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Abstract—Bridge inspections are critical for maintaining
structural integrity and must be inspected on a regular basis to
ensure their dependability. Aerial vehicles provide a safer, cost-
efficient, and time-saving method for inspection. However, UAVS
(Unmanned Aerial Vehicles) are limited from flying near the
bridge structure due to their exposed propellers. Using shelled
UAVs addressed the collision problem while giving a good visual
condition and increasing motion effectiveness.

In this study, a shelled UAV system that structural inspectors
can use to perform a close visual inspection of the bridge
was developed. The newly developed shelled UAV features a
passive rotating shell with a two-axis gimbal. This shelled UAV
is waterproof, modular, capable of water takeoff and landing,
and integrated with a crack detection system. A functional
shelled UAV was fabricated, and test flights were successfully
conducted.

The results of the computational simulations and actual flight
tests showed that the shelled UAV is overall safe and effective
in terms of its strength-to-weight consideration, drag force, and
stability performance. Moreover, crack detection systems and
software applications were developed. A curated dataset was
also produced for the purpose of training the crack detection
system. The U-Net architecture was used as the segmentation
model trained on the dataset. The trained model was effective
and could predict and segment cracks in the gathered dataset
images. The functionality of the Data Acquisition App, Damage
Detection App, and Inspection Details App was tested and
verified.

Index Terms—bridge inspection, crack detection, drag force,
shelled UAV, semantic segmentation, stability, structural health
monitoring, unmanned aerial vehicle

I. INTRODUCTION

BRIDGE inspections play a vital role in maintaining

the structural integrity and safety of the infrastructure.

These inspections help engineers detect any damage or
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Fig. 1. The shelled Unmanned Aerial System used for bridge assessment.

defects and determine areas in the bridge that may pose

potential problems. Early detection of potential risks is

important before they develop into serious issues that may

cause catastrophic incidents, such as bridge failure or total

collapse. Thus, national agencies responsible for monitoring

infrastructures are mandated by the government to perform

bridge inspections [1].

In the Philippines, the Department of Public Works and

Highways (DPWH) is responsible for maintaining and mon-

itoring the condition of all national bridges [2].

Traditional bridge access methods use specialized equip-

ment such as scaffoldings, man-lifts, bucket trucks, scissor

lifts, or boats to allow proximity inspection of the struc-

ture. Inspectors assess the bridge’s condition through visual

inspection and manually obtain photographic records of the

defects [3], [5]. The use of specialized equipment like under-

bridge inspection trucks is expensive, has high maintenance

costs, and is difficult to schedule because of its availability

and the traffic concerns it poses to the public. In addition,

this bridge inspection method is risky to the inspectors [5].

With the number of bridges to be monitored and the

frequency of undertaking bridge inspections, the traditional

method eventually leads to a backlog of maintenance ac-

tivities which might hinder the early detection of defects

and other structural issues. Recent studies adopted unmanned

aerial vehicles (UAVs) for structural health monitoring to

provide a safer, cost-efficient, and time-saving method.

Numerous studies on the use of UAVs for automated

bridge inspection have been conducted in recent years [4],

[5], [6]. One major challenge in adopting UAVs for structural

health monitoring is their limitation from flying near the
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Fig. 2. Shelled UAV in Salaan et al. (2018) designed for bridge inspection
provides close images of possible damage.

bridge structure due to their exposed propellers. With the

complexity of bridge structures, flying a UAV under the

bridge makes it prone to collisions. To address this problem,

several studies on using UAVs for infrastructure inspection

developed a passive and protective mechanism that will make

a collision-resilient UAV.

II. UAV-BASED METHOD OF VISUAL INSPECTIONS

The advantage of using an Unmanned Aerial Vehicle

for visually inspecting bridges is that traditional inspection

methods don’t require pre-inspection preparations. The UAV-

based method uses only a UAV mounted with a wireless

camera to inspect the bridge condition.

The traditional method manually photographs the bridge’s

entire condition and defects condition. The photographs will

be appended to the report, and the inspector must use

the blackboard and ribbon rods or measuring tape to get

detailed information. The blackboard must be included in

the photograph as well. But this process takes longer time

spent on the field or area. That is why the use of UAVs

not only systematically captures images from the data taken

from the camera mounted on the UAV using a developed

software application but also measures defects using the trace

tool provided in the evaluation app. Moreover, a digital form

provided by the software app includes inspection details to be

filled out by the inspector. This information will be attached

to the corresponding image gathered.

The disadvantage of using UAVs for inspection may

be limited on the outside parts of the bridge, and some

cracks will be difficult to detect because the UAV propeller

might collide with unwanted materials or the bridge walls.

Proximity inspection of the bridge may not be performed

using UAV alone; thus, obstacle-avoidance techniques for the

UAV were implemented in numerous studies to address the

problem [7], [8], [9], [10]. The development of shelled UAVs

addressed the collision problem while giving a good visual

condition and increasing motion effectiveness. This is in the

form of spherical shells that are passively rotating, which

enables the UAV or drone to collide with obstacles without

compromising its flight stability.

III. SHELLED UAV FOR INFRASTRUCTURE INSPECTIONS

Shelled UAV or shelled drone is enclosed with a protective

shell mainly for protecting the drone propeller and its body

during a close-proximity inspection. This eliminates the risk

Fig. 3. Close proximal visual inspection of distribution lines using a shelled
drone with meshed net in Librado et al. (2022).

for the inspector to inspect a damaged infrastructure against

safety and environmental hazards and prevents accidents

if the shelled drone collides or is stuck and needs to be

recovered. Per previous related studies, developed a shelled

drone of the spherical shell structure.

Salaan et al. (2016) developed a design strategy for the

protective spherical shell of the drone and further inves-

tigated the developed shelled drone from previous related

studies on actual bridge conditions, as shown in Fig.2 [10].

Simulation and actual bridge inspection were undertaken to

assess its effectiveness in gathering photos of various bridge

components without any concern for collision. The spherical

shell drone successfully displayed its capabilities, including

moving through confined spaces and rolling in touch with

smooth and uneven surfaces.

Librado et al. (2022) developed meshing and insulating

procedures for close-proximity visual examination of distri-

bution lines, the idea of adding meshed net for the spherical

shell [11]. The shelled drone with a meshed net was used

for distribution line proximal inspection, as shown in Fig. 3.

The design concept of the study was based on the works of

Mizutani et al. (2014) and Salaan et al. (2018). Together with

its meshing and insulation strategies, the resiliency offered

by the spherical shell alone is improved. The spherical shell

with meshed net prevented the intrusion of relatively smaller

objects and could perform efficiently in the test. Recently,

Pao et al. (2023) investigated the performance of the shelled

drone through aerodynamic and vibration analysis [12]. This

additional meshed net of the shelled UAV further augments

the safety and survivability of the drone.

