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Abstract—We propose a global optimization method based
on simplex subdivision and Lagrange dual bound to solve a
specific type of problem known as linear multiplicative problem
(LMP). The method utilizes the Lagrangian duality theory
to solve the equivalent problem (ELMP) and obtain a lower
bound by solving a linear programming problem (LP). To
improve the convergence speed of the algorithm, we introduce
two deleting rules that efficiently prune the feasible region
without an optimal solution. These rules help accelerate the
algorithm’s convergence by reducing unnecessary computation-
s. The convergence of the proposed algorithm is theoretically
proven, ensuring its reliability and effectiveness. To validate its
feasibility and performance, we conduct numerical experiments.

Index Terms—Linear multiplicative programming; Global
optimization; Branch-and-bound; Lagrange duality

I. INTRODUCTION

THE following form of problem LMP is considered in
this paper:

LMP :

 min
p∑

i=1

(c⊤i x+ di)(e
⊤
i x+ di)

s.t. X = {x ∈ Rn : Ax ≤ b,x ≥ 0},

where ci, ei ∈ Rn, di, fi ∈ R, i = 1, ..., p,A ∈ Rm×n.
Besides, X is a nonempty closed and bounded set.

Global optimization has been applied in many fields,
including variance portfolio selections [1], multiobjective
decision making [2,3], and so on. Since global optimization
is a very challenging problem [4], it is very hard to solve
such problem. For different kinds of optimization problems,
a variety of methods have been presented. One of these
approaches has been widely used is the branch and bound
method [5]. For instance, when the objective function is a
twice differentiable nonconvex function, by means of branch-
and-bound framework, Jaroslav [6] proposed a determinis-
tic global optimization method. Scholz [7] used geometric
branch and bound approach to deal with problems in small
dimensions. For standard quadratic programming, Liuzzi

Manuscript received May 10, 2023, revised August 31, 2023.
This work was supported by the Key cultivation project of Xianyang

Normal University (XSYK21044).
Yonghong Zhang is a lecturer of the School of Mathematics and S-

tatistics, Xianyang Normal University, Xianyang, 712000, PR China. (e-
mail:zhangyonghong09@126.com)

Yaping Deng is a doctoral student of the School of Mathematics and
Statistics, North China University of Water Resources and Electric Power,
Zhengzhou, 450045, PR China. (email: 1514349724@qq.com)

Chunfeng Wang is a professor of the School of Mathematics and
Statistics, Xianyang Normal University, Xianyang, 712000, PR China.
(corresponding author, email:wangchunfeng09@126.com)

[8] proposed a branch and bound method on the basis of
convex and LP bounds. For vertex triangulation feasible
region, Zilinskas [9] presented a branch and bound method
by simplicial partitions. For solving LMP, Wang et al. [10]
developed a convexity method based on piecewise linear
approximation for nonconvex part of the objective function.

As a kind of global optimization, LMP has applications
[11-15] in real life. Therefore, many optimization methods
have been developed to solve this type of problem. For
example, for a class of LMP with positive exponent, when
c⊤i x + di > 0 and e⊤i x + fi > 0, Zhang [16] developed
a region-division-linearization method. To solve LMP, a
rectangular branch and bound algorithm was presented by
Shen [17]. When c⊤i x+di > 0, Zhou [18] designed a branch
and bound algorithm based on simplicial duality strategy.

This paper gives a novel simplical partition and dual-
ity bound method. Compared with some other algorithms
[16,17], there is no nonnegative requirement for the product
term in LMP considered in this paper, i.e. the model consid-
ered in this paper has a wider range of applications. In this
algorithm, firstly, the primal problem LMP is equivalently
transformed into problem ELMP(Y ). Then, the Lagrange
weak duality technique is used to construct the lower bound
of problem ELMP(Y ), and construction method of feasible
solution for problem LMP is also presented, which cor-
responding the objective function value is upper bound of
problem LMP. Furethermore, combined with branch and
bound framework, the new approach is designed. By using
the proposed method, the primal problem LMP can be
transformed into a series of linear programming, which
greatly improves the efficiency. Finally, to speed up the
algorithm, two deleting rules are presented.

