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Abstract—A clique is a maximal complete subgraph of a
graph. The cc-degree (clique-clique degree) of a clique K
(dcc(K)) is the number of cliques adjacent to K. A clique C
strongly clique-dominates a clique K if C is adjacent to K and
dcc(C) ≥ dcc(K). Let C(G) be the set of all cliques in a graph G.
A set S ⊆ C(G) is a strong clique-clique dominating set (SCCD-
set) of G if every clique in C(G)-S is strongly clique-dominated
by at least one clique in S. The strong clique-clique domination
number γscc(G) is the cardinality of a smallest SCCD-set of G.
Similarly, the weak clique-clique domination number γwcc(G) is
defined. In this paper, we study some properties of these strong
(weak) clique-clique domination parameters and obtain Gallai-
type results. We present an algorithm to find γscc(G) (γwcc(G))
and obtain some bounds for the newly defined parameters.
Further, we define and study clique-clique domination balanced
graphs and clique-posets.

Index Terms—clique-clique domination, cc-degree, full
clique-clique domination, clique-poset.

I. INTRODUCTION

The terminologies and notations used here are as in [6],
[11]. Throughout the paper, all graphs are finite, simple, and
undirected. Let G = (V,E) be a graph. Two vertices in G
are said to dominate each other if they are adjacent. Then
a subset D of V is called a dominating set of G if every
vertex v ∈ V − D is dominated by some vertex u ∈ D.
Then the cardinality of a minimum dominating set is called
the domination number γ(G). For a survey on domination,
refer to [1], [7]. The strong (weak) domination was first
introduced by E. Sampathkumar and L. Pushpa Latha [10].
A vertex v strongly (weakly) dominates a vertex u if v and
u are adjacent and deg(v) ≥ deg(u) (deg(v) ≤ deg(u)).
A set D ⊆ V is a strong-dominating set (sd-set) of G if
every vertex in V − D is strongly dominated by at least
one vertex in D. Similarly, a weak-dominating set (wd-set)
is defined. The strong (weak) domination number γs (γw)
of G is the cardinality of a smallest sd-set (wd-set). This
concept is extended to edges by R. S. Bhat et al. [5]. The
strong (weak) domination is well studied in [2], [9].

A clique is a maximal complete subgraph of a graph. If
a vertex v is in a clique C then we say that v is incident
on C. Two cliques, C1 and C2 are said to be adjacent to
each other if there is a vertex v ∈ V incident on both C1

and C2. The cc-degree (clique-clique degree) [3] of a clique
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K, denoted by dcc(K) is the number of cliques adjacent to
K. An ordered set of cliques (C1, C2, . . . , Cm) in a graph
G is called a clique-path if Ci is adjacent with Ci+1, for
every i, 1 ≤ i ≤ m − 1. S. G. Bhat [3] defined the clique-
clique dominating sets and clique-clique full sets of a graph
as follows: Let C(G) be the set of all cliques in a graph G.
A set S ⊆ C(G) is a clique-clique dominating set (CCD-set)
of G if every clique in C(G)-S is adjacent to at leat one
clique in S. The clique-clique domination number γcc(G) is
the number of cliques in a smallest clique-clique dominating
set of G. A set L ⊆ C(G) is called as a clique-clique full
set of G if every clique in L adjacent to a clique in C(G)-L.
The clique-clique full number of fcc(G) is the cardinality of
a largest clique-clique full set of G. For a survey on cliques,
refer to [3], [4].

Motivated by the study of the strong (weak) edge-edge
domination number γsee(G) (γwee(G)) of a graph by R. S.
Bhat et al. [5], we define the following:

II. STRONG (WEAK) CLIQUE-CLIQUE DOMINATING SETS
OF A GRAPH

Definition 1. Let C1 and C2 be any two cliques of a graph
G. We say that C1 strongly clique dominates (sc-dominates)
C2 and C2 weakly clique dominates (wc-dominates) C1 if
C1 is adjacent to C2 and dcc(C1) ≥ dcc(C2).

