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Abstract—In this paper, we give some characteristics of g-
frames for finite dimensional version which are counterpart
the frame theory. Moreover, we investigate their dual g-frames
that are optimal for erasures. For a given g-frame, we will give
some conditions under which the canonical dual is the unique
optimal dual g-frame for the erasure problem. We also discuss
some special conditions under which the canonical dual g-frame
is either not optimal or it is optimal dual but not unique one.

Index Terms—G-frames, Optimal dual g-frame, Linear
bounded operator, Erasure.

I. INTRODUCTION

FRAMES, which was first introduced by Duffin and
Schaeffer [1] in 1952 to study the nonharmonic Fourier

series. After the fundamental paper by Daubechies, et.al [2]
in 1986 , frames were popularized from then on. Nowadays,
frames have been widely used in many fields, the readers are
referred to some references, e.g.[3], [4], [5], [6], [7], [8].

Let H be a Hilbert space. A sequence Φ = {φi}∞i=1 ⊂ H
is called a frame, if there exist positive constants A and B
such that,

A‖f‖2 ≤
∞∑
i=1

|〈f, φi〉|2 ≤ B‖f‖2, ∀f ∈ H.

We call A,B the lower frame bound and upper frame bound
of frame Φ, respectively. If Φ is a frame, then for any

f ∈ H can be expressed as f =
∞∑
i=1

〈f, ψi〉φi, where {ψi}∞i=1

denotes the dual frame of {φi}∞i=1. For the frame study,
researchers are very interested in searching for optimal dual
frame from the coding theory viewpoint. For example, in [3],
the authors showed that uniform (length) tight frames are
optimal for one erasure and equiangular frames are optimal
for two erasures. In [4], [5], Han, Leng and Lopez considered
the question of finding optimal dual frame for decoding when
a frame has been preselected for encoding.

Recently, various generalizations of the frame have been
proposed and studied, such as fusion frames [9], oblique
frames [10] and pseudo-frames [11]. In [12], Sun introduced
a more general frame (g-frame), showed that g-frame include
the frames mentioned above and proved that many basic
properties of g-frame can be shared with classical frame
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(see [13], [8]), but there also exist some different properties
between frames and g-frames. For example, exact frames
are equivalent to Riesz bases, but exact g-frames are not
equivalent to g-Riesz bases [12]. Whether the way of finding
optimal dual frame for any frames may be extended to any g-
frames for the erasure problem? In this paper, we investigate
this problem. Firstly, we focus on some characteristics of g-
frames in finite dimensional space. Then, by using the worst
case error [4], we set the problem studied in the context of
g-frames, i.e., the largest packet-lost operator norm among
all possible erasures gives some conditions under which the
canonical dual g-frame is the unique optimal dual g-frame
for the erasure problem.

Throughout this paper, let H be finite dimensional (real
or complex) Hilbert space, and {Hi : i ∈ I} a sequence
of closed subspaces of H, where I = {1, 2, · · · ,m} is a
subset of integer set Z. B(H,Hi) is denoted by the set of
all the linear bounded operators from H to Hi, if H = Hi

then B(H,Hi) is abbreviated to B(H). IH is the identical
operator of H. If Λ = {Λi}mi=1 is a finite g-frame, that is,
Λ with dim(H) = n < ∞, dim(Hi) = li < ∞, i ∈ I ,
where dim denotes the dimension of a Hilbert space. Also we

always let l =
m∑
i=1

li. The analysis operator TΛ for {Λi}mi=1 is

an l×n matrix. For vectors on Cn we shall use the Euclidean
norm, but for matrix T ∈ Cn×n, we shall use the Frobenius
norm ‖T‖2F = tr (T ∗T ) =

∑
i,j∈In

|Tij |2 which is induced by

the inner product 〈A,B〉 = tr B∗A, for A,B ∈ Cn×n.

II. PRELIMINARIES

We first recall the definitions and results of g-frames in
Hilbert spaces as formulated in [13], [8].