The organization of this paper is as follows. In Section
II, the transformation of problem LMP is firstly discussed.
Then, the lower bound of problem LMP is given, which
uses the weak duality theorem of Lagrange duality. The con-
struction of feasible solution is also presented. The detailed
algorithm and proof of convergence are given in Section III.
In Section IV, computation experiences are provided and the
data is analyzed.

II. TRANSFORMATION

Through reorganization operation, the problem LMP can
be equivalently transformed into the form below LMP1:

min x⊤(
p∑

i=1

cie
⊤
i )x+

p∑
i=1

(fici + diei)
Tx+

p∑
i=1

difi

s.t. x ∈ X.
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To simply the representation, in LMP1, let Q =
p∑

i=1

cie
⊤
i ,

and qi be the i-th line of Q. We can rewrite LMP as follows:

LMP1 :

 min x⊤Qx+
p∑

i=1

(fici + diei)
Tx+

p∑
i=1

difi

s.t. x ∈ X.

To tackle the optimization problem LMP1, we propose a
branch and bound method based on simplex partition. In the
following subsection, we outline the process of constructing
a simplex and dividing it. We then proceed to explain how
to obtain the lower and upper bounds for problem LMP.

A. Initial simplex and simplicial partition

Let y = (
p∑

i=1

cie
⊤
i )x = Qx, i.e. yj = qjx, j = 1, · · · , n.

We first construct an initial simplex such that it contains y.
The detailed process is given below.

To construct the initial simplex, compute r = min
x∈X

n∑
i=1

yi,

and ri = max
x∈X

yi = max
x∈X

qix, firstly. Then, let Y 0 be

the convex hull with vertices V 0
0 , V

0
1 , ..., V

0
n , where V 0

0 =
(r1, r2, ..., rn)

T For j = 1, · · · , n, let

V 0
j = (r1, ..., rj−1, αj , rj+1, ..., rn)

T , αj = r −
∑
i̸=j

ri.

It is easily got that V 0
j −V 0

0 = (0, ..., 0, r−
n∑

i=1

ri, 0, ..., 0)
T ,

where r −
n∑

i=1

ri is the j-th component of V 0
j − V 0

0 . The

following Theorem 1 shows that Y 0 is the initial simplex
we need.

Theorem 1. Y 0 is a vertex or n-dimensional simplex.
Proof: Since

r = min
x∈X

n∑
i=1

yi ≤ max
x∈X

n∑
i=1

yi ≤
n∑

i=1

max
x∈X

yi =
n∑

i=1

ri,

we have

r =
n∑

i=1

ri or r <
n∑

i=1

ri.

If r =
n∑

i=1

ri, Y 0 is a vertex, Y 0 = V 0
0 ; else r −

n∑
i=1

ri ̸= 0,

Y 0 is a n-dimensional simplex.
If Y 0 is a vertex, the optimal solution is determinate and

unique. Therefore, we only consider the case that Y 0 is a n-
dimensional simplex. According to the constructed simplex,
an equivalent problem ELMP(Y0) of LMP can be derived
as follows:

v(Y ) = min x⊤y +
p∑

i=1

(fici + diei)
⊤x+

p∑
i=1

difi,

s.t. Ax ≤ b,

y =
p∑

i=1

cie
⊤
i x,

x ≥ 0,y ∈ Y 0.

.

The relationship between ELMP and LMP is given in the
theorem below.

Theorem 2. If (x∗,y∗) is the optimal solution of ELMP,
then x∗ is the optimal solution of LMP; on the contrary,

if x∗ is the optimal solution of LMP, then (x∗,y∗) is the

optimal solution of ELMP with y∗ =
p∑

i=1

cie
⊤
i x

∗.

Proof: It can be obtained directly from the above deriva-
tion process.

As we know, in branch and bound framework, the division
of simplex plays an important role. In this paper, the division
process based on the longest side of the simplex is given as
follows.

Let Y be a n-dimensional simplex with vertexes
{V0, V1, ..., Vn}, and c be the midpoint of the longest side
[Vm, Vm̃], i.e.