Definition 2. A set S ⊆ C(G) is a strong clique-clique
dominating set (SCCD-set) of G if every clique in C(G)-
S is sc-dominated by at least one clique in S. The strong
clique-clique domination number γscc(G) is the cardinality
of a smallest SCCD-set of G.
Similarly, we define the weak clique-clique domination num-
ber γwcc(G).

Example 1.
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Fig. 1. Graph G with γscc(G) = 10 and γwcc(G) = 18.

Consider the graph G given in the Figure
1. Note that {C5, C6, C7, C8, C9, C10, C11, C12},
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{C1, C3, C5, C6, C7, C8, C9, C10, C11, C12} and
{C5, C9, C13, C14, . . . , C28} are some smallest CCD-
set, SCCD-set and WCCD-set of G, respectively. Hence,
γcc(G) = 8, γscc(G) = 10 and γwcc(G) = 18.

Remark 1. If a graph G is triangle-free, then γscc(G) =
γsee(G) and γwcc(G) = γwee(G).

Proposition 1. Let S be a SCCD-set (WCCD-set) of G. Then
S is a minimal SCCD-set (WCCD-set) of G if, and only if,
for any C ∈ S any one of the following two conditions holds.

(i) No clique in S sc-dominates (wc-dominates) C.
(ii) There exists a clique in C(G) − S which is uniquely

sc-dominated (wc-dominated) by C.

Proof: Let S be a minimal SCCD-set of G. Then for any
C ∈ S, S− {C} is not a SCCD-set of G. This implies that,
there exists K ∈ C(G)−S such that K is not sc-dominated by
any clique in S−{C}. Then either K = C or K ∈ C(G)−S.
Suppose K = C, clearly (i) holds. If K ∈ C(G) − S, then
K is not sc-dominated by any clique in S − {C}. Since S

is a SCCD-set of G, C uniquely sc-dominates K. Hence
(ii) holds. Conversely, Let S be a SCCD-set of G satisfying
(i) and (ii). Suppose S is not minimal SCCD-set, then there
exists C ∈ S such that S − {C} is a SCCD-set of G. This
implies that C is sc-dominated by a clique in S−{C}. That
means, C does not satisfy the condition (i). Also, since S−
{C} is a SCCD-set of G, every C(G) − (S− {C}) is sc-
dominated by the cliques in C(G) − S. This means that C
does not satisfy the condition (ii), which is a contradiction
to our assumption. Hence, S is a minimal SCCD-set of G.

Remark 2. We observe that the numbers γwcc(G) and
γscc(G) are not comparable in general. For example, con-
sider the graph H given in the Figure 2. We observe that
{C2, C3, C4, C7, C8, C10} and {C1, C5, C6, C9, C11} are the
smallest SCCD-set and WCCD-set of H , respectively. Hence,
γwcc(H) = 5 < 6 = γscc(H). Whereas for the graph G
given in the Figure 1, we have γscc(G) < γwcc(G).
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Fig. 2. Graph H with γwcc(H) < γscc(H).

A. Construction of a graph G with arbitrarily large differ-
ence between γcc(G) and γscc(G) (γwcc(G))

Consider a graph G1 given in the Figure 3. For G1,
D = {C5, C6, C7, C8} is the smallest CCD-set, S =
{C1, C3, C5, C6, C7, C8} is a smallest SCCD-set and W =
{C1, C3, C9, C10, C11, C12} is a smallest WCCD-set of
G1. Hence, γscc(G1) − γcc(G1) = 2 and γwcc(G1) −
γcc(G1) = 2. Let G′2 = G1 and we rename the clique
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Fig. 3. Graph G1 with γscc(G1)− γcc(G1) = 2.

Ci in G′2 by C2i , for all i, 1 ≤ i ≤ 12. We construct
a graph G2 by joining a pendant vertex of G1 with a
pendant vertex of G′2, as shown in the Figure 4. Then
D∪{C25

, C26
, C27

, C28
}, S∪{C21

, C23
, C25

, C26
, C27

, C28
}

and W∪{C21 , C23 , C29 , C210 , C211 , C212} are some smallest
CCD-set, smallest SCCD-set and smallest WCCD-set of
G2, respectively. Note that, γscc(G2) − γcc(G2) = 4 and
γwcc(G2)− γcc(G2) = 4.
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Fig. 4. Graph G2 with γscc(G2)− γcc(G2) = 4.