Definition 1.1.[13] A collection of the vector Λ =
{Λi}i∈I ⊆ B(H,Hi) is called a g-frame for H with respect
to {Hi}i∈I , if there exist two positive constants A and B
such that

A‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2, ∀f ∈ H. (1)

We call A,B the lower frame bound and upper frame bound
of g-frame Λ, respectively.

We call Λ the tight g-frame if A = B and it is the Parseval
g-frame if A = B = 1.

We call Λ an exact g-frame if it ceases to be a g-frame
whenever any single element is removed from Λ.

We call Λ a g-frame sequence, if it is a g-frame for
span{Λ∗i (Hi)}i∈I .

We call Λ g-complete, if {f : Λif = 0}i∈I = {0}. It is
easy to see that every g-frame is a g-complete family.

In the study of frame theory, analysis operator and frame
operator are the main tools. We give the operator theory of
g-frames as follows, for details see [8].
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The analysis and the synthesis operators in g-frames are
defined by

TΛ : H −→ ⊕i∈IKi, TΛ(f) = {Λif}i∈I , f ∈ H,

T ∗Λ : ⊕i∈IKi −→ H, T ∗Λ(f) =
∑
i∈I

Λ∗i fi, f ∈ H.

The g-frame operator S : H −→ H defined by

S(f) =
∑
i∈I

Λ∗i Λif, f ∈ H,

which is a bounded, positive and invertible operator. The
canonical dual g-frame for Λ, defined by

Λ̃ = {Λ̃i = ΛiS
−1}i∈I ,

is also a g-frame for H with respect to {Hi}i∈I with B−1

and A−1 as its lower and upper g-frame bounds, respectively.
This leads to the generalized reconstruction formula

f =
∑
i∈I

Λ∗i Λ̃if =
∑
i∈I

Λ̃∗i Λif, f ∈ H. (2)

Next, we give the notion of dual g-frames:
Definition 1.2.[8] Two g-Bessel sequences Λ = {Λi}i∈I

and Γ = {Γi}i∈I for H with respect to {Hi}i∈I .
1) We say that Γ is an alternate dual g-frame for g-frame

Λ if T ∗ΓTΛ = IH, or equivalently if f =
∑
i∈I

Γ∗i Λif ,

for every f ∈ H.
2) We denote by

D(Λ)
def
= {Γ ⊆ B(H,Hi) : T ∗ΓTΛ = IH},

the set of all dual g-frames for a fixed Λ ⊆ B(H,Hi).
Observe that D(Λ) 6= ∅, since Λ̃ ∈ D(Λ).

Remark 1.1. Let Λ ⊆ B(H,Hi). Then Γ ∈ D(Λ) if and
only if its synthesis operator T ∗Γ is a pseudo-inverse of TΛ.
Indeed,

Γ ∈ D(Λ)⇔ T ∗ΓTΛ = IH.

It is easy to obtain that each g-frame has many dual g-frames.
For any g-frame {Λi}mi=1, we also have the following results:

1) {Λi}mi=1 is a g-frame if and only if TΛ is full column
rank.

2) {Λi}mi=1 is a parseval g-frame if and only if TΛ is
column orthogonal (T ∗ΛTΛ = IH).

3) {Λi}mi=1 is an orthonormal g-frame if and only if TΛ

is an unitary matrix.
The first question arising is: How do you use all dual g-
frames? A comprehensive answer is provided by the follow-
ing result, which is particular case of classical frames in the
book [14].

Theorem 1.1. Let {Λi}i∈I be a g-frame for H with
respect to {Hi}i∈I with analysis operator TΛ and g-frame
operator S. Then, the following conditions are equivalent:

(1) {Γi}i∈I is a dual g-frame for {Λi}i∈I .
(2) The analysis operator T1 of the sequence (Γi −

ΛiS
−1)i∈I satisfies ran TΛ⊥ ran T1.

Proof : We set hi := Γi − ΛiS
−1 for all i ∈ I , and note

that∑
i∈I

Λ∗i Γif =
∑
i∈I

Λ∗i (hi + ΛiS
−1)f

=
∑
i∈I

Λ∗i hif + f = T ∗ΛT1f + f, f ∈ H.