IV. OVERVIEW ON UNMANNED AERIAL SYSTEM FOR

BRIDGE INSPECTIONS

The UAV-based structural health monitoring system pre-

sented in this paper comprises three main components: the

shelled UAV, the crack detection system, and the software

application. The shelled UAV is used as the equipment for

close visual inspection of the bridge. It allows the inspector

to monitor the parts of the bridge that are difficult to access

using traditional equipment. The crack detection system is

trained using deep learning and will be deployed with the

software application. The software application is developed

as a tool that will aid the inspectors in evaluating and

assessing the bridge condition.

Engineering Letters, 31:4, EL_31_4_10

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



Fig. 4. 5-Step process of a UAV-assisted bridge inspection procedure with
hardware and software applications.

TABLE I
REQUIREMENT SET BY DPWH

Category State Requirements

Hardware

Drone

Drone

Operation

• Provides a safe and

secure operation

• Can access narrow spaces

and critical parts of the bridge

• Able to capture images of

the structure in proximity

• Waterproof

Software

Application

Data

Acquisition

• Livestream from the

drone camera

• Real-time crack detections

• Record the live stream

for review

• 3D mapping / localization

of damage

Damage

Detection

• Automatic detection of cracks

• Capable of detecting

damages on the bridge

Inspector

Evaluation

• Review images of interest

• Capable of measuring point-

to-point distances of the damages

From these components, a five-step bridge inspection

process is presented. The first step is the pre-flight in-

spection, wherein the shelled UAV is prepared for flight

with safety checks before take-off. The second step is the

drone operation, wherein an operator controls the shelled

UAV to survey the infrastructure. The third step is data

acquisition, combined with the drone operation. During this

step, a software application shows a live stream of the

drone’s camera view and allows the inspector to record and

download it for later review and evaluation. The fourth step

is damage detection. For this step, a software application

is developed to allow a review of the data acquired in the

previous step. The inspector can capture and save specific

images of defects and categorize their type of damage. The

application also provides automatic crack detection of the

Fig. 5. Waterproof SwellPro Fisherman FD1 Fishing Drone of 2-kg payload
capacity.

data acquired. Once the data review is done, the next step is

the evaluation. A software application is developed to view

the captured images of defects. The application provides a

crack annotation tool to allow the inspector to trace and

measure the length and width of cracks of interest. The first

and second steps utilize the shelled UAV, while the third,

fourth, and fifth steps utilize the crack detection system and

the software application, Fig. 4 shows the 5-step process.

Taking advantage of the UAV’s capability to reach high

places while remotely operated, the shelled UAV is designed

to withstand high-impact collisions from sudden wind gusts

and navigate through narrow passages while inspecting.

Table 1 summarizes the requirements set by the DPWH.

V. DEVELOPMENT OF THE PROPOSED SHELLED UAV

This section details the methods employed by the re-

searchers to build the whole system.

A. Selection of the Base UAV

A multirotor UAV, specifically the X-type quadcopter, was

chosen as the base UAV unit. This type of drone offers stable

flight, small size, and the ability to hover, which is suitable

for the required application. Due to size constraints, small

UAVs are recommended to have an adequate-size protective

shell that can still enter narrow passages or spaces on the

infrastructures to be inspected. In addition, the other payloads

that should be catered for by the base UAV are the gimbal

structure and the crack detection system. Therefore, it must

have a high payload capacity and strong propulsion system

to achieve a long flight duration and effectively perform its

desired application.

Furthermore, as suggested by our industry partner

(DPWH), the base UAV unit should also be waterproof since

it is possible that the drone may crash due to unavoidable

circumstances and falls into the water during a bridge in-

spection. In relation to this, it is preferable that the UAV can

float and water takeoff when doing drone retrieval.

Based on these requirements, we chose an off-the-shelf

drone, the SwellPro Fisherman FD1, since it is well suited

for our application, as shown in Fig. 5. It has a 2kg payload

capacity and a waterproof rating of IP67. Also, having a

maximum flight time of around 12 mins with a 1.5kg load is

adequate for the inspection procedure. Lastly. its capability

to have stable flight even when experiencing strong wind
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Fig. 6. 2-Degrees of Freedom Gimbal Structure allowing yaw and roll
rotation.

Fig. 7. Gimbal component supporting the drone’s weight with the onboard
camera.

gusts (up to Beaufort 7) is also an important feature of our

application.

B. Design and Analysis of the Gimbal Structure

When designing the gimbal structure, the base UAV should

be easily attached and removed from the gimbal unit, thus

having a modular attribute that our industry partner sets.

Moreover, instead of having a typical 3-axis gimbal system,

a 2-axis gimbal unit was chosen to address this requirement.

This gimbal system is only composed of roll and yaw

rotation. It spans 820 mm and is mostly made of strong,

lightweight materials such as carbon and ABS plastic. Fig.

6 shows the three-dimensional CAD model of the 2-axis

gimbal structure. Furthermore, as shown in Fig. 7, the gimbal

component holds or supports the SwellPro Fisherman FD1

drone’s weight; thus, the strength of the gimbal design should

be examined.

C. Sizing and Analysis of the Shell with Nylon Mesh

Two important criteria should be met when sizing the

protective shell of the shelled UAV. First, the shell should

not be larger than the minimum girder spacing of the bridge,

and the second one is to ensure that the spherical shell

should not hit the propeller even if it undergoes deformation

during the collision. The main girder spacing of large-scale

bridges is between 1.1 and 1.7m, whereas small-scale bridges

are only between 0.6 and 0.8m. However, only large-scale

bridges are considered for the design since the elevation of

those smaller bridges is low enough, wherein it does not

need scaffolding when conducting the manual inspection.

Moreover, considering the drone frame size (450 mm) plus

the base UAV unit’s propeller size (12 in), the allowable shell

diameter should be greater than 760mm. Taking also into

Fig. 8. The 950 mm diameter passive rotating spherical shell with nylon
mesh.

Fig. 9. Shelled UAV during bridge inspection encountering wind-induced
drag forces.

consideration the span of the gimbal structure, the determined

size of the shell is around 950mm, as shown in Fig. 8.

Furthermore, the shell is created by utilizing strong and

lightweight materials like carbon fibre rods and ABS 3D

printed joints.

Salaan et al. (2016) developed a design strategy for the

protective spherical shell of the drone. A fullerene spherical

shell structure was made, giving lesser drag, higher strength,

and reduced overall weight. The impact strength was used

to assess and validate the choice of the base drone, analysis

of the spherical shell’s design and diameter, setting of the

gimbal structure, and material choice as implemented in Fig.

9.

During bridge inspection, specifically on the girder area,

the shelled UAV is exposed to a vacuum-like effect due to

the bridge structure. This causes the shell to enter the girder

gap at a relatively faster speed and may collide with the

concrete wall. Thus, it is important to analyze the stiffness

of the shell to ensure that its deformation is not high enough
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to touch the propeller. From the study of Librado et al.