For any n ≥ 3, let Let G′n = G1 and we rename
the clique Ci in G′n by Cni

, for all i, 1 ≤ i ≤ 12.
Let Gn be the graph obtained by joining a pendant ver-
tex of Gn−1 with a pendant vertex of G′n. Then, D ∪
n⋃

i=2

{Ci5 , Ci6 , Ci7 , Ci8}, S∪
n⋃

i=2

{Ci1 , Ci3 , Ci5 , Ci6 , Ci7 , Ci8}

and W∪
n⋃

i=2

{Ci1 , Ci3 , Ci9 , Ci10 , Ci11 , Ci12} are some small-

est CCD-set, smallest SCCD-set and smallest WCCD-set
of Gn, respectively. Now, γscc(Gn) − γcc(Gn) = 2n and
γwcc(Gn) − γcc(Gn) = 2n. Hence, it is possible to find a
graph Gn with arbitrarily large difference between γcc(G)
and γscc(G) (γwcc(G)).

B. Some bounds on γscc(G) and γwcc(G)

First we obtain some elementary bounds for γscc(G)
and γwcc(G). Consider the set of all cliques C(G) of
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a graph G. Let ∆cc(G)=max{dcc(K) : K ∈ C(G)} and
δcc(G)=min{dcc(K) : K ∈ C(G)}. A clique K of G with
dcc(K) = 1 is called as a cc-pendant clique of G. A clique
L of G is called a cc-support clique if there is a pendant
clique adjacent to it. A clique-complete graph is a graph
in which all its cliques are adjacent to each other and we
denote a clique-complete graph with n cliques by KCn .
A graph G is called a clique-star if there exists a unique
clique C in G with dcc(C) > 1 and all other cliques of
G have cc-degree 1. For a clique C, dscc(C) (dwcc(C))
be the number of cliques sc-dominated (wc-dominated) by
C. Let ∆scc(G) = max{dscc(C) : C ∈ C(G)} and
∆wcc(G) = max{dwcc(C) : C ∈ C(G)}.

Proposition 2. Let G be a graph and C(G) be the set of all
cliques in G. Then

(i) γcc(G) ≤ γscc(G) ≤ |C(G)| −∆cc(G)
(ii) γcc(G) ≤ γwcc(G) ≤ |C(G)| − δcc(G)

(iii) γcc(G) ≤ γwcc(G) ≤ |C(G)| −∆wcc(G)

Proof: Clearly, γcc(G) ≤ γscc(G) and γcc(G) ≤
γwcc(G). Let K be a clique of G with dcc(K) = ∆cc(G)
and N(K) be the set of all cliques adjacent to K. Then
K sc-dominates all the cliques in N(K). This implies that
C(G) − N(K) is a SCCD-set of G. Hence, γscc(G) ≤
|C(G)−N(K)| = |C(G)|−∆cc(G). With similar arguments
we can prove the upper bound in (ii) and (iii).

Proposition 3. Let G be a graph and C(G) be the set of all
cliques in G. Then,

(i)
⌈
|C(G)|

1+∆cc(G)

⌉
≤ γscc(G) ≤ |C(G)| −∆cc(G)

(ii)
⌈
|C(G)|

1+∆wcc(G)

⌉
≤ γwcc(G) ≤ |C(G)| −∆wcc(G)

Proof: Each clique of G can sc-dominate at most
∆cc(G) cliques and itself. Hence,

⌈
|C(G)|

1+∆cc(G)

⌉
≤ γscc(G).

Similarly, (ii) can be proved.
The above bounds in Proposition 2 and 3 are sharp as both
upper and lower bounds are attained for any clique-complete
graph.

Proposition 4. Let G be a graph with n > 2 cliques, np
cc-pendant cliques and ns cc-support cliques. If G has no
KC2

component, then
(i) ns ≤ γscc(G) ≤ n− np

(ii) np ≤ γwcc(G) ≤ n− ns
Further, the above bounds are sharp.

