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Abstract—The primary aim of this paper is to obtain numer-
ical solutions for the unsteady Helmholtz equation governing
harmonic acoustic problems in anisotropic trigonometrically
graded materials. To achieve this, the paper proposes a method
that combines Laplace transform (LT) and boundary ele-
ment method (BEM). Several examples of problems related to
anisotropic trigonometrically graded media are presented to
illustrate that the proposed method is accurate and straightfor-
ward to implement.

Index Terms—numerical investigation, unsteady anisotropic
Helmholtz, FGMs, boundary element method, Laplace trans-
form

I. INTRODUCTION

We will consider interior harmonic acoustic problems
of anisotropic functionally graded materials governed by a
Helmholtz type equation with variable coefficients of the
form

∂

∂xi

[
τij (x)

∂P (x, t)

∂xj

]
+ ω2 (x)P (x, t) = ψ (x)

∂P (x, t)

∂t
(1)

where i, j = 1, 2, P, τij , ω2, ψ represent the velocity poten-
tial, diffusivity coefficient, wave number and rate of change
respectively. The coefficients [τij ] is a symmetric matrix with
positive determinant, and summation convention holds for
repeated indices so that explicitly equation (1) takes the form
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∂x2
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τ22
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∂x2

)
+ ω2P = ψ

∂c

∂t

Equation (1) is usually used to model harmonic acoustic
problems (see for examples [1]–[3]).

Over the last decade, there has been a significant increase
in the study of functionally graded materials (FGMs) for
various applications. FGMs are artificial materials with prop-
erties that vary according to a mathematical function in both
time and position, and are designed to meet specific practical
requirements. Equation (1) is therefore relevant for FGMs.
Thus, solving equation (1) is important for FGMs.

Numerical solutions to the Helmholtz equation have been
extensively studied in the past, and these studies are typically
categorized based on the anisotropy and inhomogeneity of
the medium. For example, [4]–[6] dealt with isotropic equa-
tions with constant coefficients (homogeneous media), while
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[7] solved an isotropic equation with variable coefficients
(inhomogeneous media). Recently, Azis and his colleagues
have focused on steady-state problems involving different
types of anisotropic equations in inhomogeneous media,
such as the Helmholtz equation (see for example [3]), DCR
equation (see for example [8]), modified Helmholtz equation
(see for example [9]), deformation problems (see for example
[10]), and scalar elliptic equation (see for example [11]).
These works have explored classes of inhomogeneities that
differ from the constant-plus-variable inhomogeneity.

This paper is intended to extend the recently published
works in [3] for steady anisotropic Helmholtz type equation
with spatially variable coefficients of the form

∂

∂xi

[
τij (x)

∂P (x, t)

∂xj

]
+ ω2 (x)P (x, t) = 0

to unsteady anisotropic Helmholtz type equation with spa-
tially variable coefficients of the form (1).

II. STATEMENT OF PROBLEM

Solutions P (x, t) and derivatives for equation (1) are to
be determined within a time set t ≥ 0 and a spatial domain Σ
in R2 with a smooth closed boundary ∂Σ. On ∂Σ1 P (x, t)
is given and on ∂Σ2

F (x, t) = τij (x)
∂P (x, t)

∂xi
nj (2)

is specified where ∂Σ = ∂Σ1 ∪ ∂Σ2 and n = (n1, n2)
denotes the outward pointing normal to ∂Σ. The initial
condition is taken to be

P (x, 0) = 0 (3)

III. THE BOUNDARY INTEGRAL EQUATION

The coefficients τij , ω2, ψ are assumed to be of the form

τij (x) = τ ijγ(x) (4)
ω2 (x) = ω2γ(x) (5)
ψ (x) = ψγ(x) (6)

where the τ ij , ω2, ψ are constants and γ is a differentiable
function of x. Further we assume that

γ(x) = [A cos (c0 + cixi) +B sin (c0 + cixi)]
2 (7)

where A,B, c0 and ci are constants. Therefore if

τ ijcicj + λ = 0 (8)

then (7) satisfies

τ ij
∂2γ1/2

∂xi∂xj
− λγ1/2 = 0 (9)
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Substitution of (4)-(6) into (1) gives

τ ij
∂

∂xi

(
γ
∂P

∂xj

)
+ ω2γP = ψγ

∂P

∂t
(10)

