50 MCAF CA  DcUp mAP AP50 AP75 APsmall APmedium APlarge 

√  -  -  - 18.4 34.5 18.0 9.3 29.2 38.1 

√ √  -  - 19.1 35.0 18.6 9.8 29.3 37.9 

√  - √  - 19.6 35.4 19.2 9.5 30.4 40.1 

√  -  - √ 18.9 33.9 18.7 9.7 29.5 36.1 

√ √ √  - 21.8 38.0 22.4 12.9 32.2 36.0 

√ √  - √ 22.3 38.8 23.0 13.0 32.8 38.9 

√  - √ √ 20.0 36.1 19.2 10.2 29.8 37.5 

√ √ √ √ 22.9 39.4 23.1 13.5 33.3 38.8 
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Figure 5 Ablation Experiment Result Chart. ResNet50+MCAF +CA+DcUp achieved the best performance.  

 

-erNet and DUCAF-Net,we observe that in the first row of 

images, DUCAF-Net detects more objects, such as the 

bicycle parked in the lower-left corner. In the second row of 

images, DUCAF-Net detects a higher number of densely-

packed vehicle targets compared to the CenterNet detection 

results. From the comparison of the third row of images, we 

conclude that DUCAF-Net successfully detects tricycles, 

and its detection results are closer to the original annotations. 

Based on the comprehensive analysis above, we draw the 

conclusion that the proposed DUCAF-Net exhibits 

significant superior performance in detecting small and 

medium-sized objects. 

F. Sensitivity Analysis 

In this section, we conduct ablation experiments on 

DUCAF-Net to verify its effectiveness. We perform 

parameter tuning experiments on the three main components 

of DUCAF-Net, namely the CA module, MCAF module, 

and DcUp module. Firstly, we add different modules to the 

backbone network in various combinations to verify their 

performance. Finally, we add all the modules to the 

backbone network to verify their performance. The results 

of the ablation experiments are shown in Table 2. 

In cases of significant variation in object sizes, traditional 

attention mechanisms tend to overly focus on the channel 

dimensions of features. In contrast, the Coordinate Attention 

(CA) module performs attention computation in the spatial 

dimensions. By modeling and calculating attention based on 

the width and height directions of the objects, the CA 

module can more accurately focus on the positional 

information of the targets, leading to a better understanding 

of the image. The comparison results between the third row 

and the first row in Table 3 show that the introduction of the 

CA module has improved the mAP score by 1.2. This 

indicates that the incorporation of this module effectively 

enhances the detection performance. 

The MCAF module (without CA module) enhances 

object detection capability and effectively mitigates the 

decrease in the overall model's detection ability caused by 

scene scale variations. While the MCAF module's 

introduction leads to a decrease in the network's ability to 

detect larger objects, it improves the overall performance. 

By comparing the data in the second row and the first row of 

Table 3, the mAP score increased by 0.7. 

Comparing the fourth row with the first row in Table 3, 

we can observe that the introduction of the DcUp module 

improves the model's adaptability to variations in different 

scale targets. The DcUp module enables more accurate 

modeling of features from different regions, thereby 

enhancing the accuracy of feature expression. Despite a 

slight decrease in the model's detection of larger objects due 

to the introduction of the DcUp module, the overall 

performance is improved, resulting in an mAP score 

increase of 0.5. 

Ablation experiments for MCAF+CA attention, MCAF+ 

DcUp, and CA+DcUp were performed in rows 5, 6, and 7 of 

Table 3. The experimental results demonstrate that 

incorporating these modules has enhanced the overall model 

performance, outperforming the individual addition of each 

module. In particular, when compared to the baseline model, 

the MCAF+CA Attention network achieved a 3.4 increase in 

mAP score, the MCAF+DcUp network achieved a 4.1 

increase in mAP score, and the CA+DcUp network achieved 

a 1.6 increase in mAP score. 

The experimental results indicate that the performance of 

the eighth row (Resnet50+MCAF+DcUp+CA) is superior to 

rows one to seven, achieving an mAP of 22.9. The mAP 

score has improved by 4.5 compared to the baseline. From 

the analysis of the ablation experiment in Figure 5, it can be 

observed that incorporating all modules into the network 

yields the best performance. 

Based on a comprehensive analysis, we have concluded 

that each module of DUCAF-Net performs well in the object 

detection task, and they demonstrate mutual dependence and 

interaction. 

V. CONCLUSION 

This paper proposes a method called DUCAF-Net to 

improve the detection capability of small objects in aerial 

photography datasets. The method uses the MCAF module 

to fuse feature maps with coordinate attention from various 

resolutions and dimensions. This enables learning spatial 

feature information with diverse dimensions and resolutions, 

thereby enhancing sensitivity to the positional information 
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of the feature maps. The DcUp module is employed to 

enhance the overall fusion effect by adjusting feature 

response weights for different coordinate positions, reducing 

feature diffusion and coupling in dense small object regions. 

Experimental results on the VisDrone dataset show the 

method performs well. In the future, we will keep exploring 

aerial photography datasets and optimizing object detection 

algorithms to enhance their application value in aerial and 

earth science fields. 
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