
 

  

Abstract—As a critical field of theoretical chemistry, 

chemical graph theory works as a key part in the model 

topology calculation and prediction based on chemical 

molecular structures. The paper can contribute to the research 

in the following aspects: (1) We propose the concept of bipolar 

fuzzy influence graph, using positive and negative membership 

functions to describe positive and negative uncertainties 

respectively; (2) Based on the new concept, we give a hypothesis 

to explain the memory of water. The hypothesis is based on two 

salient facts of the bipolar fuzzy influence graph. Initially, the 

non-collapsibility of the positive and negative membership 

functions ensures that the information after using fuzzy coding 

will not change with the material layer. Then, the influence 

pairs connect the vertices and edges between different 

components in the graph through bipolar uncertain influence. 

At the end of this paper, the conditions for the establishment of 

the hypothesis and the facts to be verified in the future are 

analyzed. 

 
Index Terms—water, fuzzy system, membership function, 

fuzzy graph, fuzzy influence graph, bipolar fuzzy influence 

graph 

 

I. INTRODUCTION 

S a structured representation tool, graph models have 

been broadly applied to network and chemical 

molecular science. As a result, graph related computing 

theory and algorithms are used in the decision making of 

graph-based structured data framework. In particular, in the 

field of chemical molecules, vertices and edges are utilized to 

represent the chemical bonds between atoms, and the 

molecular structure of the whole compound is represented by 

a graph. In this way, graph theory is introduced into chemical 

molecular science as a useful tool. Furthermore, if there is 

uncertainty in the graph model, then the uncertainty of 

vertices and edges is characterized by membership functions 

(MFs), following which the whole model the whole model 

comes to be a fuzzy graph. For various applications of fuzzy 

graphs, refer to Gao et al. [1], Ganesan et al [2], Gayathri et al. 

[3], Akram et al. [4], Muhiuddin et al. [5], Li et al. [6], Nie et 

al. [7], Khan et al. [8], Maneckshaw and Mahapatra [9], and 
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Lang et al. [10]. 

The membership function cannot meet the complementary 

law. Therefore, a single membership function cannot depict 

the uncertainty of objectives from both positive and negative 

perspectives. For fuzzy graphs, at least two vertex 

membership functions are required to fully characterize the 

uncertainty of vertices, and at least two edge membership 

functions are also required to characterize the positive and 

negative uncertainties on edges. For this aim, bipolar fuzzy 

graphs are introduced into fuzzy graph theory and play a role 

in chemistry.  

In recent years, the studies on fuzzy graphs and bipolar 

fuzzy graphs in various settings have become a hot topic. 

Yuan and Wang [11] proposed a fuzzy-based complete 

learning approach to obtain bipartite graphs. Golcuk et al. [12] 

raised a multiple attribute decision making framework by 

means of fuzzy graph expression. Das et al. [13] suggested a 

new trick to control medicine resources using a picture fuzzy 

threshold graph. Perumal [14] determined a fuzzy graph 

based intelligent framework for document clustering. He et al. 

[15] designed a technology to partition graph data into some 

overlapping subgraph data in view of fuzzy clustering. Long 

et al. [16] presented a trick to use fuzzy knowledge graph 

pairs rather than a single pair of the standard framework. 

Ullah et al. [17] analyzed the competition graph by using a 

novel and prevailing technique of complex q-rung orthopair 

fuzzy setting. Xue et al. [18] investigated the distributed 

fuzzy H infinity filtering problem for Takagi-Sugeno (T-S) 

fuzzy model-based nonlinear systems interconnected over an 

undirected graph. Arunkumar et al. [19] re-examined and 

re-detected the fake images or videos in light of the fuzzy 

fisher face capsule dual graph.  Lu et al. [20] introduced a 

cyclic connectivity index and its average version for bipolar 

fuzzy incidence graph, and applied it to measure 

anti-aging-related drugs. Khan et al. [21] introduced bipolar 

picture fuzzy graphs and determined several fundamental 

characteristics. Khan et al. [22] defined and discussed 

characteristics of the Cayley picture fuzzy graphs, and 

applied it to interconnected networks. Taouti and Khan [23] 

studied the fuzzy subnear-semirings and fuzzy soft 

subnear-semirings. Meanwhile, the fuzzy soft 

anti-homomorphism of fuzzy soft near-semirings and fuzzy 

soft R-homomorphisms of fuzzy soft R-subsemigroups are 

further investigated. More advances on fuzzy graphs and 

their applications can be referred to Josy et al. [24], Liu et al. 