Proof: Let C, P and S be the set of all cliques, set
of all cc-pendant cliques and set of all cc-support cliques
of G, respectively. Then any N ∈ S uniquely sc-dominates
a clique P ∈ P. This implies that either N or P belongs
to every smallest SCCD set of G. Hence, ns ≤ γscc(G).
Also, if K ∈ P then dcc(K) = 1. Since G has no KC2

component, there exists a clique L ∈ S ⊆ C − P which sc-
dominates K. This implies that C− P is a SCCD-set of G.
Thus, γscc(G) ≤ n−np. The proof of (ii) is similar, and we
omit it.
Note that both the upper and lower bounds in (i) and (ii)
are attained for any clique-star graph.

III. STRONG (WEAK) FULL CLIQUE-CLIQUE DOMINATING
SETS OF A GRAPH

Definition 3. A set D ⊆ C(G) is a strong [weak] full
clique-clique dominating set (SFCCD-set [WFCCD-set]) of

G if every K ∈ D sc-dominates [wc-dominates] some L ∈
C(G) −D. The strong (weak) full clique-clique domination
number fscc(G) (fwcc(G)) of G is the maximum cardinality
of a SFCCD-set (WFCCD-set) of G.

Example 2. Consider the graph H given in the Figure 2.
Then {C2, C3, C4, C7, C8, C10} is a largest SFCCD-set of
H and {C1, C5, C6, C9, C11} is a largest WFCCD-set of H .
Hence, fscc(H) = 6 and fwcc(H) = 5.

Proposition 5. Let G be a graph and C(G) be the set of
all cliques of G. Then, for any set D ⊆ C(G) the following
holds.

(i) D is a SCCD-set of G if, and only if, C(G) −D is a
WFCCD-set of G.

(ii) D is a WCCD-set of G if, and only if, C(G)−D is a
SFCCD-set of G.

Proof: Let S be a SCCD-set of G and K ∈ C(G)− S.
Then K is sc-dominated by a clique say C ∈ S. This implies
that K and C are adjacent and dcc(K) ≤ dcc(C). That is K
wc-dominates C. Hence, C(G) − S is a WFCCD-set of G.
Conversely, let D be a WFCCD-set of G and S = C(G)−D.
Then for any K ∈ C(G)−S = D, there exists L ∈ S such that
K wc-dominates L. That is, L sc-dominates K. Thus, S is a
SCCD-set of G. Hence (i) follows. With similar arguments
we can prove (ii).

Proposition 6. (Gallai Type Results) Let G be a graph and
C(G) be the set of all cliques of G. Then,

(i) γscc(G) + fwcc(G) = |C(G)|
(ii) γwcc(G) + fscc(G) = |C(G)|

Proof: Let S be a smallest SCCD-set of G. Then by
Proposition 5, C(G) − S is a WFCCD-set of G. Hence,
fwcc(G) ≥ |C(G)| − γscc(G). Now, suppose D is a largest
WFCCD-set of G, then C(G)−D is a SCCD-set of G. This
implies that γscc(G) ≤ |C(G)|−fwcc(G). Thus, (i) follows.
With similar arguments we can prove (ii).

Corollary 7. For a graph G, there exists a SCCD-set S

which is SFCCD-set if, and only if, there exists a WCCD-set
W which is WFCCD-set.

Proof: Let C(G) be the set of all cliques of a graph G.
Then, by Proposition 5, S ⊆ C(G) is both SCCD-set and
SFCCD-set of G if, and only if, W = C(G) − S is both
WCCD-set and WFCCD-set of G.

Corollary 8. Let G be a graph and C(G) be the set of all
cliques in G. If there exists a set S ⊆ C(G) such that S is both
SCCD-set and SFCCD-set of G, then γscc(G) + γwcc(G) ≤
|C(G)|.

Proof: Suppose there is S ⊆ C(G) which is both SCCD-
set and SFCCD-set of G. Then by the Proposition 5, C(G)−S
is a WFCCD-set of G. This implies that, γwcc(G) ≤ |C(G)−
S| = |C(G)| − |S|. But, γscc(G) ≤ |S|. Hence, γwcc(G) ≤
|C(G)| − γscc(G).