Hence, {Γi}i∈I is a dual g-frame for {Λi}i∈I if and only if
T ∗ΛT1 = 0, which is equivalent to (2). The conclusion holds.

We also obtain the following result, which gives a charac-
terization for all of the alternate dual g-frames of the given
g-frame.

Theorem 1.2. Every dual g-frame of {Λi}i∈I is of the
form Γi = ΛiS

−1 + hi, where
n∑

i=1

h∗i Λif =
n∑

i=1

Λ∗i hif = 0, f ∈ H.

Proof : Let {Γi}i∈I be a dual g-frame for {Λi}i∈I , and
define hi = Γi − ΛiS

−1.∑
i∈I

h∗i Λif =
∑
i∈I

(Γi − ΛiS
−1)∗Λif

=
∑
i∈I

Γ∗i Λif − S−1Λ∗i Λif

= f − f = 0.

Conversely, assume {Γi}i∈I is a set of vectors and Γi =
ΛiS

−1 + hi, where
∑
i∈I

h∗i Λif = 0. Then∑
i∈I

Γ∗i Λif =
∑
i∈I

(ΛiS
−1 + hi)

∗Λif

=
∑
i∈I

S−1Λ∗i Λif + h∗i Λif

= f.

Thus, we obtain that {Γi}i∈I satisfies the equation (2), and
it is a dual g-frame for {Λi}i∈I .

The proof for
∑
i∈I

Λ∗i hif = 0 is similar.

The next result summarizes some basic, yet useful, prop-
erties of the g-frames.

Lemma 1.1. Let S : H → H be a linear operator, and
the set of vectors {ΛiS

−1}i∈I has analysis operator TΛS−1 ,
then TΛS−1f = TΛS

−1f .
Proof : TΛS−1f = {ΛiS

−1f}i∈I = TΛS
−1f .

Proposition 1.1. Let Λ = {Λi}mi=1 ⊆ B(H,Hi) be a
parseval g-frame and P be an orthogonal projection on H.
Then {ΛiP

k}mi=1 is a parseval g-frame for P (H).
Proof: The result follows from

m∑
i=1

(ΛiP
k)∗(ΛiP

k) =
m∑
i=1

(P k)∗Λ∗i ΛiP
k

= (P ∗)k
m∑
i=1

Λ∗i ΛiP
k = PIH.

Definiton 1.3. Let {Λi}i∈I and {Γi}i∈I be two g-
frames. If there is a onto invertible operator T such that
Λi = ΓiT (i ∈ I), then we say {Λi}i∈I and {Γi}i∈I are
similar. If T is unitary, then they are unitarily equivalent.

Theorem 1.3. Let {Λi}mi=1, {Γi}mi=1 be two g-frames,
which are similar. If {Γi}mi=1 is an equal-norm tight frame,
then {ΛiS

− 1
2 }mi=1 is an equal-norm Parseval g-frame.

Proof: Given {ΛiS
− 1

2 }mi=1 is Parseval g-frame [12]. Since
{Γi}mi=1 is similar to {Λi}mi=1, obviously, {Γi}mi=1 is similar
to {ΛiS

− 1
2 }mi=1. By Definition 1.3 we obtain {Γi}mi=1 =

{ΛiS
− 1

2T}mi=1. Suppose A be a frame bound for {Γi}mi=1,
we have

AIH =
m∑
i=1

(ΛiS
− 1

2T )∗(ΛiS
− 1

2T )

=
m∑
i=1

T ∗S−
1
2 Λ∗i ΛiS

− 1
2T = T ∗T.

It implies that T is onto and T√
A

is unitary.
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Next, we show that {ΛiS
− 1

2 }mi=1 is an equal-norm Parse-
val g-frame. Since

‖ΛiS
− 1

2 ‖2F = ‖ΓiT
−1‖2F = tr[(ΓiT

−1)∗(ΓiT
−1)]

= tr[(T−1)∗Γ∗i ΓiT
−1] = tr( 1

ATΓ∗i ΓiT
−1)

= tr( 1
AΓ∗i Γi) = 1

A‖Γi‖2F .