(2022), the meshing strategy wherein a nylon monoline

was wrapped around the protective shell in a star-shaped

pattern improved its stiffness. Probable solutions were also

investigated to come up with the best combination between

the carbon rod and nylon size with the goal of having an

improvement on the overall stiffness of the shell while having

only a slight increase in weight and drag force. It can also

withstand high-impact force and, at the same time, dissipates

more energy compared to the unmeshed shell. Drag force,

system vibration and stability experienced by different shell

configurations were also analyzed through the works of Pao

et al. (2022). The fullerene-type structure shell with nylon

mesh shows a promising characteristic; hence, it was applied

on the designed shelled UAV in this study with one hexagon

face of the shell left open as a provision for base UAV

installation and maintenance purposes.

This study’s proposed shelled UAV of 950mm shell diam-

eter consists of a new gimbal design, a SwellPro Fisherman

drone component, and an onboard camera. The proposed

shelled UAV assembly will also experience significant drag

force due to the wind during bridge inspections, as shown

in Fig. 9. Therefore, the proposed shelled UAV’s drag force

and stability performance should be investigated. Moreover,

the onboard camera’s ability to capture clear images may be

affected by the shell with nylon mesh; thus, the camera’s

image clarity during the flight will also be considered.

VI. CRACK DETECTION DEVELOPMENT PROCESS

The crack detection system developed in this project aims

to assist inspectors in detecting cracks when they visually

inspect bridges. The crack detection system aims to localize

cracks in the pixel level given an input image. In this re-

search, the deep learning approach to semantic segmentation

is employed.

A. Initial Testing and Data Gathering

The initial test flight was conducted on one of the target

sites, which is the Mandulog Bridge in Iligan City, Philip-

pines, as shown in Fig. 10. Precautionary measures were

implemented before drone operation, such as the usage of

personal protective equipment (PPE), conducting a pre-flight

inspection checklist, and a safety net to catch the drone

in case it drops due to abnormalities or other unavoidable

circumstances. Spectators were also warned not to come

close to the drone inspection area to prevent undesirable

accidents. The shelled UAV was then operated and visually

inspected the structure. Fig. 11 shows samples of high-quality

images acquired by the drone during the said inspection.

B. Procedure in Developing the Crack Detection System

These can be used as additional testing images to train

crack detection and evaluation. Moreover, the drone pilot did

not experience any problems operating the drone since it flies

controllably. Minor mechanical issues were also observed

but were immediately addressed. Ongoing flight tuning and

improvements to the drone have been made.

This application requires a fast and precise network ar-

chitecture to perform semantic segmentation. Semantic seg-

mentation’s task is to predict each pixel’s class label in an

Fig. 10. Shelled-UAV conducting a close visual inspection and precaution-
ary measures such as using a safety net prepared in case the drone falls.

Fig. 11. Sample images captured by the Shelled-UAV on the girder of the
Mandulog Bridge in Iligan City, Philippines.

image. The output is an alpha mask with the same size as

the input. Fig. 12 shows the process flow in developing the

crack detection system.

The process starts by preparing the crack dataset, which

is then randomly split into training and validation datasets.

The selection of a network architecture suitable for the

research’s application follows. Once a network architecture

is determined, the base model is implemented and trained to

detect cracks. The model is trained for a number of epochs

wherein after every epoch, the model is validated on the

validation dataset. The loss between predicted and true crack

pixels is computed during validation. Training continues until

an acceptable loss is obtained. The model is then evaluated

regarding precision, recall and F1 score. Finally, the results

are visualized and observed.

C. Preparing the Dataset

The general flow of data preparation is shown in Fig.

13. The dataset comprises images of surface cracks with

and without shell obstructions. The first step is to gather

images of surface cracks. The images are obtained from

the shelled UAVs and commercial drone video recordings

during bridge inspections. Once data is gathered and col-

lected, crack annotation follows, wherein crack pixels in the

images are manually labeled. The images collected are then

preprocessed by dividing them into 448x448 pixels using a

sliding window split. This dimension sets the input size of the

crack detection model. The final step in preparing the dataset

is to randomly split the dataset into training and validation

sets at a ratio of 4:1.
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Fig. 12. The process flow in developing the crack detection system to
assist inspectors in detecting cracks when visually inspect bridges.

Fig. 13. Data preparation general flow with the dataset consists of images
of surface cracks with and without shell obstructions.

In training the crack detection system, thousands of images

of surface cracks are needed to produce a detection system

that can generalize well to unseen data. For this application,

the images obtained through the drone camera view contain

shell obstructions because of the camera position and the

design of the shelled UAV.

CrackUAS dataset is curated by obtaining images of

surface cracks on concrete walls and bridges. To train a

robust crack detection system that can detect surface cracks

Fig. 14. The process of creating the synthetic data, synthetic images were
generated by superimposing the pixels of the shell on unobstructed images
of surface cracks.

with or without the presence of obstructions, three types

of images comprise the dataset: (i) images of unobstructed

surface cracks which are collected using a commercial drone,

(ii) images taken from the perspective of the shelled UAV

that shows portions of the passively rotating shell, and (iii)

synthetic images of surface cracks with shell obstructions.

To expand the dataset, synthetic images were generated

by superimposing the pixels of the shell on unobstructed

images of surface cracks. Fig. 14 shows the process of

creating synthetic data. The advantage of adding synthetic

data is that high-quality surface cracks of different forms and

sizes can be used and matched with the shell pixels, thus,

simulating images taken from the shelled UAV’s perspective.

This method produces images of surface cracks with shell

obstruction, which are time-consuming and difficult to gather

from actual structures. Public datasets of surface cracks from

[13], [14], [15], [16], [17], [18] are also added to the curated

dataset to increase the data size further.

D. Selection and Implementation of Segmentation

The state-of-the-art architecture used in semantic segmen-

tation tasks is the U-Net. It was developed by Ronneberger

(2015) for biomedical image segmentation. It won the ISBI

cell tracking challenge in 2015. Their training strategy proves

it can outperform the best methods with only a few images

while strongly relying on data augmentation techniques.

Moreover, segmenting a 512x512 image took less than a

second on an NVIDIA Titan GPU with 6GB of memory.

Because of its favourable speed and performance, the U-Net

architecture will be used for our crack detection system, as

described in Fig. 15. The U-Net architecture [19] is based

on an encoder-decoder structure.

The encoder follows the typical architecture of a convolu-

tional network but is structured as a contracting path. As the

image passes through the layers in this part of the network,

the dimensions of the feature maps are downsampled by half

while the number of channels is doubled. This is performed

using a max pooling operation. On the other hand, the

decoder mirrors the encoder and is structured as an expansive

path.

After each decoder layer, transposed convolutions are

performed to up-sample the feature maps’ dimensions and
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Fig. 15. The U-Net Architecture based on an encoder-decoder structure
that will be used for the crack detection system.

compress the number of feature channels into half using

transposed convolutions.

A skip connection concatenates the mirrored contracting

path to its corresponding expansive path to provide local and

global information during the up-sampling process. Conse-

quently, the network is structured as a U-shape, hence the

name, U-Net.

The U-Net architecture is implemented using the PyTorch

library. It is an open-source machine learning framework that

enables fast, flexible experimentation and efficient produc-

tion. The PyTorch library easily selects between different

encoders such as VGG16, ResNet34, or ResNet101.