Vm − Vm̃ = max
i<ĩ

{∥ Vi − Vĩ ∥}, i = 0, 1, ..., n,

then, Y 1 and Y 2 are subsimplex of Y , where the vertices
of Y 1 and Y 2 are {V0, V1, ..., Vs, Vc, Vs+1, ..., Vn} and
{V0, V1, ..., Vs̃, Vc, Vs̃+1, ..., Vn} respectively; Y 1

∪
Y 2 = Y ,

and intY 1
∩
intY 2 = ∅.

B. Lower and upper bounds

Assume that Y is the initial simplex or its sub-simplex
sequence. We can then consider the equivalent problem
ELMP(Y ) below:

v(Y ) = min x⊤y +
p∑

i=1

(fici + diei)
⊤x+

p∑
i=1

difi

s.t. Ax ≤ b,

y =
p∑

i=1

cie
⊤
i x,

x ≥ 0, y ∈ Y.

.

In order to solve the problem ELMP(Y ), constructing a
lower bound is a crucial step in our proposed algorithm. This
lower bound is derived using the weak Lagrangian duality
of nonlinear programming. The construction process of the
lower bound is outlined in Theorem 3, which is presented
below.

Theorem 3. Let Y be a p-dimensional simplex, which
is the initial simplex or its subsimplex, and its vertex set
is {V0, V1, ..., Vn}. Then LB(Y ) ≤ v(Y ), where LB(Y ) is
the optimal value obtained by following linear programming
LP(Y ):

max −b⊤λ+ t+
p∑

i=1

difi

s.t. t ≤ ξ⊤Vj , j = 0, 1, .., n,

A⊤λ− (
p∑

i=1

cie
⊤
i )

⊤ξ + Vj +
p∑

i=1

(fici + diei) ≥ 0,

λ ≥ 0, ξ ∈ Rn.

Proof: For problem LP(Y ), by utilizing the weak La-
grangian duality, we have

LB(Y ) = max
λ≥0,ξ∈Rn

{ min
x≥0,y∈Y

[x⊤y +
p∑

i=1

(fici + diei)
⊤x

+
p∑

i=1

difi + λ⊤(Ax− b) + ξ⊤(y −
p∑

i=1

cie
⊤
i x)]}

= max
λ≥0,ξ∈Rn

{−b⊤λ+
p∑

i=1

difi + min
x≥0,y∈Y

[xT (
p∑

i=1

(fici

+diei) + y +A⊤λ−
p∑

i=1

eic
⊤
i ξ) + ξ⊤y]}.
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Since

min
x≥0,y∈Y

xT (
p∑

i=1

(fici + diei) + y +A⊤λ−
p∑

i=1

eic
⊤
i ξ)

=

 0, if
p∑

i=1

(fici + diei) + y +A⊤λ−
p∑

i=1

eic
⊤
i ξ ≥ 0,

−∞, otherwise,

we have

max −b⊤λ+min
y∈Y

{ξ⊤y}+
p∑

i=1

difi

s.t.
p∑

i=1

(fici + diei) + y +A⊤λ−
p∑

i=1

eic
⊤
i ξ ≥ 0, (1)

λ ≥ 0, ξ ∈ Rn, ∀y ∈ Y.

For x ≥ 0,y ∈ Y , if ∃y ∈ Y such that
p∑

i=1

(fici + diei) +

y +A⊤λ−
p∑

i=1

eic
⊤
i ξ < 0, the inner minimization problem

can get the value of −∞, therefore
p∑

i=1

(fici + diei) + y +

A⊤λ−
p∑

i=1

eic
⊤
i ξ ≥ 0.

By introducing a new variable t, the problem (1) can be
equivalently transformed into the problem (2) below:

max −b⊤λ+ t+
p∑

i=1

difi

s.t.
p∑

i=1

(fici + diei) + y +A⊤λ−
p∑

i=1

eic
⊤
i ξ ≥ 0, ∀y ∈ Y,

t ≤ ξ⊤y, (2)
λ ≥ 0, ξ ∈ Rn.

