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Abstract—This article presents a disturbance estimation-
based event-triggered sliding mode control design for the
linear time-invariant system without continuous monitoring.
Comparing with traditional design methods, the proposed
method here considers the influence of control input on the
sliding model in the process of sliding model estimation. As
a result, sliding mode control is only triggered at triggering
instances, which reduces the amount of communication and
lowers the frequency of controller updates in practice. With the
obtained control law, the stability of the output trajectory is
proved. Furthermore, continuous monitoring can be avoided in
triggering condition evaluating. Zeno behavior is proved to be
excluded for the proposed event-triggered control. Moreover,
numerical examples show the effectiveness of the proposed
strategies, which executed on both linear dynamic simulation
and practical spring-mass-damper system.

Index Terms—Event-Triggered Control, Sliding Model Con-
trol, Disturbance Estimation, Spring-Mass-Damper System,
Intermittent Monitoring.

I. INTRODUCTION

EVENT-TRIGGERED control (ETC) technique receives
a lot of attention due to its ability to enhance control

efficiency and reduce the burden of communication or ac-
tuation for control implementation [1], [2]. There is clear
distinction to update controller from traditional sampling
systems [3], [4]. Meanwhile, it is important to exclude Zeno
phenomenon for an ETC. Nevertheless, because of the dif-
ficulty of uncertain processing, most of literature investigate
systems without uncertainty [5], [6].

In general, sliding mode control (SMC) technology has
been employed to deal with the variety of uncertainty prob-
lems, such as time-delay systems [7], fuzzy systems [8], to
name just a few. In practical applications, a lot of research
results have been investigated on discrete-time sliding mode
control [9]–[12]. Meanwhile, we know that the trajectory
of a system driven by sliding-mode control could chatter
and will not stay on the sliding surface, but will remain
bounded within a bounded region [9], and the magnitude
of which depends on the bounds of disturbance. In fact, in
all these strategies, the measured data of the system will be
transmitted to the controller all the time, which will cause
the increasing of the control computation cost and application
cost. Additionally, much of the work mentioned above em-
ploys time-triggered technique. Furthermore, event-triggered
SMC has been studied in [13]–[16]. Under the discrete-time
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control scheme, the event-triggered system cannot be an ideal
sliding model, which makes the trajectory just close to the
sliding surface. Behera and Bandyopadhyay [13] studied the
linear time-invariant (LTI) system by defining the practical
sliding mode and designing a global event-triggering SMC.
In [14], the robust self-triggered SMC was presented to
stabilize an LTI system. A kind of periodic event-triggering
SMC was proposed for LTI systems [15]. The authors
in [16] investigated quantized feedback control for event-
triggered SMC linear system. In the above works, controller
is updated under continuous monitoring, which results in
much communication consumption. However, in practical
applications, energy environment is limited, even a large
number of problems have minimum energy requirements.

Based on the analysis of the previous researches, this
paper aims to save resources and implement intermittent
monitoring in a framework of limited energy environment.
Although there have been a large number of classical results
concerning sliding mode control, but intermittent monitoring
techniques have not been studied sufficiently. This paper fo-
cuses on a new design technique based on co-design of both
event-triggered technique and SMC for LTI with intermittent
monitoring. The contribution highlights are summarized as
follows:
• Event-triggered SMC design with both continuous mon-

itoring and intermittent monitoring are explored.
• By fusing the techniques of event-triggered method and

SMC, a novel control design under both disturbance
estimation and monitoring mechanism is proposed to
ensure the output the stability of the system. Further-
more, computing overhead as well as communication
frequency can be well reduced.

• Compared with the traditional sliding model design
[13]–[16], this method considers the influence of control
input and monitoring mechanism which not only can
make the estimation of sliding mode more accurate,
but also reduces energy consumption. Meanwhile, the
design excludes Zeno behavior.

The rest of this paper is structured as follows. In Section
II, We present the model formulation and preliminaries.
Subsequently, in Section III, we address the development
of event-triggered sliding mode control (SMC) with contin-
uous monitoring. Section IV focuses on the topic of event-
triggered SMC with intermittent monitoring. To validate the
efficacy of the proposed event-triggered SMC, numerical
simulations are provided in Section V. Finally, Section VI
presents the conclusions and outlines potential avenues for
future research.