E. Training Parameters

The VGG16 pre-trained on the ImageNet dataset is se-

lected as the encoder for this application. Normalization is

applied to the images using ImageNet’s mean of [0.485,

0.456, 0.406] and standard deviation of [0.229, 0.224, 0.225].

The images are then converted to grayscale. The dimension

of the input image is set to 448 x 448 pixels with an expected

output of the same size.

The initial learning rate, learning rate decay factor and

learning rate decay frequency are set to 0.001, 0.5 and 5,

respectively. The optimizer used is the Stochastic Gradient

Descent with momentum with the value of momentum set to

0.9.

For the loss function, binary cross entropy (BCE) with

logits is used. This function is a more stable version of

BCE as it combines a sigmoid layer before calculating the

BCE loss. This function should be minimized during training

where N is the batch size, yi is the ground truth, and (yi) is

the predicted label and is given as:

BCElogits = −

1

N

∑

i=0

yi∗log(σ(ŷi)+(1−yi)∗log(1−σ(ŷi)

(1)

VII. SOFTWARE APPLICATION DEVELOPMENT PROCESS

Software applications are developed to improve specific

stages of the inspection procedure using the shelled UAV.

These stages include data acquisition, damage detection and

inspector evaluation. A software application for each stage

is developed to improve and aid in the workflow of the

inspectors. The software development process is shown in

Fig. 16.

Fig. 16. The software development process includes data acquisition,
damage detection and inspector evaluation.

The application for the data acquisition stage is used

during field inspections. It shows a live stream of the video

from the shelled UAV. An application that will aid in re-

viewing the data collected during the inspection is developed

for the damage detection stage. The user can run crack

detection on the video and then capture frames of interest

for further review and annotation. Finally, the inspector

evaluation application reviews the images of interest captured

in the previous stage. The user can trace cracks on the image

and let the application calculate the point-to-point distances

of the trace. This allows the inspector to measure the crack’s

length and width.

The software application is written as a desktop appli-

cation and developed using Python. The PyQt5 toolkit is

used to develop the graphical user interface. It is devel-

oped to run on Windows systems. At the beginning of the

development process, requirement analysis with potential

stakeholders from DPWH is conducted. At this phase, the

requirements are defined. Afterwards, a user flow diagram

is designed to show how the features work together. Once

the features are clearly defined, the design is implemented

through coding. This is the development phase which out-

puts a working software application. After the development

phase, the testing phase follows to examine the software’s

performance and functionality and address issues or bugs

that will be encountered. It is then packaged and deployed

for the user’s work environment. This cycle repeats until all

the requirements are met.

A. Software Requirements

One of the research goals of this study is to innovate the

data collection, damage detection and evaluation processes

that satisfy the needs of bridge inspectors. Table 2 sum-

marizes the features of the three applications that will be

developed based on the suggestions from DPWH personnel.

The features encapsulate the needs of the inspectors, which

is transformed into a digital platform.

Engineering Letters, 31:4, EL_31_4_10

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



TABLE II
SOFTWARE APPLICATION REQUIREMENT

Software

Application

• Livestream drone camera view

• Livestream operator’s camera view

• Show real-time crack detections

• Record the drone-operation

• Livestream

• Input inspection details

Damage

Detection

• Open videos were taken during the inspection.

• Run crack detection on selected videos.

• Show visualizations of crack detections

• Show the frequency of crack detections for each

frame under its corresponding timestamp.

• Simultaneous playback of raw video and

detection of video

• Capture frame from the video

Evaluation

• Import frames from the Damage Detection App

• View the imported frames one at a time.

• Zoom in/out tool.

• Pan tool

• Trace tool

• Calculate the crack length and width

B. Software Design: Data Acquisition App

The features listed in the previous section create a user

flow diagram for each application. The diagram shows how

the application will be used according to its purpose. The

data acquisition application is used during field inspections.

The application provides an inspection details form that will

be filled out by the inspector. The details include the bridge’s

name, location, and description. These data are based on the

Bridge Management System Manual provided by DPWH.

Before using the app for data gathering, connection to

the drone camera via WIFI and the operator’s camera via

USB port should be set up. When both connections are

established, a live feed from both cameras will be shown

on the application. The drone camera shows a close-up

view of the bridge structures as the drone is flown near

the bridge. The operator’s camera is ideally positioned to

show the drone’s location with respect to the bridge. This

helps in localizing which part of the bridge the data is

gathered. As the drone is operated to survey around the

bridge, the inspector can start recording the live stream. If

real-time detections are enabled, the application will show

visualizations of the crack detections on the current frame.

When the drone is done surveying a section or area, the

inspector can stop the recording and download the high-

resolution video from the drone camera.

Before saving the video and inspection details, the user can

review and edit the data if there is mistyped information. If

another survey inspection is performed, the user can record

again. Fig. 17 shows the user diagram flow of the Data

Acquisition App.

C. Software Design: Damage Detection App

The damage detection application is used after field in-

spection. Data collected from the Data Acquisition App can

be imported into the app. After importing the data, the

app automatically opens the video from the drone camera

view and its corresponding view from the operator. If crack

detection is not yet performed on the video, the user can run

crack detection on the video. Otherwise, the application will

automatically show the processed video with detections.

Fig. 17. The user diagram flow of the Data Acquisition App to be used
during field inspections.

Before predicting cracks on the video, the user can select

the detection threshold, either low, medium, or high. A

low detection threshold sets the detection accuracy to 50%,

showing more detections. A medium detection threshold sets

the threshold to 75% accuracy and shows a medium number

of detections. A high detection threshold sets the threshold

to 90% accuracy but shows lesser detections; however, the

detections shown are most likely true cracks.
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Fig. 18. The user diagram flow of the Damage Detection App to be used
after field inspection.

The user diagram flow of the Damage Detection App to

be used after field inspection is shown in Fig. 18. When

the app is done processing the detections, the processed

video is automatically opened for playback and review. The

inspector can play the video and closely observe which

frames contain images of defects. Video playback controls

such as play, pause, and skip are also provided. The user

can also speed up or slow down the video. If the current

frame shown consists of defects that need evaluation, the

user can use the capture button to save the frame as an

image. Before capturing, the user can choose the directory to

save the images. When the capture button is clicked, a save

capture dialogue box opens where the user can select the

type of damage: crack, spalling/scaling/disintegration, rebar

exposure/corrosion, honeycomb, water leakage or others. The

user can also evaluate the condition state by indicating if it

is good, fair, poor, or bad. The user can save the captured

frame as an image if all the details are filled out.

Fig. 19. The user diagram flow of the Evaluation App, specifically designed
to annotate images with cracks as defects.

D. Software Design: Evaluation App

The evaluation application is specifically designed to anno-

tate images with cracks as defects. Instead of the traditional

ribbon rods or measuring tapes used during field inspections

to measure the length and width of cracks, the inspector

can collate images of defects seen during the inspection

and then organize them for annotation using the evaluation

application. The user diagram flow of the Evaluation App,

specifically designed to annotate images with cracks as

defects, is shown in Fig. 19.