Hence we obtain that {ΛiS
− 1

2 }mi=1 is an equal-norm Parseval
g-frame.

III. OPTIMAL DUAL G-FRAMES

In this section we mainly study dual g-frames which can
be used decode the signal from the receiver. Given a g-frame
{Λi}mi=1, we can compute the frame coefficients {Λi(f)}mi=1

of a signal f , some frame coefficients could get lost during
the data transmission, then we reconstruct (decoding) the
original signal f with the dual g-frames {Γi}mi=1 of g-frame
{Λi}mi=1. Obviously, we have the following reconstruction

formula f =
m∑
i=1

Γ∗i Λi(f).

As it was mentioned in the introduction, our purpose is to
set the problem studied in the context of g-frames. That is,
for a fixed g-frame, the goal is to give some conditions under
which the canonical dual is the unique optimal dual g-frame
for the erasure problem. In [4], Han and Lopez gave some
results which imply the existence of the unique dual frame
that is optimal for the erasure of 1-packet of coefficients.
In [3], [4], the authors obtained optimal alternate dual for r
erasures among those dual frames which are optimal for r−1
erasures. Therefore, we draw the following results that the
optimal dual for r erasures coincide with optimal dual for
one erasure. So, in this paper, we only consider one erasure
problem.

In order to describe the reconstruction error when an
arbitrary packet of coefficients of the g-frames is erased,
we consider the following notions which were adopted from
reference [15] for reconstruction systems. Let j ∈ I and
Mj ∈ B(H) defined by

Mj((yi)i∈I) = (1j(i) · yi)i∈I ,

where 1j : I → {0, 1} denotes the characteristic function
of the set {j} ⊂ I . Similarly, we consider the packet-lost
operator

Lj
def
= MI\{j} = IH −Mj .

In coding theory, a signal vector f ∈ Rn is encoded as
TΛf = {Λif}i∈I against a g-frame Λ and then TΛf is sent
to a receiver for decoding the original signal f . However,
some of the coefficients in the encoded data TΛf may be
lost in the transmission process. If the encoded information
TΛf ∈ H is altered according to the packet-lost operator
Lj , our reconstructed vector will be f̂ = T ∗ΓLjTΛf , where
Γ = {Γi}i∈I ∈ D(Λ) is dual g-frame for Λ. Then the
reconstruction error will be

f − f̂ = f − T ∗ΓLjTΛf = T ∗ΓMjTΛf = Γ∗jΛjf.

In this case, we will use the Frobenius norm ‖·‖F to perform
the measure of the operator Γ∗jΛj . Consider the m-tuple

E1(Λ,Γ) = (‖I − T ∗ΓLjTΛ‖F )j∈I
= (‖T ∗ΓMjTΛ‖F )j∈I = (‖Γ∗jΛj‖F )j∈I .

Notice that we can bound uniformly the reconstruction error
in terms of the entries of this vector for the erasure of one
packet of coefficients (for all m possible choices). In what
follows we shall consider the reconstruction error based on
E1(Λ,Γ), namely the (normalized) worst-case error.

Let Λ = {Λi}mi=1 be a g-frame. For Γ = {Γi}mi=1 ∈ D(Λ),
we introduce the worst-case reconstruction error when one
packet is lost with respect to the Frobenius norm. Now, we
measure the error vector E1(Λ,Γ) with the maximum of its
entries.

e1(Λ) = infΓ∈D(Λ) ‖E1(Λ,Γ)‖∞
= infΓ∈D(Λ) maxi∈I ‖T ∗ΓMiTΛ‖F
= infΓ∈D(Λ) maxi∈I ‖Γ∗i Λi‖F .

We define the set of one loss optimal dual g-frame for Λ as

D1(Λ)
def
= {Γ ∈ D(Λ) : ‖E1(Λ,Γ)‖∞ = e1(Λ)}.