A. Notation
The symbols R and Rn respectively represent the set of

real numbers and the n-dimensional Euclidean space. Denote
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| · | and || · || as the absolute value of a scalar and Euclidean
norm of a vector, respectively.

II. MODEL FORMULATION AND PRELIMINARIES

In this section , the system is described, and the control
objective is also given. Then, some basic assumptions are
introduced.

A. System Description and Control Objective

The LTI system can be described as follows:{
ẋ(t) = Ax+B(u+ d),

y = Cx(t), x0 = x(t0),
(1)

where x ∈ Rn denotes the state, u ∈ R represents the control
input, and y ∈ R is the system output. The matrices A ∈
Rn×n, B ∈ Rn×1 and C ∈ R1×n are the system matrices.
Here, d ∈ R is the matched external disturbance.

The purpose of this paper is to establish a stable sliding
surface with output estimation information, which ensures
system output stability. To achieve this task, the event-
triggered SMC with continuous or intermittent monitoring
will be designed for improving the performance of system
output. Furthermore, the robustness of the system output will
be discussed, which againsts matched disturbances.

B. Some Assumptions

Assumption 1: The pair (A,B) is controllable.
Assumption 2: The disturbance d is bounded. And there

exists d1 > 0 such that supt≥0||d(t)|| ≤ d0 and
supt≥0||ḋ(t)|| ≤ d1.

III. EVENT-TRIGGERED SMC WITH CONTINUOUS
MONITORING

This section first develops the estimation sliding surface
design for systems output. Then, an output estimation-based
event-triggered SMC design of LTI system with continuous
monitoring is presented.

A. Sliding Model Design

To design sliding mode control to ensure the system output
stability, one defines the following sliding model

s = ẏ + λy (2)

where the constant λ > 0 . Based on (1), we have

s = (CA+ λC)x+ CB(u+ d). (3)

By taking the time derivative of s, one obtains

ṡ =(CA2 + λCA)x+ (CAB + λCB)u

+ CBu̇+ (CAB + λCB)d+ CBḋ. (4)

Because of the existence of the unknown disturbance d, it is
impossible to evaluate the sliding variable s directly.

To overcome this difficulty, we resort to the estimation
technique on the uncertain disturbance d to realize the
estimate of the sliding variable s defined in (3).

Note that system output y can make the following differ-
ential equation holds,

ẏ = CAx+ CB(u+ d). (5)

In the sequel, the estimation error of output y can be defined
as

e , y − ŷ (6)

where ŷ is an estimation of y,

˙̂y = CAx+ CB(u+ ν) + βe, ν = ρ
e

|e|+ ε
. (7)

Furthermore, we design the following the estimator for
matched disturbance

d̂ =
β

CB
e+ ν =

βe

CB
+

ρe

|e|+ ε
(8)

where the constant β > 0, ρ > d0, and ε > 0. In virtue of
(3), (7) and (8), we define

ŝ = CAx+ CB(u+ d̂) + λCx. (9)

The effectiveness of (7) and (8) can be proven by the
following theorem.

Theorem 1: If ρ in (7) is sufficiently large, the disturbance
estimation error d− d̂, will become arbitrarily small, where
ρ represents the estimator gain and d̂ is given by (8).

Proof: From (5) and (7), we obtain

ė = −βe− CB(v − d)

= −βe− CB(
ρe

|e|+ ε
− d). (10)

It is clear that, if ρ is sufficiently large, e will be a arbitrarily
small number, as well as ė. From (8) and (10), we can obtain
ė = CB(d − d̂). Thus, smaller ė means smaller d − d̂.
Therefore, the disturbance estimation is successful.

Define the Lyapunov function V1 = 1
2e

2, and take the
derivative with respect to time

V̇1 = eė = e(−βe− CB(v − d))

≤ −βe2 − |CBe|( ρ|e|
|e|+ε − d0)

≤ −βn2
1, for all e ̸∈ {e : |e| < n1 = (εd0)/(ρ− d0)}

Therefore, we can obtain that for some finite time T1 there
is |e(t)| < n1 for all t > T1 (see [17]). As ρ becomes suf-
ficiently large, n1 = (εd0)/(ρ− d0) will become arbitrarily
small. Then we can conclude that within a finite time if ρ is
sufficiently large, e will become a arbitrarily small number.