A. Algorithm to find γscc(G) and fwcc(G) of a graph G with
no KC2

component

For any clique C of G, the open neighbourhood of
C, denoted by N(C) is the set of all cliques in G
adjacent to C and the closed neighbourhood N[C] of C is
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N[C] = N(C) ∪ {C}. In this section, we provide a greedy
algorithm to find γscc(G) (γwcc(G)) and fscc(G) (fwcc(G))
of a graph G with no KC2

component.
Input: A graph G with no KC2

component and the set
of all cliques C(G) = {C1, C2, . . . , Ck} of G such that
dcc(C1) ≥ dcc(C2) ≥ · · · ≥ dcc(Ck) and the set of all
cc-support cliques S of G.
Output: γscc(G) and fwcc(G)
Algorithm:
Step 1: C(G) = {C1, C2, . . . , Ck}
Step 2: D = S

Step 3: if D 6= φ then
Step 4: for (i = 1; i ≤ k; i = i+ 1)
Step 5: for (j = 1; j ≤ k; j = j + 1)
Step 6: if Ci ∈ S AND Cj ∈ N(Ci) AND

dcc(Cj) ≤ dcc(Ci) then
Step 7: C(G) = C(G)− {Ci, Cj}
Step 8: end if
Step 9: end for
Step 10: end for
Step 11: end if
Step 12: for (i = 1; i ≤ k; i = i+ 1)
Step 13: if N(Ci) 6= φ then
Step 14: for (j = i+ 1; j ≤ k; j = j + 1)
Step 15: if dcc(Ci) = dcc(Cj) then
Step 16: Ni = φ
Step 17: Nj = φ
Step 18: temp = Ci

Step 19: for (l = 1; l ≤ k; l = l + 1)
Step 20: if Cl ∈ N(Ci) AND dcc(Cl) ≤ dcc(Ci)

then
Step 21: Ni = Ni ∪ {Cl}
Step 22: end if
Step 23: if Cl ∈ N(Cj) AND dcc(Cl) ≤ dcc(Cj)

then
Step 24: Nj = Nj ∪ {Cl}
Step 25: end if
Step 26: end for
Step 27: if |Ni| < |Nj | then
Step 28: Ci = Cj

Step 29: Cj = temp
Step 30: end if
Step 31: end if
Step 32: end for
Step 33: end if
Step 34: D = D ∪ {Ci}
Step 35: C(G) = C(G)− {Ci}
Step 36: for (m = 1;m ≤ k;m = m+ 1)
Step 37: if Cm ∈ N(Ci) AND dcc(Cm) ≤ dcc(Ci)

then
Step 38: C(G) = C(G)− {Cm}
Step 39: end if
Step 40: end for
Step 41: end for
Step 42: γscc(G) = |D|
Step 43: fwcc(G) = k − γscc(G)

Note: Initially, the set D consists of the set of all cc-
support cliques of G. The steps 3–11 of the algorithm
eliminate all cliques in S and cliques that are sc-dominated
by the elements of S from the set C(G). In steps 12–33,

we look for the cliques that sc-dominates a maximum
number of cliques in C(G) − S′, where elements of the
set S′ are the cliques in S along with all cliques that are
sc-dominated by the elements of S. Steps 35–40 eliminate
all the cliques from C(G) that are sc-dominated by the
updated set D elements. After completion of all iterations,
D is a sc-dominating set of G with minimum cardinality.
In a similar manner, we can construct an algorithm to find
γwcc(G) and fscc(G).

Remark 3. The time complexity of the algorithm 3.1. in
worst case scenario is O(n(1 + n+ n2)).

IV. CLIQUE-CLIQUE DOMINATION BALANCED GRAPHS

Definition 4. A graph G is clique-clique domination bal-
anced (ccd-balanced) if there exist a SCCD-set S and a
WCCD-set W of G such that S ∩W = φ.

Definition 5. A graph G is fully clique-clique domination
balanced (fccd-balanced) if there exist a smallest SCCD-set
S and a smallest WCCD-set W of G such that S ∩W = φ
and S ∪W = C(G), where C(G) is the set of all cliques of
G.