Let
P (x, t) = γ−1/2 (x)σ (x, t) (11)

therefore use of (4) and (11) in (2) yields

F (x, t) = −Fγ (x)σ (x, t) + γ1/2 (x)Fσ (x, t) (12)

where

Fγ (x) = τ ij
∂γ1/2

∂xj
ni Fσ (x) = τ ij

∂σ

∂xj
ni

Also, (10) may be written in the form

τ ij
∂

∂xi

[
γ
∂
(
γ−1/2σ

)
∂xj

]
+ ω2γ1/2σ = ψγ

∂
(
γ−1/2σ

)
∂t

which can be simplified

τ ij
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∂xi

(
γ1/2

∂σ

∂xj
+ γσ
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∂xj

)
+ ω2γ1/2σ = ψγ1/2

∂σ

∂t

Use of the identity

∂γ−1/2

∂xi
= −γ−1 ∂g

1/2

∂xi

implies

τ ij
∂

∂xi

(
γ1/2

∂σ

∂xj
− σ

∂γ1/2

∂xj

)
+ ω2γ1/2σ = ψγ1/2

∂σ

∂t

Rearranging and neglecting the zero terms yield

γ1/2τ ij
∂2σ

∂xi∂xj
− στ ij

∂2γ1/2

∂xi∂xj
+ ω2γ1/2σ = ψγ1/2

∂σ

∂t

Equation (9) then implies

τ ij
∂2σ

∂xi∂xj
+
(
ω2 − λ

)
σ = ψ

∂σ

∂t
(13)

Taking the Laplace transform of (11), (12), (13) and applying
the initial condition (3) we obtain

σ∗ (x, s) = γ1/2 (x)P ∗ (x, s) (14)
Fσ∗ (x, s) = [F ∗ (x, s) + Fγ (x)σ

∗ (x, s)] γ−1/2 (x)

(15)

τ ij
∂2σ∗

∂xi∂xj
+
(
ω2 − λ− sψ

)
σ∗ = 0 (16)

where s is the variable of the Laplace-transformed domain.
An integral equation for the solution of (16) can be written

as

α (x0)σ
∗ (x0, s) =

∫
∂Σ

[Θ (x,x0)σ
∗ (x, s)

−Ψ(x,x0)Fσ∗ (x, s)] dS (x) (17)

where x0 = (a, b), α = 0 if (a, b) /∈ Σ ∪ ∂Σ, α = 1 if
(a, b) ∈ Σ, α = 1

2 if (a, b) ∈ ∂Σ and ∂Σ has a continuously
turning tangent at (a, b). The so called fundamental solution
Ψ in (17) is any solution of the equation

τ ij
∂2Ψ

∂xi∂xj
+

(
ω2 − sψ − λ

)
Ψ = δ (x− x0)

and the Θ is given by

Θ(x,x0) = τ ij
∂Ψ(x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems Ψ and Θ are given by

Ψ(x,x0) =


K
2π lnR if ω2 − sψ − λ = 0
ıK
4 H

(2)
0 (ηR) if ω2 − sψ − λ > 0

−K
2π K0 (ηR) if ω2 − sψ − λ < 0

Θ (x,x0) =


K
2π

1
Rτ ij

∂R
∂xj

ni
−ıKη

4 H
(2)
1 (ηR) τ ij

∂R
∂xj

ni
Kη
2π K1 (ηR) τ ij

∂R
∂xj

ni
if ω2 − sψ − λ = 0

if ω2 − sψ − λ > 0

if ω2 − sψ − λ < 0

(18)

where

K = ρ̈/D

η =

√
|ω2 − sψ − λ|/D

D =
[
τ11 + 2τ12ρ̇+ τ22

(
ρ̇2 + ρ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + ρ̇x2

ȧ = a+ ρ̇b

ẋ2 = ρ̈x2

ḃ = ρ̈b

where ρ̇ and ρ̈ are the real and the positive imaginary parts
respectively of the complex root ρ of the quadratic

τ11 + 2τ12ρ+ τ22ρ
2 = 0

and H
(2)
0 , H(2)

1 denote the Hankel functions, K0, K1 are
the modified Bessel functions, ı =

√
−1. The derivatives

∂R/∂xj needed for the calculation of the Θ in (18) are given
by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= ρ̇

[
1

R
(ẋ1 − ȧ)

]
+ ρ̈

[
1

R

(
ẋ2 − ḃ

)]
As can be seen in (18), the value of ω2−sψ−λ characterizes
the fundamental solutions Ψ and Θ. Therefore a specific
problem may be solved using one of the three types of
fundamental solutions, depending on the value of ω2−sψ−λ,
namely the modified Helmholtz (when ω2 − sψ − λ < 0),
Laplace (ω2 − sψ−λ = 0) or Helmholtz (ω2 − sψ−λ > 0)
fundamental solution.