For simplex Y with extreme points Vi, i = 0, 1, ..., n,

since the functions t − ξ⊤y and
p∑

i=1

(fici + diei) + y +

A⊤λ −
p∑

i=1

eic
⊤
i ξ are concave, t < ξ⊤y and

p∑
i=1

(fici +

diei) + y + A⊤λ −
p∑

i=1

eic
⊤
i ξ ≥ 0 hold if and only if

t ≤ ξ⊤Vj ,
p∑

i=1

(fici+diei)+Vj+A⊤λ−
p∑

i=1

eic
⊤
i ξ ≥ 0, j =

0, 1..., n. Based on the above analysis, a linear programming
problem LP(Y ) can be obtained, and its optimal value is a
lower bound of the initial problem.

max −b⊤λ+ t+
p∑

i=1

difi

s.t. t ≤ ξ⊤Vj , j = 0, 1, .., n,

A⊤λ− (
p∑

i=1

cie
⊤
i )

⊤ξ + Vj +
p∑

i=1

(fici + diei) ≥ 0,

λ ≥ 0, ξ ∈ Rn.

The proof is completed.
Proposition 1. (1) Let Y 1, Y 2 be two n-dimensional sub-

simplexes, and satisfy Y 1 ⊆ Y 2, then, LB(Y 1) ≥ LB(Y 2);
(2) Let Y be a n-dimensional simplex with a vertex set
{V0, V1, ..., Vn}, then LB(Y ) > −∞.

Proof: (1) According to the transformation process of
LP(Y ), it can be obtained directly.

(2) On the basis of Theorem 3, we have

LB(Y ) = max
λ≥0,ξ∈Rn

{ min
x≥0,y∈Y

[x⊤y +
p∑

i=1

(fici + diei)
⊤x

+
p∑

i=1

difi + λ⊤(Ax− b) + ξ⊤(y −
p∑

i=1

cie
⊤
i x)]}.

Let λ = 0, ξ = 0, then

LB(Y ) = min
x≥0,y∈Y

[x⊤y +

p∑
i=1

(fici + diei)
⊤x+

p∑
i=1

difi].

Since G(x) = x⊤y +
p∑

i=1

(fici + diei)
⊤x +

p∑
i=1

difi is

continuous function, the feasible region B = {(x,y)|x ≥
0,y ∈ Y } is compact, so LB(Y ) is finite, which means that
LB(Y ) > −∞.

From Proposition 1, in the process of determining the
lower bound, the lower bound is +∞ or finite. When
LB(Y ) = +∞, it means that ELMP has no feasible solu-
tion. With the progress of the algorithm, the corresponding
simplex will be eliminated. So, the lower bound is finite.

To determine a upper bound, we need to find a feasible
solution for LMP. Towards this end, the Theorem 5 below
shows how to get a feasible solution for LMP.

Theorem 5. Let Y be a n-dimensional simplex with
vertices {V0, V1, ..., Vn}, and suppose that LB(Y ) ̸= +∞,
(p0, p1, p2, ..., pn) ∈ Rn×(n+1) represents the optimal value
of the dual variable corresponding to the first n(n + 1)

constrains of the problem LP(Y ), then ω =
n∑

i=0

pi is feasible

for problem LMP.
Proof: For problem LP(Y ), it is easy to drive its dual

problem as follows:

min pT0 (V0 +
p∑

i=1

(fici + diei)) + pT1 (V1 +
p∑

i=1

(fici + diei))

+...+ pn
T (Vn +

p∑
i=1

(fici + diei)) +
p∑

i=1

difi

s.t. −A(
n∑

i=0

pi) ≥ −b,

p∑
i=1

cie
⊤
i (

n∑
i=0

pi)−
n∑

i=0

Vihi = 0,

n∑
i=0

hi = 1,

pi ≥ 0, i = 0, 1, ..., n.

By the first constraint, we have A(
p∑

i=0

pi) ≤ b, so ω =
n∑

i=0

pi

is a feasible solution of problem LMP.
According to Theorem 5, we know that ω is feasible for

problem LMP, thus, its objective function value provides an
upper bound for the optimal value of problem LMP.

C. Deleting techniques

In order to improve the efficiency of the proposed method,
we introduce two deleting rules. These rules are designed
to eliminate simplices that are unable to contain the global
optimal solutions. By applying these deleting rules, we can
accelerate the speed of our method and focus on the simplices
that have a higher likelihood of containing the global optimal
solutions.