Multiple images captured in the Damage Detection App

can be imported into the app. The user can review and go

through each image one by one. A trace tool allows the user

to trace cracks in the image. Traces for measuring crack

lengths can be done by placing consecutive points that follow

the geometry of the cracks which are of interest. A line that

connects the points will be automatically drawn over the
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Fig. 20. Captured image at 450 mm from the wall using the installed
camera on the drone.

points. The app derives and uses a function that converts the

pixel distances into actual dimensions. The app automatically

converts the trace into its actual dimension when the user

clicks the calculate button. The results are summarized in a

table format, wherein the dimension of a corresponding trace

is listed. From the summary, the inspector can then assess

the condition state of the cracks by indicating it in the app.

Once the inspector reviews an image, the same process can

be applied to the next images.

E. Pixel to Actual Dimension Calibration

The drone camera used for data acquisition is the Go Pro

Hero 7. To get the pixel to the actual dimension formula,

different lines with known dimensions are put up on the wall

and taken by the camera at known distances. The subject

placed on the wall has illustrations of lines with widths of

0.2mm, 0.3mm, 0.5mm, 1mm, 2mm, 3mm, 4mm, and 5mm.

A sample of the captured image is shown in Fig. 20. The

subject is taken at known wall-to-camera distances of 400mm

to 800mm, with a step distance of 50mm. The equivalent

pixel of the lines as seen on the digital image is recorded for

each known dimension and distance.

To calculate the actual dimension of objects taken from

the camera, a function with respect to the distance from

the camera to the wall and the number of pixels is derived

from the data gathered. The resulting formula derived is as

follows:

dimensionmm = (0.00099∗d+0.00142)∗no.ofpixels (2)

VIII. DESIGN EVALUATION OF THE NEWLY DEVELOPED

SHELLED UAV

A. The Shelled UAV Components

After the meshed spherical shell and the gimbal unit were

fabricated, these were assembled along with the base UAV.

A slight modification was made to the base drone to attach

it to the gimbal mechanism. Consequently, a Styrofoam ball

Fig. 21. Base drone SwellPro Fisherman FD1 unit) with the crack detection
system.

Fig. 22. The shell with nylon mesh and attached gimbal inside the shell
with drone holder.

was installed to enhance its floating capability and ability to

perform water takeoff.

We selected the SwellPro Fisherman FD1 drone for the

base UAV since it is highly suited for our purpose and meets

our specifications, as shown in Fig. 21. It features an IP67

waterproof rating and a 2-kilogram payload capacity. The

maximum flying period is 12 minutes with 1.5 kg weight

sufficient.

The shell with attached nylon mesh has a specific intrusion

area where no nylon net is attached, and inserted the drone

and onboard camera inside the shell. The gimbal component

holds the drone part, and the gimbal with the drone attached

smoothly performs the roll rotation. The base drone holder

also has a mechanism that allows drone rotation in the yaw

axis. Hence, the newly developed shelled UAV features:

1. Passive rotating spherical shell with two-axis gimbal

2. Composed of two subassemblies – base drone (Fig. 21)

and shell with a yaw-roll gimbal (Fig. 22)

3. Waterproof

4. Modular type

5. Capable of water takeoff and landing.

6. Integrated with the crack detection system.

Table 3 summarizes the weight budget of the newly
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Fig. 23. The actual shelled UAV system consists of a shell with nylon mesh,
a drone with an onboard camera and floater, and the gimbal component.

TABLE III
WEIGHT BUDGET OF SHELLED UAV

Shelled UAV Component Weight (grams)

Spherical Shell 450

Gimbal Mechanism 370

Crack Detection System 155

UAV (without battery) 1552

Battery 616

Total Weight 3143

designed shelled UAV, having an overall system weight of

3143 g. The actual shelled UAV assembly consists of the

drone with a camera mounted and supported by the gimbal

mechanism, enclosed by the shell with nylon mesh, as shown

in Fig. 23.

B. Simulation and Analysis of the Shelled UAV

This 1.5 kg weight of the drone is used for analyzing the

strength of the gimbal component. For the gimbal mecha-

nism, using FEA (Finite Element Analysis), the new gimbal

system’s structure was evaluated. The 2-DOF gimbal com-

ponent design was put through simulations and theoretical

investigations to determine its robustness. The drone and

onboard camera weight were multiplied by 5 to assess if

the gimbal component was safe at the greater weight.

The simulation stress results show greater stresses at the

carbon fibre plate component, as shown in Fig. 24. The

overall safety factor is equal to 4 since the impact factor of 2

for impact loading cases is multiplied by the recommended

safety factor of 2 for the design. The allowable stress

of the gimbal design used the overall safety factor of 4

multiplied by the stress concentration factor of 1.44. Based

on maximum shear-stress failure theory, the maximum stress

in shear from the simulation results due to the carbon plate

component found is 3.345 x 107 N/m² which is less than

the calculated allowable stress or allowable strength of the

gimbal mechanism, 5.76 x 109 N/m². Thus, it was found that

the gimbal design is overall safe.

Its drag force performance was investigated for the 950

mm diameter shell with nylon mesh. The CFD (Computa-

tional Fluid Dynamics) simulation is an excellent method

for analyzing the shelled UAV system’s aerodynamic per-

formance. Fig. 25 shows the drag force comparison of the

shelled UAV whole assembly, the shell with nylon mesh

component (no drone and on-board camera), and the drone,

Fig. 24. The simulation stress results show greater stresses at the carbon
fibre plate component.

Fig. 25. Drag contribution comparison of the whole shelled UAV and its
components due to wind velocity

Fig. 26. Flow visualization showing wake regions on the onboard camera
compared to the drone and gimbal assembly. But the gimbal mechanism
minimized this effect, allowing rotations at pitch and roll directions.

on-board camera, and gimbal components (excluding the

shell with nylon mesh component).

It was found that the drag contribution due to the shell

with nylon mesh component gave an average of 33.40%,

while the drone with an onboard camera and gimbal gave an

average drag contribution of 40%. The SwellPro Fisherman

FD1 drone structure is designed to lessen drag effects. That

is why the drag contribution of the drone alone is lesser

than the other components. However, the onboard camera

contributes to more drag force for the drone to experience

as these two components are treated as one assembly for

visually inspecting bridges.
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Fig. 27. Drop test experimental setup for the shell with nylon mesh and
was implemented at specific drop heights.

TABLE IV
DROP TEST RESULT FOR THE SHELL WITH NYLON MESH

Drop Height (meters)

0.5 No damage

1.5 No damage

2 No damage

2.5 No damage

3
Minor damage;

One joint has a small crack

At 8 m/s wind velocity, the drone with an onboard camera

gave a 0.229 N drag difference compared to the gimbal

mechanism. The design of the gimbal mechanism gave

more drag force because its design has rectangular plates

perpendicular to the wind direction, or its projected area is

greater. That is why there is a 0.45 N difference for the drone

with camera and gimbal components compared to the shell

with nylon mesh.