Use of (14) and (15) in (17) yields

αγ1/2P ∗ =∫
∂Σ

[(
γ1/2Θ− FγΨ

)
P ∗ −

(
γ−1/2Ψ

)
F ∗

]
dS (19)

This boundary integral equation can be used to determine
P ∗ and derivatives for all points inside the domain Σ.

The Stehfest formula can then be used for a numerical
Laplace transform inversion to find the solutions P and
their derivatives in the original time variable. The obtained
solutions and their derivatives are for the original variable t,
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TABLE I
VALUES OF Vm

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60
V2 −49 145/3 −385/12 961/60
V3 366 −906 1279 −1247
V4 −858 16394/3 −46871/3 82663/3
V5 810 −43130/3 505465/6 −1579685/6
V6 −270 18730 −236957.5 1324138.7
V7 −35840/3 1127735/3 −58375583/15
V8 8960/3 −1020215/3 21159859/3
V9 164062.5 −8005336.5
V10 −32812.5 5552830.5
V11 −2155507.2
V12 359251.2

which were previously transformed to the Laplace transform
variable s.

The Stehfest formula is

P (x, t) ≃ ln 2

t

N∑
m=1

VmP
∗ (x, sm)

∂P (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂P ∗ (x, sm)

∂x1
(20)

∂P (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂P ∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

IV. NUMERICAL EXAMPLES

To validate the analysis developed in previous sections,
several test cases are considered. Each test case belongs to a
system governed by equation (1) and satisfies the initial and
boundary conditions described in Section II. The coefficients
of the system are assumed to be in the form of equations
(4), (5) and (6), where g(x) is a trigonometric function in
the form of equation (7). Numerical solutions are obtained
using the Boundary Element Method (BEM). A unit square
with 320 equally-sized elements, and a time interval of
0 ≤ t ≤ 5 are used for simplicity. A FORTRAN script is
developed to compute solutions and measure the efficiency
of the numerical procedure.

A standard BEM with constant elements and the Stehfest
formula in (20) will be employed to obtain numerical so-
lutions P , ∂P/∂x1 and ∂P/∂x2 at points (x, t) inside the
domain Σ for t ≥ 0. A FORTRAN code is developed to
compute the solutions and a short script is developed and
embedded into the main FORTRAN code to calculate the
values of Vm,m = 1, 2, . . . , N in (20) for any even number
N . The values of Vm for some values of N obtained by
using the script are shown in Table I. All plots in figures are
produced using the plotter software GNUPlot.

-

6

x1

x2

D(0, 1)

A(0, 0) B(1, 0)

C(1, 1)

Fig. 1. The domain Σ

The Stehfest formula is used with N = 6, 8, 10, 12 to
investigate the convergence of error as N changes. The
results show that N = 10 is the optimal value for which the
error is stable and optimized. Increasing N from N = 10 to
N = 12 leads to inaccurate solutions due to round-off errors
(see for example [12]).

For all problems the inhomogeneity function is taken to
be

γ1/2(x) = cos (1− 0.3x1 − 0.7x2)

+ sin (1− 0.3x1 − 0.7x2)

and the constant anisotropy coefficient τ ij

τ ij =

[
1 0.15

0.15 0.75

]
so that 8 implies

λ = −0.5205

We set the constant coefficient ω2

ω2 = 1

A. Examples of exact solutions

1) Problem 1:: The exact solutions are assumed to take
a separable variables form

P (x, t) = γ−1/2 (x) f (x) g (t)

where f (x) , g (t) are continuous functions. The boundary
conditions are assumed to be (see Figure 1)

F is given on side AB
F is given on side BC
P is given on side CD
F is given on side AD

Case 1:: We take

f(x) = 1− 0.25x1 − 0.75x2

g(t) = 1− exp (−1.75t)

Thus for f(x) to satisfy (16)

ψ = 1.5205/s
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Fig. 2. The errors of interior solution P at t = 2.5 for the Case 1 (top),
Case 2 (center), Case 3 (bottom) of Problem 1

Case 2:: For the analytical solution we take

f(x) = cos (−1 + 0.25x1 + 0.75x2)

g(t) = t/5

So that in order for f(x) to satisfy (16)

ψ = 0.979875/s

Case 3:: We take

f(x) = exp (−1 + 0.25x1 + 0.75x2)

g(t) = 0.16t (5− t)

Therefore (16) gives

ψ = 2.061125/s

As depicted in Figures 2, for the numerical solutions P ,
the errors mainly occur in the fourth decimal place for all
Cases 1, 2, amd 3. Figures 3, 4 and 5 indicate the consistency
between the scattering and the flow solutions. Figures 6, 7
and 8 show that the variation of the P solution follows the
way the associated function g(t) changes. Specifically for
the Case 1 of associated function g(t) = 1 − exp (−1.75t),
the P solution will converge to 1.