Let {V0, V1, · · · , Vn} be the vertices of a simplex.
(a) Deleting technique 1
Let mi = min

x∈X
qix, Mi = max

x∈X
qix, if there exist i ∈

{1, 2, · · · , n}, such that

min{V0i , · · · , Vni} > Mi or max{V0i , · · · , Vni} < mi,

the simplex will be eliminated.
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(b) Deleting technique 2
If there exists i ∈ {1, 2, · · · ,m}, which satisfies

min{AiQ
−1V0−bi, AiQ

−1V1−bi, · · · , AiQ
−1Vn−bi} > 0,

the simplex will be eliminated.

III. ALGORITHM DESCRIPTION AND CONVERGENCE
ANALYSIS

To incorporate the aforementioned techniques into the
branch and bound framework, we provide the pseudo code of
the proposed method in Algorithm 1. This algorithm outlines
the step-by-step procedure for solving the problem ELMP,
taking into account the deleting rules and other optimizations
discussed earlier. The convergence analysis of the algorithm
will also be provided to ensure the effectiveness of the
proposed method.

Algorithm 1: Branch and bound algorithm
01: Initialization: Compute LB(Y0) by solving problem LP(Y 0), and let

(p00, p
0
1, · · · , p0n) ∈ Rn×(n+1) be the optimal values of the dual

variables corresponding to the first n(n+ 1) constraints of problem

LP(Y 0). Let ω0 =
n∑

i=1
p0i , u0 = f(ω0), l0 = LB(Y 0), B = {Y 0},

k = 1.
02: Main Loop
03: Set ωk = ωk−1, uk = uk−1, Y k = Y k−1.
04: If uk = lk , stop: ωk is an optimal solution of problem (ELMP), v = lk ,

else continue.
05: Using bisectional method to divide Y k into Y k

1 , Y k
2 , let T̃ = {Y k

1 , Y k
2 }.

By using deleting techniques, delete simplex from T̃ . Let T be the
obtained subset of T̃ .

06: For each Y ∈ T , running steps below:
07: Compute the optimal value LB(Y ) by solving linear program LP(Y );
08: If LB(Y ) is finite, let (p0, p1, · · · , pn) ∈ Rn×(n+1) be the optimal

values of the dual variables corresponding to the first n(n+ 1)

constraints of problem LP(Y ), let ω̂ =
n∑

i=1
pi.

09: If f(ω̂) < f(ωk), ωk = ω̂, uk = f(ω̂).
10: Set Bk = {Bk−1 \ Y k}

∪
{T}.

11: Deleting the simplex Y for which satisfy LB(Y ) ≥ uk .
12: If Bk = ∅, set lk = uk , and stop.
13: Else, set lk = min{LB(Y ) | Y ∈ Bk}, and choose Y k ∈ Bk with

LB(Y k) = lk .
13: Set k = k + 1, and go to step 02.

The following Theorem 6 gives the proof of convergence
of the algorithm.

Theorem 6. Assuming the algorithm is infinite, {Y r} is
an infinite nested sequence generated by the algorithm, and
ω∗ is the accumulation point of sequence {ωr}∞r=0, then ω∗

is the global optimal solution of problem LMP.
Proof: Suppose that {Y r} is the nested sequence obtained

by algorithm. According Horst and Tuy [19],
∩

rV
r =

{y∗}, y∗ ∈ Rn. For each simplex Y r, the vertices are
denoted by V r

j , j = 0, 1, · · · , n. Let (pr0, p
r
1, · · · , prn) ∈

Rn×(n+1), hr = (hr
0, h

r
1, · · · , hr

n) ∈ Rn+1 be the optimal
solution of the dual problem of linear programming LP(Y r).

U = {h ∈ Rn+1|
n∑

i=0

hi = 1, i = 0, 1, · · · , n}, which is

compact set.
According to Theorem 5, ωr ∈ X , as X is a closed and

bounded set, {ωr} has at least one convergent subsequence.
Using {ωr}r∈R to represent any convergent subsequence,
since ω∗ = limr∈R ωr, we have ω∗ ∈ X . Next, we will
show that ω∗ is a global optimal solution of LMP.