For ė, let V2 = 1
2 ė

2, and take its time derivative

V̇2 = ėë = ė
(
− βė− CB

(
ρεė

(|e|+ε)2 − ḋ
))

≤ −βė2 − (ρε|CB||ė|2
(n1+ε)2 + |CBė|d1, t ≥ T1

≤ −βė2 − ρε|CBė|
n1+ε

(
|ė| − d1(n1+ε)2

ρε

)
, t ≥ T1,

≤ βn2
2, for all e ̸∈ {e : |ė| < n2 = d1(n1 + ε)2/(ρε)}

Then, we can get that for some finite time T2 there will have
|ė| < n2 for all t > T2 [17]. As ρ gets sufficiently large,
n2 = d1(n1+ ε)2/(ρε) will become arbitrarily small. So we
can obtain that within a finite time if ρ is sufficiently large,
ė = CB(d− d̂) will become a arbitrarily small number.

According to the above Theorem, we know d − d̂ is
bounded. Hence, the variable ŝ can be taken as an estimation
of s.
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B. Event-Triggered SMC

To facilitate the future discussion, we define the ŷ(tk) as

ŷk = ŷ(tk), k ∈ N (11)

where denoting tk the kth triggering instant to be deter-
mined, For future proof, one defines sampled error based on
(6) and (11)

e(t) , y(t)− ŷ(tk), t ∈ [tk, tk+1). (12)

To stabilize the output signal y, we propose the following
event-triggered control protocol:

CBu̇ =− (CA2 + λCA)x

− (CAB + λCB)u(tk)−Ksgn(ŝ(tk)) (13)

where sgn(·) represents the sign function, and K ≥ |△p| =
|(CAB + λCB)d+ CBḋ|. The main result is as follows.

Theorem 2: Given γ > 0 and η > 0, if K satisfies
K > supt≥0 |△p|+ γ + η and |△p| ≤ d1 + d0(|C||A||B|+
|λ||C||B|). Then, the system output of (1) under event-
triggered control (13) will reach the sliding surface s = 0
with the triggering instant tk defined as tk = min{t : t ≥
tk−1, f(t) > 0}, of which

f(t) = (|A|2 + |λ||A|)||e(t)|| − γ (14)

is the triggering function.
Proof: Design the Lyapunov function V (s) = 1/2s2.

V̇ = sṡ

= s[(CA2 + λCA)x+ (CAB + λCB)u(tk)

+ CBu̇+ (CAB + λCB)d+ CBḋ]

= s[−(A2 + λA)e−Ksgn( ˆs(tk)) +△p]

= −s(A2 + λA)e+ s[−Ksgn( ˆs(tk)) +△p].

When sign(ŝ(tk)) = sign(s(t)), ∀t ∈ [tk, tk+1) is satisfied,
one obtains that

V̇ ≤ |s||A2 + λA)||e| − |s|K + s△p)

≤ |s|(|A2 + λA)||e| −K +△p)

≤ −|s|(K − γ − d0 − d1(|C||A||B|+ |λ||C||B|))
≤ −η|s|

where η > 0. This can make sure the sliding trajectory
converges to the sliding surface. However, if the trajectory
hits the manifold s = 0, the sign of s will change in
[tk, tk+1), which cannot guarantee V̇ < 0. It is possible
that the trajectory crosses the manifold and eventually moves
away, but, it will stay in the bounded region of the s = 0
since V̇ < 0 outside this bounded region. Therefore, the
ultimate band is the region where sign(ŝ(tk)) ̸= sign(s(t)).
In virtue of event-triggered condition (14), we have |s(tk)−
s(t)| = |(CA+ λC)e∗| < γ

|A| .
It is clear that there is a bounded region γ/|A| with ||s|| <

γ/|A|. The detailed proof reference [15].
Remark 1: Compare with [19], our work improves the

control efficiency and reduces the burden of communication
or actuation.

The following result indicates that the proposed control
design is Zeno free.

Theorem 3: The system (1) with the event-triggered con-
trol (13) subject to the triggering condition (14) does not
exhibit Zeno behavior.

Proof: Differentiating error ||e(t)|| for all t ∈ [tk, tk+1)

d

dt
||e(t)|| ≤ || d

dt
y(t)|| = ||C||||Ax+B(u+ d)||

= ||C||||Ae(t)−Ax(tk) +B(u+ d)||
= ||C||(||Ae(t)−Ax(tk)− s(tk)− λCx(tk)||)
≤ ||C||(||Ae(t)||+ ||A− λCx(tk)||+ ||s(tk)||)
= ||C||(||A||||e(t)||+ ρ1(||x(tk)||) + β1).