[25], Islam and Pal [26], Poulik and Ghorai [27], Zhu et al. 

[28], Luo and Gao [30], and Gong et al. [30]. 

As an extended fuzzy incidence graph, the fuzzy influence 

graph has attracted much attention in recent years (see 

Mathew and Mordeson [31] and Gayathri et al. [3]). 

Although a few literatures on this topic have obtained rich 
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results, the definition and application of fuzzy influence 

graphs in other settings are still open. This encourages us to 

extend the concept to the bipolar fuzzy framework and get the 

corresponding theory. It is noteworthy that our new results 

can be applied in molecular science.  

Our contributions are summarized in two-fold: 

(1) We defined the bipolar fuzzy influence graph and 

analyzed its basic characteristics from the perspectives of 

graph topology and membership functions, providing its 

structural type theorem. 

(2) We used the obtained theory to explain the phenomenon 

of water having memory, and provide a possible hypothesis 

from a hypothetical perspective. 

It is imperative to explain that the example provided in this 

article is analyzed under the following assumption. Imagine 

that each object has a primitive image in high-dimensional 

space, and through some mapping, different levels of images 

can be obtained, and the object we can see is the outermost 

layer of this multi-level image. And there are multiple 

hierarchical structures within the image that have an impact 

on the object. 

The remainder of the paper is arranged in the following 

way. First, we define the new concepts, and introduce the 

notations and terminologies in the next section. Then, the 

main theoretical results on bipolar fuzzy influence graphs are 

presented. Finally, we show the application in chemistry, 

where a hypothesis is proposed to explain water's ability to 

remember. 

II. FROM BIPOLAR FUZZY INCIDENCE GRAPH TO BIPOLAR 

FUZZY INFLUENCE GRAPH  

We call ( , ')x xx  an incidence pair. Let 

( , , , , , )P N P N P NG    =    be a bipolar fuzzy 

incidence graph with ( , ) : [0,1] [ 1,0]P N V  →  − , 

( , ) : [0,1] [ 1,0]P N E  →  − , and ( , ) :P N V E    

[0,1] [ 1,0]→  − , where ( , )P N   is a bipolar fuzzy 

incidence of G. Set 
* , 

*  and 
*  as the vertex set, edge 

set and incidence pair set of G, respectively. The positive 

incidence strength is denoted by the minimum value of 

( , ')P x xx  and negative incidence strength is represented 

by the maximum value of ( , ')N x xx . In bipolar fuzzy 

incidence graph setting, 
P  and 

N  express the positive 

and negative relations between atoms and chemical bonds. A 

bipolar fuzzy incidence graph 

( , , , , , )P N P N P NG    =    is complete if ( , ')P x xx  

( ) ( ')P Px xx =   and ( , ') ( ) ( ')N N Nx xx x xx  =   

for any 
*( , ')x xx  . 

We say ( , ' '')x x x  is an influence pair if x , 'x  and ''x  

are distinct. A bipolar fuzzy influence graph (BFIG) is a 

bipolar fuzzy incidence graph 

( , , , , , )P N P N P NG    =    with at least one 

influence pair. A path P is an influence path if it contains at 

least one influence pair, and its bipolar influence is denoted 

by ( ) ( ( ), ( ))P Ni P i P i P= , 

where ( ) { ( , ' '') : ( , ' '')P Pi P x x x x x x=    is an influence 

pair} and ( ) { ( , ' '') : ( , ' '')N Ni P x x x x x x=    is an 

influence pair. The bipolar influence connectivity or bipolar 

strength of influence between 
* *,x y     is 

represented by 

( , ) ( ( , ), ( , ))P N

G G GICONN x y ICONN x y ICONN x y= , 

where ( , ) { ( ) :P P

GICONN x y i P P=   is an influence pair 

between x and y}, ( , ) { ( ) :N N

GICONN x y i P P=   is an 

influence pair between x and y}. 