It can be seen in Fig. 26 that the onboard camera has wake

regions compared to the drone and gimbal assembly. But the

gimbal mechanism minimised this effect, allowing rotations

at pitch and roll directions. And the drag force contributed

by the onboard camera and gimbal is a good trade-off for

the effective flight operation of the shelled UAV. This can

be verified as well by considering the stability of the shelled

UAV design during field demonstration.

C. Experimental Test and Evaluation

Since the spherical shell serves as the physical protection

of the main drone, it is expected to experience collision

or impact during operation. As shown in Fig. 27, a drop

test was implemented for the shell with the nylon mesh. It

was found that no significant damage was spotted until it

reached 3-meter height, wherein one carbon rod was broken.

This significant damage may be due to fatigue experienced

by the shell with nylon mesh since it had already dropped

Fig. 28. The collision test setup for the shell with nylon mesh to further
verify the strength of the shell in the drop test. The shell is released from
a position where the center of mass is dropped at varying collision drop
angles while maintaining a taut string.

TABLE V
COLLISION TEST RESULT FOR THE SHELL WITH NYLON MESH

Setup Collision Drop Angle

1 60 degrees No damage

2 75 degrees No damage

3 90 degrees

No damage; Deformation

is more localized around

the impacted joint

from 2 meters up to 3 meters, as summarized in Table 4. To

verify this result, the researchers conducted a drop test on

the 3-meter height using a new shell, and minor damage was

observed on the shell with nylon mesh. This minor damage

is caused by a joint forming a small crack. But this small

crack is insignificant because the material used, ABS plastic,

can withstand up to 43 kg. force per square centimeter area

equivalent to greater than 3-meter drop height [11].

D. Experimental Test and Evaluation

A collision test with varying values of collision drop angle

was conducted further to verify the strength of the shell with

nylon mesh. The shell is released from a position where the

center of mass is dropped at collision drop angles 60, 75, and

90 degrees while maintaining a taut string. The string was

attached to the fixed, rigid wall while the other end was on

the shell. The shell was made to collide at the impact area,

as shown in Fig. 28, like a pendulum motion. Moreover, the

resultant force due to the 90-degree angle with respect to the

wall yields maximum impact force. As summarized in Table

5, it was found that the extent of deformation was observed

at the maximum collision drop angle of 90 degrees, where

the string and the drop height formed a 90-degree angle. The

shell was not damaged, but the deformation is more localized

around the impacted joint at maximum collision drop angle.

This localized deformation found no damage to the shell

component. Thus, proved that the nylon mesh added to the

shell contributes to the overall stiffness and resilience of the

shell alone due to the material of the nylon mesh.

IX. DEVELOPED CRACK DETECTION SYSTEM

The crack detection model is trained on an NVIDIA

GeForce RTX 2070 GPU with 8 GB memory. The curated
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Fig. 29. Some images of concrete walls with cracks, with a total of 2,667
images, were collected for the crack dataset.

dataset consists of 3,820 images of surface cracks with and

without shell obstructions. Since the curated dataset only

consisted of thin surface cracks, an additional 11,298 images

taken from public datasets with varying sizes of cracks were

incorporated into the training. The final dataset consists

of unobstructed and obstructed images of surface cracks.

Images without cracks were also included. The model was

trained for 55 epochs with a batch size of 4.

A. Crack Dataset

The images gathered for the crack dataset were collected

in MSU-IIT. The images are frames extracted from video

recordings of wall cracks. Fig. 29 shows some images of

concrete walls with cracks. A total of 2,667 images are

collected for the crack dataset. The dataset is composed of

unobstructed images of cracks on concrete walls. And to

gather images in tall structures, the data gathering system

employed a camera mounted on a 15-ft custom-made wooden

adjustable stick.

B. Shell Pixels Dataset

A preliminary protective shell was built for the purpose of

data gathering. A video with the protective shell rotating is

captured to obtain different orientations and positions of the

protective shell. Frames from the video were extracted. A

total of 4,296 shell images were extracted from the videos.

Fig. 30a shows some of the shell images collected. Back-

ground removal was done in Photoshop. 1,215 images were

edited and had their background removed as implemented in

Fig. 30b.

C. Crack + Shell Pixels Dataset

Images from the Crack Dataset, Dc, are superimposed with

images from the Shell Pixels Dataset, Ds’, to build the Crack

+ Shell Pixels Dataset, Ds’ + Dc. The image processing flow

to build this dataset is shown in Fig. 30. A script is written

for batch processing of the images in Photoshop. This allows

for a faster workflow in building the synthetic data set, as

shown in Fig. 31.

(a)

(b)

Fig. 30. Shell images were collected (a) 1,215 images were edited and
had their background removed (b).

D. Training Results

The result of the training is shown in Fig. 32. The graph

illustrates a decreasing trend of training and validation losses.

This shows that the model was able to learn from the dataset.

At epoch 55, the least validation loss of 0.04862 was obtained

with the value of the training loss at 0.04629.

E. Performance Evaluation

In evaluating the performance of the trained model,

the precision, recall and F1-score are calculated. Precision

indicates the model’s performance in terms of its accuracy in

predicting true positives out of all total predicted positives.

This metric is calculated as:

Precision =
TP

TP + FP
(3)

Recall calculates the model’s accuracy in predicting true
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Fig. 31. The shell pixels superimposed on crack images (synthetic data).

Fig. 32. Training and validation Loss of U-Net VGG16 trained on the
CrackUAS dataset.

Fig. 33. Precision, recall, and F-1 score results, the trained model achieved
an F1 score of 68% at a threshold of 0.5 and decreased to 61% as the
threshold was increased to 0.75.

positives out of all actual positives. This metric is calculated

as:

Recall =
TP

TP + FN
(4)

The F1 score metric considers both precision and recall

and is often used in cases where there is an uneven class

TABLE VI
NETWORK LATENCY OF U-NET VCG16

Network Latency (ms)

300 samples 83.94

500 samples 85.13

1000 samples 85.63

Average Network Latency 84.90

Fig. 34. Inference results of training on the CrackUAS dataset where
images shown are from the results of the inference on the validation dataset
with the threshold set to 0.75.

distribution. In the case of the CrackUAS dataset, there is a

larger number of pixels belonging to the background class

and lesser pixels that are cracked. The F1-score metric is

calculated as follows:

F1 = 2 ∗
Precision ∗Recall

Precision+Recall
(5)

The trained model was evaluated on the validation dataset.

The results of the predictions at two thresholds are then

compared, with values: 0.5 and 0.75. Pixel predictions with

a probability higher than the threshold are labeled as a crack.

Otherwise, it is labeled as background. Fig. 33 summarizes

the evaluation results regarding precision, recall, and F1-

score.

Precision measures how many of the predicted crack pixels

are true cracks. In terms of precision, the results show that

the precision increases as the threshold increases. This is

expected since the high threshold ensures that most positive

predictions are correct. During deployment, the inspector can

adjust and fine-tune the threshold parameter according to

their preference.

Recall determines how often the model misses out on the
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true cracks. A high recall means that the model can determine

most of the true cracks given an image.