Since U is bounded and closed, there is a finite sub-
sequence R

′
of R, which makes limr∈R′ hr

j = h∗
j , j =

0, 1, 2, · · · , n and satisfies h∗ ∈ U . As limr∈R ωr = ω∗,
so limr∈R′ ωr = ω∗. As

∩
rV

r = {y∗}, so limr∈R′ V r
j =

y∗, j = 0, 1, 2, · · · , n. For R
′ ⊂ R, we have LB(Y r) ≤

LB(Y r
′

) ≤ v. For the finite subsequence R
′

of R,
limr∈R′ LB(Y r) exists and satisfies limr∈R′ LB(Y r) ≤ v.
For ∀r ∈ R

′
, we plug (pr0, p

r
1, · · · , prn) into objective function

of problem DLP(Y ):

LB(Y ) = prT0 (V r
0 +

p∑
i=1

(fici + diei))

+prT1 (V r
1 +

p∑
i=1

(fici + diei))

+ · · ·+ prTn (V r
n +

p∑
i=1

(fici + diei)) +
p∑

i=1

difi.

Taking the limit of r ∈ R
′
, we have

limLB(Y )

= p∗T0 (y∗ +
p∑

i=1

(fici + diei)) + p∗T1 (y∗ +
p∑

i=1

(fici + diei))

+ · · ·+ < p∗n, y
∗ +

p∑
i=1

(fici + diei) > +
p∑

i=1

difi

= (
n∑

i=0

p∗i )
⊤(y∗ +

p∑
i=1

(fici + diei)) +
p∑

i=1

difi

= ω∗⊤(y∗ +
p∑

i=1

(fici + diei)) +
p∑

i=1

difi

= ω∗⊤y∗ +
p∑

i=1

(fici + diei)
⊤ω∗ +

p∑
i=1

difi ≤ v.

Since ω∗ is feasible for problem LMP, i.e. ω∗ ∈ X , we
have Aω∗ ≤ b, ω∗ ≥ 0. For r ∈ R

′
, taking the limit of the

constraints of DLP(Y ), we have
p∑

i=1

cie
⊤
i (

p∑
i=1

pri )−
p∑

i=1

V r
i hi = 0,

i.e.
p∑

i=1

cie
⊤
i (

p∑
i=1

p∗i )−
p∑

i=1

y∗hi = 0,

so
p∑

i=1

cie
⊤
i ω

∗−y∗ = 0. On the basis of Theorem 5, v(y∗) ≥

v is held that is ω∗⊤y∗+
p∑

i=1

(fici+diei)
⊤ω∗+

p∑
i=1

difi ≥ v.

To sum up, ω∗ is the global optimal solution of problem
LMP.

According to Theorem 6, if Algorithm 1 terminates in
finite steps, a global optimal solution of problem LMP will
be returned, else, an infinite nested sequence {Y k} will be
generated, which satisfies Y k+1 ⊂ Y k, then a global optimal
solution of the initial problem can also be determined.

IV. NUMERICAL EXPERIMENTS

In this section, to investigate the feasibility and effec-
tiveness of algorithm, we give some specific examples 1-
13 and a random example 14. This algorithm is coded
in Matlab 2018a, which is implemented on the [Intel(R)
Core(TM) i5-4200M CPU (2.5GHz)]. For examples 1-13,
the results obtained by the proposed method are compared
with Refs.[16,17,20,21]. The computational results are given
in Table I, and the tolerance error is set 1e− 4. For example
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14, a random example is designed, which is used to test
Algorithm 1 further.

Example 1([20,21])

min (x1 + x2)(x1 − x2 + 7)
s.t. 2x1 + x2 ≤ 14, x1 + x2 ≤ 10,

−4x1 + x2 ≤ 0, 2x1 + x2 ≥ 6,
x1 + 2x2 ≥ 6, x1 − x2 ≤ 3,
x1 + x2 ≥ 0, x1 − x2 + 7 ≥ 0,
x1, x2 ≥ 0.

Example 2([21])

min 3x1 − 4x2 + (x1 + 2x2 − 1.5)(2x1 − x2 + 4)
+(x1 − 2x2 + 8.5)(2x1 + x2 − 1)

s.t. 5x1 − 8x2 ≥ −24, 5x1 + 8x2 ≤ 44,
6x1 − 3x2 ≤ 15, 4x1 + 5x2 ≥ 10,
x1, x2 ≥ 0.