An influence pair ( , ' '')x x x  is considered as a 

• positive strong influence pair if  

( , ' '')( , ' '') ( , ' '')P P

G x x xx x x ICONN x x x−  ; 

• positive strongest or positive  -strong pair if 

( , ' '')( , ' '') ( , ' '')P P

G x x xx x x ICONN x x x−  ; 

• negative strong influence pair if  

( , ' '')( , ' '') ( , ' '')N N

G x x xx x x ICONN x x x−  ; 

• negative strongest or negative  -strong pair if  

( , ' '')( , ' '') ( , ' '')N N

G x x xx x x ICONN x x x−  ; 

• bipolar strong influence pair if it is both positive strong 

influence pair and negative strong influence pair; 

•  bipolar  -strong pair if it is both positive  -strong pair 

and negative  -strong pair; 

• positive  -strong influence pair if  

( , ' '')( , ' '') ( , ' '')P P

G x x xx x x ICONN x x x− = ; 

• negative  -strong influence pair if  

( , ' '')( , ' '') ( , ' '')N N

G x x xx x x ICONN x x x− = ; 

•  bipolar  -strong pair if it is both positive  -strong pair 

and negative  -strong pair; 

• positive  -pair or positive weak influence pair if  

( , ' '')( , ' '') ( , ' '')P P

G x x xx x x ICONN x x x−  ; 

• negative  -pair or negative weak influence pair if 

( , ' '')( , ' '') ( , ' '')N N

G x x xx x x ICONN x x x−  ; 

• bipolar  -pair (resp. bipolar weak influence pair) if it is 

both positive  -pair (resp. positive weak influence pair) and 

negative  -pair (resp. negative weak influence pair); 

• positive effective influence pair if  

( , ' '') ( ) ( ' '')P P Px x x x x x  =  ; 

• negative effective influence pair if  

( , ' '') ( ) ( ' '')N N Nx x x x x x  =  ; 

• bipolar effective influence pair if it is both positive 

effective influence pair and negative effective influence pair. 

A vertex 
*x   of a bipolar fuzzy influence graph is 

called a 

• positive influence cutvertex if ( ', '')P

G xICONN x x−   

( ', '')P

GICONN x x  for some ', ''x x  * *  ; 

• negative influence cutvertex if ( ', '')N

G xICONN x x−   

( ', '')N

GICONN x x  for some ', ''x x  * *  ; 
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• bipolar influence cutvertex if x  is both positive influence 

cutvertex and negative influence cutvertex.  

An edge 
*xy   is called a 

• positive influence bridge if ( ', '')P

G xyICONN x x−   

( ', '')P

GICONN x x for some ', ''x x  * *  ; 

• negative influence bridge if ( ', '')N

G xyICONN x x−   

( ', '')N

GICONN x x  for some ', ''x x  * *  ; 

• bipolar influence bridge if it is both a positive influence 

bridge and negative influence bridge; 
*( , )x yz   is called a 

• positive influence cutpair if 
( , ) ( ', '')P

G x yzICONN x x−   

( ', '')P

GICONN x x  for some ', ''x x  * *  ; 

• negative influence cutpair if
( , ) ( ', '')N

G x yzICONN x x−   

( ', '')N

GICONN x x  for some ', ''x x  * *  ; 

• bipolar influence cutpair if it is both a positive influence 

cutpair and negative influence cutpair. 

A complete bipolar fuzzy influence graph is a complete 

bipolar fuzzy incidence graph  

( , , , , , )P N P N P NG    =    such that for any 

*x   influences any
*'x  , we have ( , ')P x xx  

( ) ( ')P Px xx =   and ( , ') ( ) ( ')N N Nx xx x xx  =  . 

A bipolar fuzzy influence graph ( , , ,P N PG   =  

, , )N P N    becomes a bipolar fuzzy influence forest 

when there is an influence subgraph ( , , , ,P N P NF    =  

, )P N   (its corresponding crisp graph is a forest) such 

that for any 
* *( , ) \x yz   , we have ( , )P

FICONN x yz  

( , )P x yz  and ( , )N

FICONN x yz ( , )N x yz  . A 

bipolar fuzzy influence graph ( , , , , , )P N P N P NG    =    

becomes a bipolar fuzzy influence tree when there is an 

influence subgraph ( , , , , , )P N P N P NF    =    (its 

corresponding crisp graph is a tree) such that for any 
* *( , ) \x yz   , we have ( , ) ( , )P P