Example 3. Consider a graph G1 given in the Figure 3. Note
that S = {C1, C3, C5, C6, C7, C8} is a smallest SCCD-set
and W = {C2, C4, C9, C10, C11, C12} is a smallest WCCD-
set of G1 such that S∩W = φ and S∪W = C(G1). Therefore
G1 is both ccd-balanced and fccd-balanced.

Remark 4. Every fccd-balanced graph is ccd-balanced. But
the converse need not be true. For example, the cycle C5 is
a ccd-balanced graph but not fccd-balanced.

Proposition 9. A graph G is ccd-balanced if, and only if,
there exists a SCCD-set S which is a SFCCD-set of G.

Proof: Let C(G) be the set of all cliques of G. Assume
that G is ccd-balanced. Then there exist a SCCD-set S and
a WCCD-set W of G such that S ∩W = φ. We shall show
that S is SFCCD-set of G. Let C ∈ S. Since, W is a WCCD-
set of G and C ∈ C(G) −W, there exists K ∈ W which
wc-dominates C. Then K sc-dominates C ∈ C(G) − S.
Hence, S is SFCCD-set of G. Conversely, suppose there
exists a SCCD-set S which is a SFCCD-set of G. Then,
by Proposition 5, C(G)− S is WCCD-set of G. Thus, G is
ccd-balanced.

Proposition 10. Let G be a graph and C(G) be the set of
all cliques of G.

(i) If G is ccd-balanced, then γscc(G)+γwcc(G) ≤ |C(G)|.
(ii) If G is fccd-balanced, then γscc(G) + γwcc(G) =
|C(G)|.

Proposition 11. A graph G is fccd-balanced if, and only if,
the following two conditions are satisfied.

(i) fscc(G) + fwcc(G) = |C(G)|
(ii) There exists a smallest SCCD-set S which is SFCCD-set

of G.

Proof: Assume that G is fccd-balanced. Then, there
exist a smallest SCCD-set S and a smallest WCCD-set W

of G such that S ∩W = φ and S ∪W = C(G). Clearly,
(i) holds, by Proposition 5. Since, W is a WCCD-set of
G, S = C(G) −W is a SFCCD-set of G. Thus, (ii) holds.
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Conversely, assume that the conditions (i) and (ii) are true
in G. Let S be a smallest SCCD-set and SFCCD-set of G.
Then, by Proposition 5., C(G)−S is a WCCD-set of G. Now,
by (i) and Proposition 6, |C(G)− S| = |C(G)| − γscc(G) =
fwcc(G) = |C(G)| − fscc(G) = γwcc(G). Thus, G is fccd-
balnced.

V. PARTIAL ORDERING RELATION ON THE CLIQUE SET OF
A GRAPH USING CC-DEGREE

A relation on a set P which is reflexive, antisymmetric
and transitive is called as a partial order on P . A set P with
a partial order ≤ defined on P is called as a partially ordered
set or briefly a poset and denoted as (P,≤) [8]. An element
m is called a maximal (minimal) element of a poset (P,≤)
if there is no element x ∈ P such that x > m (x < m).
If x, y ∈ P with x ≤ y or y ≤ x, then we say that x and
y are comparable. A subset S of a poset (P,≤) is called
a subchain of P if which every pair of elements of S is
comparable under ≤. The length of a poset (P,≤), denoted
by l(P ) is defined as l(P ) = max{|C| − 1 : C is a maximal
subchain of P}. A lattice is a poset in which every pair of
elements has a greatest lower bound and a least upper bound.

Definition 6. We define a partial order ≤ on the clique set
C(G) of a graph G as follows: for any two cliques K and
L, K ≤ L if either K = L or there exists a clique-path
between K and L, say (K = K1,K2, . . . ,Km = L) such
that dcc(K1) < dcc(K2) < · · · < dcc(Km). We call the
poset (C(G),≤) as the clique-poset of G.

Example 4. Consider the graph G3 given in the Figure 5.
Then dcc(c1) = 6, dcc(c2) = dcc(c3) = dcc(c6) = dcc(c7) =
dcc(c9) = dcc(c10) = 3, dcc(c4) = dcc(c5) = dcc(c8) =
dcc(c11) = dcc(c12) = dcc(c13) = 2.

b

b b

bb

b b

b

b

bb

b

b

c1

c2c3

c4 c5

c6c7
c8

c9

b

c10

c11c12

c13

Fig. 5. Graph G3 with C(G3) = {c1, c2, . . . , c13}.