According to the Proposition 12 in [15], we have the
following lemma:

Lemma 2.1. Let Λ = {Λi}i∈I be a g-frame with Λi 6= 0
for all i. Then the set D1(Λ) of one loss optimal dual g-frame
for Λ is non-empty, compact and convex.

Theorem 2.1. Let Λ = {Λi}i∈I be a g-frame with frame
operator S. If

‖S−1Λ∗i Λi‖F = c, i ∈ I,

then the canonical dual g-frame Λ̃ of Λ, is the unique one
loss optimal dual g-frame (and hence the r-loss optimal dual
g-frame for any r).

Proof: By Lemma 2.1, we obtain Γ = {Γi}i∈I ∈ D1(Λ).
Then

max
i∈I
‖Γ∗i Λi‖F ≤ max

i∈I
‖S−1Λ∗i Λi‖F = c.

Denote ΛiS
−1 = Ci, then ‖Γ∗i Λi‖F ≤ c = ‖C∗i Λi‖F for

every i ∈ I . It is obvious that ‖Γ∗i ‖F ≤ ‖C∗i ‖F for every
i ∈ I . Note that

‖Γi‖2F = ‖C∗i + (Γ∗i − C∗i )‖2F
= ‖C∗i ‖2F + ‖Γ∗i − C∗i ‖2F + 2Re(tr[(Γ∗i − C∗i )Ci]).

Then, ‖Γ∗i −C∗i ‖2F +2Re(tr[(Γ∗i −C∗i )Ci]) ≤ 0 for all i ∈ I .
Consequently,∑

i∈I
tr[(Γ∗i − C∗i )Ci] = tr[(T ∗Γ − TS−1Λ)TΛS

−1] = 0.

Since both Γ and S−1Λ are dual g-frames for Λ, we have

0 ≤
∑
i∈I
‖Γ∗i − C∗i ‖2F

=
∑
i∈I
‖Γ∗i − C∗i ‖2F +

∑
i∈I

2Re(tr[(Γ∗i − C∗i )Ci]) ≤ 0,

which implies that Γ = {Γi}i∈I = {Ci}i∈I . Thus, we
conclude that the canonical dual is the unique optimal dual
g-frame of Λ for one erasure.

As a special case we have the following result:
Corollary 2.1. Let Λ = {Λi}i∈I be a uniform tight g-

frame, then the canonical g-dual is the unique optimal dual
frame of Λ for r-erasures.

Proof: Assume that {Λi}i∈I is a tight g-frame with frame
bound A. Then the frame operator of {Λi}i∈I is S = AIH,
and ‖S−1Λ∗i Λi‖F = 1

A‖Λ
∗
i Λi‖F . Therefore, ‖S−1Λ∗i Λi‖F
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is a constant for all i when {Λi}i∈I is also uniform. The
consequence is implied from the above Theorem 2.1.

Next, we give a more general result than Theorem 2.1.
For a g-frame Λ = {Λi}mi=1, let c = max{‖ΛiS

−1‖‖Λi‖ :
1 ≤ i ≤ m}, set I1 = {i : ‖ΛiS

−1‖‖Λi‖ = c} and I2 =
I\I1, let Hj = span{Λi, i ∈ Ij}, (j = 1, 2). We prove the
following results:

Theorem 2.2. Let Λ = {Λi}mi=1 be a g-frame for H with
respect to {Hi}i∈I . Then the following are equivalent:

(1) The canonical dual {ΛiS
−1}mi=1 is the unique optimal

dual for one erasure.
(2) H1 ∩H2 = {0} and {Λi}i∈I2 is linearly independent.
Proof : (1)⇒ (2): If {Λi}i∈I2 is linearly dependent, there

exist ui (i ∈ I2 not all zero) in H2 such that

m∑
i=1

u∗i Λif = 0, f ∈ H,

when ui = 0, i ∈ I1 and U = {ui}i∈I is not zero sequence,
{ΛiS

−1 + tui}i∈I , t 6= 0 is the dual g-frame of Λ, then∑
i∈I

(tui)
∗Λif =

∑
i∈I

tu∗i Λif = 0,

and

‖ΛiS
−1 + tui‖‖Λi‖ = ‖ΛiS

−1‖‖Λi‖ = c, i ∈ I1,

‖ΛiS
−1‖‖Λi‖ < c, i ∈ I2,

∃δ > 0 and |t| < δ, ‖ΛiS
−1 + tui‖‖fi‖ < c, ∀i ∈ I2.