The results show a decreasing recall trend as the threshold

increases from 0.5 to 0.75. This is expected since the pixels

with low probabilities are classified as background instead.

Recall determines how often the model misses out on

the true cracks. A high recall means that the model can

determine most of the true cracks given an image. The

results show a decreasing recall trend as the threshold

increases from 0.5 to 0.75. This is expected since the pixels

with low probabilities are classified as background instead.

The F1 Score summarizes the overall performance of the

trained model as it considers both precision and recall. The

trained model achieved an F1 score of 68% at a threshold

of 0.5, as shown in Fig. 33. It decreased to 61% as the

threshold increased to 0.75.

1) Network Latency: To evaluate the speed of the model,

the network latency is calculated. It is measured as the time

it takes for an input to go through the feed-forward of the

network. The inference is done on a batch of 300, 500, and

1000 samples to get the average network latency. Table 6

shows that the model’s average network latency is 84.90ms.

When running on an NVIDIA GTX 2070 GPU, the

hardware can process a maximum batch size of 12. The

network can process this optimal batch size in the given

hardware. Given this optimal batch size, the number of

images the network can process in a second is 16 samples.

This is also called throughput. This value is dependent on

the data, model, and device.

2) Visualization Results : A visualization of the inference

on the CrackUAS dataset is shown in Fig. 34. The images

show the inference results on the validation dataset with

the threshold set to 0.75. Without obstructions, the trained

model can detect actual cracks in the images. Comparing the

predicted cracks with the ground truth could discriminate the

shell obstructions from the cracks. Fundamentally, this model

is deployed in the software applications developed for bridge

inspections.

X. DEVELOPED SOFTWARE APPLICATION

The software applications developed for data acquisition,

damage detection and inspector evaluation were implemented

according to the requirements set by the bridge inspectors.

This section demonstrates the working application developed.

The applications were tested according to the features imple-

mented.

A. Data Acquisition App GUI

The main window of the Data Acquisition Application

is divided into 4 panels: Drone Camera View, Operator’s

Camera View, Detections, and Inspection Details. The ap-

plication’s graphical user interface is shown in Fig. 35.

The Drone Camera View and Operator’s Camera View have

dropdown boxes to select which camera to connect to and

a Connect button to establish the live stream connection. A

record button is placed in the Drone Camera View panel. The

record button, when pressed, sends a record command to the

drone camera and records the operator’s view simultaneously.

Fig. 35. The application’s graphical user interface, the main window of
the Data Acquisition Application, is divided into 4 panels: Drone Camera
View, Operator’s Camera View, Detections, and Inspection Details.

The same button is clicked to stop the record. Real-time

crack detections are shown in the Detections panel. Because

performing real-time detections in every live stream frame

is computationally expensive, the sampling frequency in

running crack detection is set to 1 frame per second. The

Inspection Details panel is where the inspector inputs details

of the bridge location and bridge description.

B. Damage Detection App GUI

shows 3 main panels: The Drone View, Operator View,

and Crack Detection, as shown in Fig. 36. The Drone View

shows the video gathered using the Data Acquisition App

and the Shelled-UAV. The Operator View shows the video

recording of the operator’s perspective, which is recorded

simultaneously with the Drone’s view. The Crack Detection

panel shows the results of running crack detection on the

Drone View. A drop-down menu to select the detection

threshold is shown at the panel’s top. A progress bar is

also placed adjacent to the dropdown menu. It indicates the

progress of converting the drone view video into a video

with detections. Video playback, speed and audio controls

are also provided below the main panels. A video timeline is

provided below the detection video. Beneath the timeline is a

graph that shows the frequency of crack detections under that

corresponding timestamp. A save directory browser is also

placed below the main window where the user can browse

and select the file directory to save the captured images. The

capture button is provided at the bottom right corner of the

window.

When the capture button is clicked, a Save Capture Dialog

box opens. In the dialogue box, a dropdown menu of the

type of damage is provided to allow the user to categorize

the defect observed on the frame. The user can also check

the condition state of the damage seen on the image. This

selection is based on the inspector’s assessment of the

defects. Finally, a save button will save the image on the

save directory indicated by the user.
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(a)

(b)

Fig. 36. The main windows of the Damage Detection Application (a) and
select the type of damage, condition state, and save directory (b).

Fig. 37. The main windows of the Evaluation Application are divided into
4 panels: Crack Length Annotation, Crack Width Annotation, Inspection
Details, and Trace Summary.

Fig. 38. The shelled UAV with onboard camera inspecting the bridge
girder. The onboard camera provides real-time images of the bridge that the
software application used for the Data Acquisition App.

C. Evaluation App GUI

The main window of the Evaluation App is divided into 4

panels: Crack Length Annotation, Crack Width Annotation,

Inspection Details and Trace Summary, as shown in Fig. 37.

An Open File button is in the top left corner of the app.

This button opens a File Dialog box where the user can

select multiple images which can be viewed and annotated

in the app. The Crack Length and Crack Width Annotation

panels consist of similar controls. Both panels display the

same current image selected. The difference is that the left

image is provided for annotations of crack lengths, while the

right image is used to annotate crack widths.

Each panel has its own zoom-in/out buttons. Hovering the

mouse on the image viewer and then clicking while dragging

helps the user to pan around the image. Each panel provides

a Trace Crack tool where the user can click on the image to

trace the path of the crack. To start a trace, click the Trace

Crack Length or Width button. Once a trace is done, the

Trace Crack button is converted into a Done button. Clicking

on this ends the trace, and the app automatically assigns the

trace number. The user can then click the Calculate Crack

Length/Width button to show the crack length on the Trace

Summary Panel. The Inspection Details panel shows details

of the bridge linked to the data gathered. Finally, the user can

select the condition state of the image before going to the

next image. To go through the selected images, the Previous

and Next buttons are provided in the upper right corner of

the window.

XI. ACTUAL BRIDGE ASSESSMENT

An actual field assessment of the shelled UAV was made

on a bridge in Iligan City, Philippines. The shelled UAV

inspected the bridge girder for possible cracks detected,

as shown in Fig. 38. A maximum wind gust of 6 m/s

was recorded. The developed shelled UAV with an onboard

camera provided real-time images of the inspected bridge

and a live stream of the drone camera view on a physical

computer. These real-time images and video transmissions

were implemented in the developed software application.

A. Software Application Functionality Assessment

Table 7 lists the characteristics of the implemented Data

Acquisition App. Each feature’s functioning was evaluated
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TABLE VII
FEATURES OF DATA ACQUISITION APPLICATION

Features Status Remarks
Select the camera
to connect to the
drone/operator’s view
from a list of
available cameras

Passed

The application can connect
to the drone’s camera via
WIFI and the operator’s
camera via a USB port

Livestream Drone
Camera View

Passed

A live stream from the
drone’s camera can be
viewed in the app

Livestream Operator’s
Camera View

Passed

A live stream from the
drone’s camera can be
viewed in the app

Show real-time crack
detections

Passed

Frames taken from the live
stream are processed for
crack detection
Visualization of the
detections is shown.