Then c11 < c10 < c1, c4 < c3 < c1, c4 < c7 < c1,
c8 < c7 < c1, c8 < c6 < c1, c5 < c6 < c1, c5 < c2 < c1
and c12 < c9 < c1. The Hasse diagram of the clique-poset
(C(G3),≤) is given in the Figure 6.

Definition 7. (i) A clique K ∈ C(G) is called a cc-strong
(cc-weak) clique if K sc-dominates (wc-dominates) all
cliques adjacent to it.

(ii) A clique K ∈ C(G) is called a cc-regular clique if it
sc-dominates and wc-dominates all cliques adjacent to
it.

(iii) A clique K ∈ C(G) is called a cc-balanced clique if
there exist cliques L and M which are adjacent to K

bc

bc

bc

bc bc

bc
bc

bc bc

bc

bc

bc

bc

c1

c2c3

c4
c5

c6c7

c8

c9c10

c11 c12

c13

Fig. 6. clique-poset (C(G3),≤)

such that L is not sc-dominated by K and M is not
wc-dominated by K.

Definition 8. The cc-strong number of a graph G, denoted
by scc(G) is the number of cc-strong cliques in G. Similarly,
cc-weak number (wcc(G)), cc-regular number (rcc(G)) and
cc-balanced number (bcc(G)) of G are defined.

Proposition 12. Let G be a graph. Then scc(G)+wcc(G)−
rcc(G) + bcc(G) = |C(G)|.

Proposition 13. Let (C(G),≤) be the clique-poset of a graph
G. Then

(i) K is a cc-strong clique of G if and only if K is a
maximal element of (C(G),≤).

(ii) K is a cc-weak clique of G if and only if K is a minimal
element of (C(G),≤).

(iii) K is a cc-regular clique of G if and only if K is not
related to any element L ∈ C(G) such that K 6= L with
respect to ≤.

(iv) K is a cc-balanced clique of G if and only if K is
neither a minimal nor a maximal element of (C(G),≤).

Proof: (i) Assume that K is a cc-strong clique of
G. Suppose K is not a maximal element of (C(G),≤).
Then there exists L ∈ C(G) such that K < L. This
implies that there is a K-L clique-path in G say (K =
K1,K2, . . . ,Kn = L) such that dcc(K) < dcc(K2) <
· · · < dcc(L). We observe that K2 is adjacent to K and
dcc(K) < dcc(K2), which is a contradiction to our assump-
tion. Conversely, assume that K is a maximal element of
C(G). Suppose there exists a clique L adjacent to K in G
such that dcc(L) > dcc(K). Then, K,L is a K-L path in G
with the property dcc(K) < dcc(L). This implies that K < L
in C(G), which is a contradiction to our assumption. Hence,
K is a cc-strong clique of G. By similar argument (ii) can
be proved.
(iii) A clique K of G is cc-regular if and only if K is both
cc-strong and cc-weak clique of G if and only if K is both
maximal and minimal element of (C(G),≤) if and only if
there is no L,M ∈ C(G) such that L > K and M < K if
and only if K is not related to any element of C(G)− {K}
with respect to ≤.
(iv) Let K be a cc-balanced clique of G. Then there exist
cliques L and M adjacent to K such that dcc(L) < dcc(K) <
dcc(M). This implies that L < K < M in C(G). Hence,
K is neither a minimal nor a maximal element of (C,≤).
Conversely, suppose there is K ∈ C(G) such that L is
neither a minimal nor a maximal element. Then there exists
L,M ∈ C(G) such that L < K < M . Then there is a L-
K clique-path in G say (L = K1,K2, . . . ,Kn = K) such
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that dcc(L) < dcc(K2) < · · · < dcc(Kn−1) < dcc(K) and
a K-M clique-path in G say (K = L1, L2, . . . , Lk = M)
such that dcc(K) < dcc(L2) < · · · < dcc(M). We observe
that Kn−1 and L2 are adjacent to K such that dcc(Kn−1) <
dcc(K) < dcc(L2). Hence, K is a cc-balanced clique of G.