Thus, we have

||e(t)|| ≤ ρ1(||x(tk)||) + β1

||A||
(e||A||(t−tk) − 1), ||e(tk) = 0||

for all times t ∈ [tk, tk+1). According to the triggering
condition, we have

γ

||A||2 + |λ||A||
=||e(tk+1)||

≤
ρ1(||x(tk)||) + γ

||A||

||A||
(e||A||Tk − 1) (15)

where Tk := tk+1 − tk.
According to (15), one has

Tk ≥ 1

||A||
ln
(
1 +

γ

(||A||+ λ)(ρ1(||x(tk)||) + β1)

)
(16)

where ρ1(||x(tk)||) = (||A − λC||)||x(tk)|| and β1 = γ
||A|| .

Thus, the lower bound of Tk ensures no Zeno phenomenon.

IV. EVENT-TRIGGERED SMC WITH EVENT
INTERMITTENT MONITORING

In the previous section, one may observe that the proposed
event-triggered control relies on continuous output informa-
tion in the triggering condition which requires uninterrupted
communication between sensor (for output information) and
actuator. In this section, an improved event-triggered SMC
is developed under the triggering condition (17) with inter-
mittent monitoring.

Theorem 4: Given γ > 0 and η > 0, the system output of
(1) under event-triggered control (13) will reach the sliding
surface (3) with the triggering instant tk defined as tk =
min{t : t ≥ tk−1, F (·) ≥ 0}. Here, the triggering function
is defined as

F (t) = ē− Y (tk) (17)

where

ē =

∫ t

tk

(
γ||C||

||A||+ |λ|
+ ρ1(||y(tk)||) + β1)dτ (18)

is the measurement error of system output, and

Y (tk) = θŷ(tk), θ ∈ (0, 1). (19)

Proof:
From the proof of Theorem 3, it is easy to know

|e(t)| < |ē(tk)|, t ∈ [tk, tk+1). (20)
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Fig. 1. States trajectories of the system with sliding mode dynamic.

According to (17) and (18), one can obtain∫ t

tk

(
γ||C||

||A||+ |λ|
+ ρ1(||y(tk)||) + β1)dτ < Y (tk). (21)

Substituting (17) and (20) into (21), we have

|e(t)| < Y (tk), t ∈ [tk, tk+1). (22)

By invoking (12), one obtains

y(tk) <
1

1− θ
y(t).

Thus, a further conclusion comes out

|e(t)| < Y (tk) <
θ

1− θ
y(t). (23)

Here, the output of system (1) with Intermittent monitoring
under the input control (13) and event-triggered condition
(17) will reach the sliding model surface s = 0. This ends
the proof.

Remark 2: The triggering function (17) indicates that tk+1

can be determined by both y(tk) and ŷ(tk), which implies
that continuous monitoring is avoided.

Remark 3: In [13]–[16], the controller update depends
on continuous monitoring of output information. On the
contrary, continuous monitoring is not required for the novel
controller designed here.

Remark 4: It’s worth noting that though intermittent mon-
itoring reduces energy consumption, however, system perfor-
mance could get worse. Therefore, (17) has more triggering
times than (14), which can be found from Fig. 8 and 12 as
well as Table 1.

Suppose all assumptions hold in this article, the procedures
of disturbance estimation-based event-triggered adaptive
sliding model control policy for the system (1) is shown in
Algorithm 1.

TABLE I
EVENT-TRIGGERED FREQUENCY COMPARISON

output sampling with continuous monitoring : 1084
output estimation sampling with continuous monitoring: 647
output estimation sampling with intermittent monitoring: 2390

Algorithm 1: Disturbance Estimation-Based ETSMCP

Input: initial states of the SMC system
step 1: Disturbance estimation based on the scalar variable
y defined in (2)
step 2: Estimation of Sliding variable s via (3)
step 3: With Estimation of Sliding variable s ,we get

s = CAx+ CB(u+ d) + λCx

Step 4: With satisfying the triggering condition (17), the
event-triggered control policy for system (1) with distur-
bances as

ω = CBu̇
= −(CA2 + λCA)x(tk)− (CAB + λCB)u
−Ksgn(ŝ(tk))

where t ∈ [tk, tk+1).