Example 3([21])

min −x2
1 − x2

2 + (−x1 − 3x2 + 2)(4x1 + 3x2 + 1)
s.t. x1 + x2 ≤ 5, −x1 + x2 ≤ 6,

x1, x2 ≥ 0.

Example 4([21])

min (2x1 − 2x2 + x3 + 2)(−2x1 + 3x2 + x3 − 4)
+(−2x1 + x2 + x3 + 2)(x1 + x2 − 3x3 + 5)
+(−2x1 − x2 + 2x3 + 7)(4x1 − x2 − 2x3 − 5)

s.t. x1 + x2 + x3 ≤ 10, x1 − 2x2 + x3 ≤ 10,
−2x1 + 2x2 + 2x3 ≤ 10, −x1 + x2 + 3x3 ≥ 6,
x1 ≥ 1, x2 ≥ 1, x3 ≥ 1.

Example 5([21])

min x1 + (2x1 − 3x2 + 13)× (x1 + x2 − 1)
s.t. −x1 + 2x2 ≤ 8, −x2 ≤ −3,

x1 + 2x2 ≤ 12, x1 − 2x2 ≤ −5, x1, x2 ≥ 0.

Example 6([21])

min − 2x2
1 − x2

2 − 2 + (−2x1 − 3x2 + 2)(4x1 + 6x2 + 2)
+(3x1 + 5x2 + 2)(6x1 + 8x2 + 1)

s.t. 2x1 + x2 ≤ 10, −x1 + 2x2 ≤ 10,
x1, x2 ≥ 0.

Example 7([21])

min (x1 + x2)(x1 − x2) + (x1 + x2 + 2)(x1 − x2 + 2)
s.t. x1 + 2x2 ≤ 20, x1 − 3x2 ≤ 20,

1 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 4.

Example 8([21])

min x1 + (x1 − x2 + 5)(x1 + x2 − 1)
s.t. −2x1 − 3x2 ≤ −9, 3x1 − x2 ≤ 8,

−x1 + 2x2 ≤ 8, x1 + 2x2 ≤ 12,
x1 ≥ 0.

Example 9([21])

min (2x1 − 2x2 + x3 + 2)(−2x1 + 3x2 + x3 − 4)
+(−2x1 + x2 + x3 + 2)(x1 + x2 − 3x3 + 5)
+(−2x1 − x2 + 2x3 + 7)(4x1 − x2 − 2x3 − 5)

s.t. x1 + x2 + x3 ≤ 10, x1 − 2x2 + x3 ≤ 10,
−x1 + x2 + 3x3 ≥ 6, x1 ≥ 1, x2 ≥ 1, x3 ≥ 1.

Example 10([21])

min (x1 + x2)(x1 − x2) + (x1 + x2 + 2)(x1 − x2 + 2)
s.t. x1 + 2x2 ≤ 10, x1 − 3x2 ≤ 20,

0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 4.

Example 11([16])

min (x1 + 2x2 − 2)(−2x1 − x2 + 3)
+(3x1 − 2x2 + 3)(x1 − x2 − 1)

s.t. − 2x1 + 3x2 ≤ 6, 4x1 − 5x2 ≤ 8,
5x1 + 3x2 ≤ 15, −4x1 − 3x2 ≤ −12,
x1 ≥ 0, x2 ≥ 0.

Example 12([18])

min (−x1 + 2x2 − 0.5)(−2x1 + x2 + 6)
+(3x1 − 2x2 + 0.5)(x1 + x2 − 1)

s.t. −5x1 + 8x2 ≤ 24, 5x1 + 8x2 ≤ 44,
6x1 − 3x2 ≤ 15, −4x1 − 5x2 ≤ −10,
x1 ≥ 0, x2 ≥ 0.

Example 13([18])

min (−x1 + 2x2 − 0.5)(−2x1 + x2 + 6)
+(3x1 − 2x2 + 0.5)(x1 + x2 − 1)

s.t. −5x1 + 8x2 ≤ 24, 5x1 + 8x2 ≤ 44,
6x1 − 3x2 ≤ 15, −4x1 − 5x2 ≤ −10,
x1 ≥ 0, x2 ≥ 0.