Then {ΛiS
−1 + tui}mi=1 (t 6= 0) is also an optimal dual

for Λ, which is a contradiction. Hence {Λi}i∈I2 is linearly
independent.

Next, we show H1 ∩H2 = {0}. If not, there exist linear
independent set Λi1 , · · · ,Λil , ij ∈ I1 and nonzero constants
ci1 , · · · , cil such that

l∑
j=1

cijΛij +
∑
i∈I2

ciΛi = 0, for some ci (i ∈ I2).

Since {Λij}lj=1 is also linearly independent, we can find
h ∈ H such that

〈ΛijS
−1, c̄ijh〉 = 〈cijΛijS

−1, h〉 < 0.

Define ui = c̄ih, i ∈ {i1, · · · , il} ∪ I2, and ui = 0, i ∈
I1\{i1, · · · , il}. Then T ∗tUTΛ = 0 for all scalars t.

Obviously, for all i ∈ I1\{i1, · · · , il}, we have

‖ΛiS
−1 + tui‖‖Λi‖ = ‖ΛiS

−1‖‖Λi‖ = c,

then ∃δ > 0, |t| < δ, such that

‖ΛiS
−1 + tui‖‖Λi‖ < c, i ∈ I2,

and

‖ΛiS
−1 + tui‖2‖Λi‖2

= [‖ΛiS
−1‖2 + ‖tui‖2 + 2t〈ΛiS

−1, ui〉]‖Λi‖2
< c2, i ∈ {i1, · · · , il}.

Thus the canonical dual is not the only optimal dual, which
leads to contradiction. Therefore H1 ∩H2 = {0}.

(2) ⇒ (1): Suppose {ΛiS
−1 + ui}mi=1 is optimal dual

g-frame for one erasure, by Theorem 1.2, we know that
n∑

i∈I
Λ∗i uif = 0, f ∈ H, that is

n∑
i∈I1

Λ∗i uif +
n∑

i∈I2

Λ∗i uif = 0,

by the assumption (2), which implies that
n∑

i∈I1

Λ∗i uif = 0,
n∑

i∈I2

Λ∗i uif = 0.

Since {Λi}i∈I2 is linear independent, then

uif = 0, i ∈ I2, i.e., ui = 0, i ∈ I2.

Also, by the previous lemma, we get
n∑

i∈I1

(Λ∗iS
−1)uif = 0,

we only need to show that ui = 0 for all i ∈ I1. In fact,
according to

‖ΛiS
−1 + ui‖‖Λi‖ ≤ c = ‖ΛiS

−1‖‖ui‖, i ∈ I1,

we get

2〈ΛiS
−1, ui〉+ ‖ui‖2 ≤ 0, for i ∈ I1.

Summing up the right hand side, we get

2
∑
i∈I1

〈ΛiS
−1, ui〉+

∑
i∈I1

‖ui‖2 = 0 +
∑
I1

‖ui‖2 ≤ 0,

and hence
∑
I1

‖ui‖2 = 0, since
∑
i∈I1
〈ΛiS

−1, ui〉 = 0. This

implies that ui = 0 for all i ∈ I1, and therefore {ΛiS
−1 +

ui}mi=1 is the canonical dual.
We also give the result that the canonical dual is an optimal

dual g-frame but not the only optimal dual for one erasure.
Theorem 2.3. Let Λ = {Λi}mi=1 be a g-frame for H

with respect to {Hi}i∈I . Assume that H1 ∩H2 = {0} and
{Λi}i∈I1 is linearly independent. Especially, Λ = {Λi}mi=1

is linearly dependent Parseval g-frame. Then {ΛiS
−1}mi=1 is

an optimal dual g-frame but not the only optimal for one
erasure.
Proof : Suppose {ΛiS

−1 + ui}mi=1 is the dual g-frames
of the g-frame Λ, by Theorem 1.1, we have

n∑
i∈I

Λ∗i uif = 0, ∀f ∈ H,

that is
n∑

i∈I1

Λ∗i uif +
n∑

i∈I2

Λ∗i uif = 0.