Record the drone-operator
Livestream

Passed

The user can record the
live stream using the
record button.

Inspection Details Passed

An inspection details form
is provided to be filled out
by the inspector. It is
exported into an XML file
whenever the live stream is
recorded.

Save original video
resolution from Drone
Camera View

Passed

A video recording of the
drone’s live stream is
saved locally on the
computer

Save original video
resolution from
Operator’s Camera View

Passed

A video recording of the
operator’s live stream is
saved locally on the
computer

Support multi-camera
livestream

Passed

The drone’s camera and
the operator’s camera can
be viewed simultaneously
in the app.

to see if it produced the desired result. and found that each

feature passed the test and was functional.

Moreover, the features of the Damage Detection App

implemented for the shelled UAV are listed in Table 8. Each

feature was tested and verified if the expected response or

outcome is met. The table below shows that all features were

functional and have passed the test.

Table 9 includes a list of the Inspection Details App’s

features that were implemented. Each feature was tested to

see if it produced the desired response or result. The table

summarizes that each feature passed the test and was also

functional. Thus, the software application integrated for the

shelled UAV is overall functional.

B. Shelled UAV Performance Assessment

Since the gimbal component holds the drone part, and the

gimbal with the drone attached performs the roll rotation,

the base drone holder also has a mechanism that allows the

rotation of the drone in the yaw axis. Thus, rotation data

of the drone was gathered. Fig. 39a and 40a show how the

onboard camera gave clear images of the area that is being

inspected.

The onboard camera image demonstrates how bridge

cracks were discovered during the bridge’s actual flight test.

Moreover, the rotational data of the drone at a 200-second

time frame were investigated. These images were evaluated

in the integrated software application for the shelled UAV.

TABLE VIII
FEATURES OF DAMAGE DETECTION APPLICATIONS

Features Status Remarks

Open videos that were
taken during the
inspection

Passed

The user can open the
XML file generated from
the data acquisition app to
review the data gathered
during the inspection.

Run crack detection on
videos and save
visualizations and masks
as videos

Passed

The app can convert drone
videos into video with
visualizations of crack
detections.

Show visualizations of
crack detections after
predicting cracks on the
drone video

Passed

Red segmented masks on
the drone video are drawn
to represent the crack
detections.

Select detection threshold Passed

The user can select three
levels of detection:
• Low (default): 50%
detection accuracy but
shows more detections.
• Medium: 75% detection
accuracy, shows a medium
number of detections.
• High: 90% detection
accuracy, shows lesser
detections; however, the
detections are most likely
true cracks

Show the frequency of
crack detections under the
time slider of the video.

Passed

A bar graph of the number
of crack pixels of each
frame is shown under the
time slider of the video.

Simultaneous playback of
raw video and detection
of video.

Passed

The drone, operator and
The drone, operator and
be played simultaneously
time slider of the video.

Capture frame from video
and export along with the
detections.

Passed

The user can capture
frames from the video. A
dialogue box pops up
wherein the user can
specify the type of damage
shown on the image.

Audio controls: mute,
volume up/down.
detections.

Passed

The user can mute or
change the volume of the
video

Video controls: play,
pause, stop, skip
backwards / forward,
playback speed.

Passed

The user can play, pause,
stop, or skip the video
backwards / forward and
change the playback speed.

TABLE IX
FEATURES OF THE INSPECTION DETAILS APPLICATION

Features Status Remarks

Open exported
frames from Crack
Detection App

Passed

• The user can open the
images in a selected folder
• All images in the selected
folder can be viewed in the
app one at a time
• The user can navigate
through the set of images
by choosing which image
to viewcurrently

Calculate crack
length and width
Detection App

Passed

The app can calculate
length and width of the
crack for each path created
by the user

Crack Annotation
Tool

Passed

The user can trace the
cracks by creating
pathways along
the cracks of interest

Zoom in/out tool Passed
The user can zoom in/
out of the images

Pan tool Passed
The user can pan around
the images

Export annotations Not Implemented For future improvements

Generate summary
report

Not Implemented For future improvements
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(a)

(b)

Fig. 39. Image clarity of the onboard camera view of the drone during
the first collision time frame (a) and the gathered drone rotation data of the
drone showing system stability after the event of the first collision, where
shelled UAV went through the bridge girder’s interior (b).

As shown in Fig. 39b and 40b, it was found that the

shelled UAV demonstrated system stability following the

impact (from the first collision). As the system approaches its

stable state, the resulting roll rotation maximum amplitude

values steadily decrease to less than 1 degree only.

The shelled UAV is waterproof; thus, it has water take-off

and landing features. In bridge inspections, after inspecting

the bridge girders with the river at the bottom of it, there is a

possibility that the shelled UAV may experience signal losses

or other unexpected scenarios. That is why, in the actual field

test, the shelled UAV was dropped into the river, as shown in

Fig. 41. The shelled UAV then took off after 10 seconds of

landing still in the water to show that the system is capable

of water take-off.

XII. CONCLUSION

In this paper, a shelled UAV system that structural in-

spectors can use to perform a close visual inspection of the

infrastructure was developed. The newly developed shelled

UAV features a passive rotating shell with a two-axis gimbal,

composed of a base drone and shell with the yaw-roll gimbal.

The shelled UAV system is waterproof, modular, capable

of water takeoff and landing, and integrated with a crack

detection system. A functional shelled UAV was fabricated,

and test flights were successfully conducted.

The computational simulations and actual experiments

showed that the shelled UAV could tolerate great impact

forces during a collision and withstand drag due to wind

gusts. The gimbal design is overall safe and effective. The

drag force contributed by the onboard camera and gimbal

is a good trade-off for the effective flight operation of the

shelled UAV. Moreover, the actual flight test of the shelled

(a)

(b)

Fig. 40. Image clarity of the onboard camera view of the drone during
the second collision time frame (a) and the gathered drone rotation data of
the drone showing system stability after the event of the second collision,
where shelled UAV went through the bridge girder’s interior (b).

(a)

(b)

Fig. 41. The shelled UAV demonstrated its capability of the water landing
(a) and take off (b).
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UAV showed system stability, especially during a collision.

The onboard camera also gave clear images of the area that

was being inspected.

In this study, crack detection systems and software appli-

cations were developed. A curated dataset, CrackUAS, was

also produced to train the crack detection system. The U-

Net architecture was used as the segmentation model trained

on the dataset. The trained model produced a good perfor-

mance and could predict and segment cracks in the gathered

dataset images. The software applications developed for data

acquisition, damage detection and inspector evaluation were

also implemented. The Damage Detection App converted

the drone videos into a video with visualizations of the

crack detections. Frames taken from the live stream were

successfully processed for crack detection, and visualization

of the detections was shown. The drone, operator and crack

detection videos were played simultaneously as well. The

Inspection Details App successfully calculated the length

and width of the crack for each path created. Furthermore,

each Damage Detection App and Inspection Details App

feature was tested and verified. The results showed that all

shelled Unmanned Aerial system features were functional

and effective.
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