V. ILLUSTRATIVE EXAMPLE

To verify event-triggered SMC, a typical linear dynamics
simulation and a practical application will be presented.

A. Linear Dynamics Simulation
Consider the continuous-time line system system (1) as

ẋ =

[
0 0.5

−15 −0.5

]
x+

[
0

0.02

]
(u+ d). (24)
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Fig. 2. Evolution of the sliding mode function.
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Fig. 3. Evolution of the SMC.

The sliding surface is

s = ż + λz, z = [0.8, 1.5]x. (25)

Designing the event-triggered SMC as

ω = CBu̇
= −(CA2 + λCA)x(tk)− (CAB + λCB)u
−Ksgn(ŝ(tk)).

(26)

To verify the validity of the theoretical analysis in this pa-
per, some parameters are chosen as d = 0.5 sin(10t), γ = 1,
λ = 20, β = 0.1, ρ = 50, ε = 0.5 and K = 50. The control
system (24) under SMC (25) can achieve practical sliding
mode. According to the ETSMC algorithm, the simulation
results are shown in Figs. 1, 2, 3 and 4. From Fig. 1, we can
see that the system states are all convergent. As is shown
in Fig. 2, the dynamics of the dynamic surface function are
quickly convergent before 25 s. Fig. 3 depicts the dynamics
of sliding mode controller asymptotically converge to zero
with time going on. Fig. 4 displays the event-inter time for
(24), from which one can find that the Zeno behavior does
not happen. It can be observed that by using the dynamic
sliding mode controller, the closed loop system is stable.

B. Application to a Spring-Mass-Damper System
Consider the following spring-mass-damper system [18],

which is depicted in Fig. 5 as follows
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Fig. 4. Event interval time of the SMC.
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Fig. 5. Simple diagram of the mass-spring-damper system.
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Fig. 6. Output trajectories with continuous monitoring.

Ṗ = V, (27a)

MV̇ = −K1P − C1V + F. (27b)

Let x1 = P , x2 = V , u = F , ξ = K1/M , δ = C1/M and
φ = 1/M . And assuming the system (27) has an uncertain
term and output term. Then, the (27) can be turned into(

ẋ1

ẋ2

)
=

[
0 1
−ξ −δ

] [
x1

x2

]
+

[
0
φ

]
(u+ d). (28)

y =C2

[
x1

x2

]
. (29)

To test the feasibility of theoretical analysis, some pa-
rameters are chosen as d = 0.8 sin(t), ξ = 30, δ = 0.65,
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Fig. 7. Evolution of the sliding mode function with continuous monitoring.
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Fig. 8. Evolution of the SMC with continuous monitoring.
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Fig. 9. Event interval time of the SMC with continuous monitoring.
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Fig. 10. Output trajectories with intermittent monitoring.

φ = 0.001, γ = 0.1, λ = 0.05, β = 2, ρ = 5, ε = 0.00001.
K = 0.001 and C2 = [1, 8.5]. Dynamic trajectory of (29) is
shown in Figs. 5 and 10. In addition, Figs. 7 and 11 depict
the dynamic behaviors of event-triggered sliding variable.
Figs. 8 and 12 show the input. As implied in Fig. 9 and 13,
though intermittent monitoring reduces energy consumption,
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Fig. 11. Evolution of the sliding mode function with intermittent monitor-
ing.
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Fig. 12. Evolution of the SMC with intermittent monitoring.
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Fig. 13. Event interval time of the SMC with intermittent monitoring.

however, systems conservatives will get worse. Therefore,
(17) has more triggering times than (14), which can be found
from Figs. 9 and 13 as well as Table 1.

VI. CONCLUSION

This paper has presented the co-design technical process
of event-triggered strategy and SMC based on disturbance
estimation for continuous-time LTI system with matched
disturbance. A new event-triggered SMC without continuous
monitoring has been employed, which lowers the energy con-
sumption of communications. New control design proposed
effectively guarantees stability of system output. Moreover,
Zeno behavior has been excluded under the designed event-
triggered rule. In the future work, we will concentrate on the
optimal control for the completely unknown nonlinear system
with unmatched disturbance based on event-triggered SMC
via adaptive dynamic programming approach.
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