Given H1 ∩H2 = {0}, thus
n∑

i∈I1

Λ∗i uif = 0,
n∑

i∈I2

Λ∗i uif = 0,

since {Λi}i∈I2 is linear independent, we obtain

uif = 0, i ∈ I2, i.e., ui = 0, i ∈ I2,
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which implies that

max{‖ΛiS
−1 + ui‖‖Λi‖ : 1 ≤ i ≤ m}

≥ max{‖ΛiS
−1 + ui‖‖Λi‖ : i ∈ I1}

= max{‖ΛiS
−1‖‖Λi‖ : i ∈ I1}

= max{‖ΛiS
−1‖‖Λi‖ : 1 ≤ i ≤ m}.

So the canonical dual is an optimal dual g-frame.
Because of k > m, we can find a dual g-frame Γ =

{ΛiS
−1 +ui}mi=1 with ui 6= 0 for some i ∈ I2. Let t > 0 be

small enough such that ‖ΛiS
−1 + tui‖‖Λi‖ < c for i ∈ I2.

Then

‖ΛiS
−1 + tui‖‖Λi‖ = c, for i ∈ I1,

and

‖ΛiS
−1 + tui‖‖Λi‖ < c, for i ∈ I2,

when t is small enough. Thus, ‖ΛiS
−1 + tui‖i∈I is also an

optimal dual g-frame for one erasure.
Next, we investigate condition for the canonical dual is

not optimal for one erasure.
Theorem 2.4. Let Λ = {Λi}mi=1 be a g-frame for H.

Assume that {Λi}i∈I1 is linearly independent, and there exist
a sequence of scalar {ci}i∈I such that

∑
i∈I

ciΛi = 0, and

ci 6= 0 for all i ∈ I1. Then {ΛiS
−1}i∈I is not optimal dual

g-frame for one erasure.
Proof : Since {Λi}i∈I1 is also linearly independent, we

can find h ∈ H such that

〈ΛiS
−1, c̄ih〉 = 〈ciΛiS

−1, h〉 < 0, i ∈ I1.

Define ui = c̄ih, for all i. Then T ∗tUTΛ = 0 for all scalars t.
Let t > 0 be small enough such that

‖ΛiS
−1 + tui‖2‖Λi‖2

= [‖ΛiS
−1‖2 + ‖tui‖2 + 2t〈ΛiS

−1, ui〉]‖Λi‖2
< c2, i ∈ I1,

and

‖ΛiS
−1 + tui‖‖Λi‖ < c, for i ∈ I2.

Then we have

max{‖ΛiS
−1 + tui‖‖Λi‖ : 1 ≤ i ≤ n} < c,

i.e., the canonical dual is not optimal.
Corollary 2.2. Let Λ = {Λi}i∈I be a g-frame for H

with respect to {Hi}i∈I . Assume that k = n + 1, I1 has
only one element, and {Λi}i∈I2 is linearly independent. Then
{ΛiS

−1}i∈I is not optimal dual g-frame for one erasure.
Proof : We can assume that I1 = {1}. Since {Λi}n+1

i=1 is
linearly dependent, there exist ci (not all zero) such that

c1Λ1 +
∑
i∈I2

ciΛi = 0.

Given c1 6= 0 and {Λi}i∈I2 is linearly independent. There-
fore, by Theorem 2.4, ‖ΛiS

−1 + tui‖i∈I is not optimal for
one erasure.
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