Table I: Computational results of test Examples 1-13(ϵ = 10−4)
Examples Method Time(s) Iter Optimal value Optimal solution

1 [20] 0.3 53 10 (2, 8)
[21] 0.7090 29 10 (2, 8)
Ours 0.2371 5 10 (2, 8)

2 [21] 7.0751 182 -2.5 (0, 3)
Ours 2.7772 93 -2.5 (0, 3)

3 [21] 2.1484 83 -233 (0, 5)
Ours 0.1475 4 -233 (0, 5)

4 [21] 19.0745 602 -109.75 (5.5, 1, 3.5)
Ours 4.5604 155 -109.75 (5.5, 1, 3.5)

5 [21] 3.5307 172 3 (0, 4)
Ours 0.1045 2 3 (0, 4)

6 [21] 0.3551 15 4 (0,0)
Ours 0.3517 11 4 (0,0)

7 [21] 1.0279 52 -22 (1, 4)
Ours 0.2864 9 -22 (1, 4)

8 [21] 2.4927 89 3 (0, 4)
Ours 1.8508 66 3 (0, 4)

9 [21] 19.0745 602 -109.75 (5.5, 1, 3.5)
Ours 14.9170 136 -109.75 (5.5, 1, 3.5)

10 [21] 0.2143 19 -22 (1, 4)
Ours 0.2918 9 -28 (0, 4)

11 [16] 10.013 7 -16.2837 (1.547, 2.421)
Ours 5.6460 81 -16.5049 (1.5486, 2.4190)

12 [18] 0.06 29 10.6750 (1.5549, 0.7561)
Ours 1.6093 22 10.6810 (1.5825, 0.7340)

13 [18] 0.06 29 10.6750 (1.5549, 0.7561)
Ours 1.6093 22 10.6810 (1.5825, 0.7340)

From the results presented in Table I, it is evident that
our algorithm consistently outperforms other methods on
the majority of the test functions. One notable example
is example 11, where our method achieves a significantly
superior optimal value compared to that of Zhang [16].
Similarly, for example 12, although our method requires
more iterations compared to Zhou [18], the final optimal
result is superior to theirs. These results demonstrate the
effectiveness and efficiency of our proposed algorithm in
solving these test functions.

Example 14([21])

min
p∑

i=1

(c⊤i x+ di)(e
⊤
i x+ fi)

s.t. Ax ≤ b, 0 ≤ x ≤ 1.
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where ci, ei are randomly generated in [−1, 1]n, di, fi
are randomly generated in [0, 100], all elements of A are
randomly generated in [0, 1]m×n, the value of b is randomly
generated in [0, n]n. The tolerance error is set 1e − 1. For
this example, the computational results are given in Table
II. In Table II, some notations are used as follows:
n: number of variables;
p: number of sums;
m: number of constrains;
AVG.Time: average iteration time in second;
AVG.Iter: average iteration numbers.

The average time (AVG.Time) and average number of
iterations (AVG.Iter) were calculated based on 10 randomly
generated examples for each problem size. As shown in Table
II, it is evident that both the number of iterations and the
running time increase as the values of n and p increase.

Furthermore, the results presented in Table II demonstrate
that the proposed method is capable of effectively solving
the LMP problem. It is also worth noting that the proposed
method performs well for problems of moderate size. These
findings highlight the effectiveness and scalability of the
proposed method in addressing the LMP problem.

Table II: Computational results of test Examples 14(ϵ = 10−1)
(n, p,m) Our proposed algorithm

AVG.Time(s) AVG.Iter

(5,10,50) 0.3741 8.3
(8,10,50) 2.5107 66.2
(10,10,50) 3.3300 77.3
(10,50,50) 10.7013 244.4
(10,100,50) 18.3719 406
(10,300,50) 41.8359 834.8
(10,500,50) 61.6894 1180.7
(10,800,50) 71.3844 1286
(10,1000,50) 85.0888 1590
(12,10,50) 111.1209 1634.4
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