Corollary 14. If the clique-poset of a graph G is a lattice,
then scc(G) = 1, wcc(G) = 1, rcc(G) = 0 and bcc(G) =
|C(G)| − 2.

Remark 5. (i) Let ∆cc(G) and δcc(G) denote the max-
imum cc-degree and minimum cc-degree of a graph
G. Then any clique K of G with dcc(K) = ∆cc

(dcc(K) = δcc) is a maximal (minimal) element of the
clique-poset of G. But, the converse need not be true.

(ii) Let G be a graph and l(C(G)) be the length of
the clique-poset (C(G),≤) of G. Then, l(C(G)) ≤
∆cc(G)− δcc(G).

(iii) If two graphs G and H are isomorphic then their
clique-posets are order isomorphic. But the converse
need not be true. For example, consider the graphs G
and H given in the Figure 7.

b b b b

bbbb

b

b b bbb

b b

Graph G

Graph H

Fig. 7. Graphs G and H for the counter-example

Note that the graphs G and H are not isomorphic,
but their clique-posets are order isomorphic. Then, the
Hasse diagrams of the clique-posets (C(G),≤) and
(C(H),≤) are same and it is given in the Figure 8.

bc bc

bc bc

Fig. 8. Hasse diagram of the clique-posets (C(G),≤) and (C(H),≤)

Proposition 15. For a connected graph G, the Hasse di-
agram of the clique-poset (C(G),≤) is connected if and
only if for any L,M ∈ C(G), there exists a clique-path
(L = K1,K2, . . . ,Kn = M) in G such that dcc(Ki) 6=
dcc(Ki+1), for all i, 1 ≤ i ≤ n− 1.

Proof: Assume that the Hasse diagram of the clique-
poset (C(G),≤) is connected. Suppose there are two cliques
L and M such that every L-M clique-path in G contains
some adjacent cliques of same cc-degree. Then L and M
are not comparable in the poset (C(G),≤). We shall show

that lowerbound and upperbound of L and M do not exist in
(C(G),≤). In fact, suppose that a lowerbound of L and M
exists in C(G). We choose a lowerbound B of L and M such
that B is a maximal element of the set {K ∈ C(G) : K is a
lowerbound of L and M}. Then, B < L and B < M . This
implies that there exist clique-paths (B = L1, L2, . . . , Lk =
L) such that dcc(L1) < dcc(L2) < · · · < dcc(Lk) and (B =
K1,K2, . . . ,Kn = M) such that dcc(K1) < dcc(K2) <
· · · < dcc(Kn). Then (L = Lk, Lk−1, . . . , L2, L1 = B =
K1,K2, . . . ,Kn = M) is a L-M clique-path in G such
that adjacent cliques have the distinct cc-degrees, which is
not possible. Similarly, we can prove that no upperbound
L and M exists in C(G). This implies that L and M do
not lie in the same component of the Hasse diagram of
(C(G),≤), which is a contradiction to our assumption. Thus,
there exists a clique-path (L = K1,K2, . . . ,Kn = M) in G
such that dcc(Ki) 6= dcc(Ki+1), for all i, 1 ≤ i ≤ n − 1.
Conversely, assume that for any L,M ∈ C(G), there exists
a clique-path (L = K1,K2, . . . ,Kn = M) in G such
that dcc(Ki) 6= dcc(Ki+1), for all i, 1 ≤ i ≤ n − 1.
Consider Ki and Ki+1. Then either dcc(Ki) > dcc(Ki+1) or
dcc(Ki) < dcc(Ki+1). This implies that either Ki > Ki+1

or Ki < Ki+1 in (C(G),≤). Then Ki and Ki+1 lie in the
same component of the Hasse diagram of (C(G),≤), for all
i, 1 ≤ i ≤ n − 1. Therefore, L and M lie in the same
component of the Hasse diagram of (C(G),≤). Hence, the
Hasse diagram of the clique-poset (C(G),≤) is connected.
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