For the computation of the numerical solutions the CPU
elapses 5204.21875 seconds for the Case 1, 8082.859375
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Fig. 3. The scattering P and the flow vector (∂P/∂x1, ∂P/∂x2) solutions
at t = 2.5 for the Case 1 of Problem 1
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Fig. 4. The scattering P and the flow vector (∂P/∂x1, ∂P/∂x2) solutions
at t = 2.5 for the Case 2 of Problem 1

seconds for the Case 2, and 3119.90625 seconds for the
Case 3. The longer computation time for the Cases 1 and
2 is produced by the iterative calculation of the polynomial
approximation of the Hankel and Bessel functions in the
fundamental solutions (18).

B. Examples of no exact solutions

1) Problem 2:: The material is either inhomogeneous
or homogeneous and either anisotropic or isotropic. If the
material is homogeneous then

γ(x) = 1
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Fig. 5. The scattering P and the flow vector (∂P/∂x1, ∂P/∂x2) solutions
at t = 2.5 for the Case 3 of Problem 1
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Fig. 6. Solutions P at some interior points (x1, x2) for the Case 1 of
Problem 1
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Fig. 7. Solutions P at some interior points (x1, x2) for the Case 2 of
Problem 1
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Fig. 8. Solutions P at some interior points (x1, x2) for the Case 3 of
Problem 1

and if it is isotropic then

τ ij =

[
1 0
0 1

]
So that there are four cases of materials that will be
considered, namely anisotropic inhomogeneous, anisotropic
homogeneous, isotropic inhomogeneous and isotropic homo-
geneous material. The corresponding value of λ for each case
is obtained from equation (8). We set ψ = 1 and the boundary
conditions are (see Figure 1)

F = g(t) on side AB
F = 0 on side BC
P = 0 on side CD
F = 0 on side AD

Four cases of g(t) will be considered, namely

Case 1: g(t) = 1
Case 2: g(t) = 1− exp (−1.75t)
Case 3: g(t) = t/5
Case 4: g(t) = 0.16t (5− t)

In fact, for the case of isotropic and homogeneous material
the system is geometrically symmetric about the axis x1 =
0.5. And this is verified by the results in Figures 9 and 10.
In addition, Figure 9 also shows the effect of anisotropy and
inhomogeneity on the asymmetry of the solution P . And
Figure 10 indicates that the solution P tends to follow the
variation of the function g(t) associated for the boundary
condition on the side AB.

Figure 11 shows again the anisotropy as well as the inho-
mogeneity give effects on the solution P and the tendency
of the solution P to agree the variation of the correspond-
ing function g(t). In particular, for bigger t the boundary
conditions on the side AB with g(t) = g1(t) = 1 and
g(t) = g2(t) = 1−exp (−1.75t) are identical. This is verified
by the results in Figure 11, the two plots for the cases when
g(t) = g1(t) = 1 and g(t) = g2(t) = 1− exp (−1.75t) will
coincide as t goes to infinity.

V. CONCLUSION

Several two-dimensional transient problems for anisotropic
Functionally Graded Materials (FGMs) governed by a modi-
fied Helmholtz-type equation with time-space dependent co-
efficients of the form (1) have been studied. The coefficients
τij (x) , ω

2 (x) , ψ (x) are assumed to take the forms (4), (5)
and (6), respectively. By considering γ(x) as a trigonometric
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Fig. 9. Symmetry of solution P when f(t) = 1 for Problem 2

function of the form (7) and using the transformation (11),
the space-dependent coefficients equation (1) is reduced to
an equation with time-dependent coefficients (13). Taking a
Laplace transform of (13) results in a constant coefficients
equation (16), which can be written in the form of a
boundary-only integral equation (17). This equation is then
solved using a standard Boundary Element Method (BEM)
to obtain the solutions P ∗. These BEM solutions are then
numerically inverse transformed using the Stehfest formula
(20) to get the solutions P .

Several problems with trigonometric gradation functions
γ(x) have been solved. Based on the results obtained, it can
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Fig. 10. Symmetry of solution P when f(t) = 1− exp (−1.75t) (top),
f(t) = t/5 (center) and f(t) = 0.16t (5− t) (bottom) for Problem 2

be concluded that the combined BEM and Stehfest formula
provide quite accurate solutions.
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