FICONN x yz x yz   

and ( , )N

FICONN x yz  ( , )N x yz  . A bipolar fuzzy 

influence graph ( , ,P NG  =  , , , )P N P N     has 

(supp( ),supp( ),supp( ),P N P    

supp( ),supp( ),supp( ))N P N    which is a cycle 

where  
*supp( ) { : ( ) 0}P Px x  =   , 

*supp( ) { : ( ) 0}N Nx x  =   , 

*supp( ) { : ( ) 0}P Pxy xy  =   , 

*supp( ) { : ( ) 0}N Nxy xy  =   , 

*supp( ) {( , ) : ( , ) 0}P Px yz x yz =    , 

*supp( ) {( , ) : ( , ) 0}N Nx yz x yz =    . 

The bipolar fuzzy cycle G becomes a bipolar fuzzy 

influence cycle if it doesn’t have unique 

( , ) supp( ) supp( )P Nx yz      such that 

( , ) { ( , ' '') : ( , ' '') supp( )}P P Px yz w w w w w w =    

and  

( , ) { ( , ' '') : ( , ' '') supp( )}.N N Nx yz w w w w w w =         

A bipolar fuzzy influence graph is called a 

• positive fuzzy influence block if it doesn’t have positive 

influence cutvertex; 

• negative fuzzy influence block if it has no negative 

influence cutvertex; 

• bipolar fuzzy influence block if it doesn’t have bipolar 

influence cutvertex. 

For a positive strong (resp. negative strong or bipolar 

strong) pair ( , )x yz  in bipolar fuzzy influence graph, the 

vertex x and the edge yz are considered as positive strong 

(resp. negative strong or bipolar strong) neighbors. A positive 

fuzzy influence end vertex (resp. negative fuzzy influence 

end vertex or bipolar fuzzy influence end vertex) in BFIG G 

is a vertex x with a unique positive strong fuzzy influence 

neighbor (resp. negative strong fuzzy influence neighbor or 

bipolar strong fuzzy influence neighbor). A positive fuzzy 

influence end edge (resp. negative fuzzy influence end edge 

or bipolar fuzzy influence end edge) in bipolar fuzzy 

influence graph G is edge xy with a unique positive strong 

fuzzy influence neighbor (resp. negative strong fuzzy 

influence neighbor or bipolar strong fuzzy influence 

neighbor). 

An influence pair ( , )x yz  in bipolar fuzzy influence 

graph G is a  

• positive influence bound if 
( , ) ( , )P

G x yzICONN c d−   

( , )P

GICONN c d  for some 
* *,c d     with at least 

one of c and d different from x and yz; 

• negative influence bound if  

( , ) ( , ) ( , )N N

G x yz GICONN c d ICONN c d−   for some 

,c d 
* *  with at least one of c and d different from x 

and yz; 

• bipolar influence bound if 
( , ) ( , )P

G x yzICONN c d−   

( , )P

GICONN c d and ( , ) ( , ) ( , )P P

G x yz GICONN c d ICONN c d−    

for some 
* *,c d    with at least one of c and d 

different from x and yz. 

An influence pair ( , )x yz  in bipolar fuzzy influence 

graph G is a  

• positive influence cutbound if 
( , ) ( , )P

G x yzICONN c d−   

( , )P

GICONN c d for some ,c d 
* *  with both c and 

d different from x and yz; 

• negative influence cutbound if 
( , ) ( , )N

G x yzICONN c d−   

( , )N

GICONN c d for some ,c d 
* *  with both c and 

d different from x and yz; 

• bipolar influence cutbound if 
( , ) ( , )P

G x yzICONN c d−   

( , )P

GICONN c d and ( , ) ( , ) ( , )P P

G x yz GICONN c d ICONN c d−    
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for some 
* *,c d    with both c and d are different 

from x and yz. 

In all, a bipolar fuzzy influence graph is a special bipolar 

fuzzy incidence graph with at least one influence pair. 

III. THEORETICAL RESULTS AND PROOFS  

The following part aims to showcase the conclusions, and 

we always assume that ( , ,P NG  = , , , )P N P N     

is a bipolar fuzzy influence graph. The theorems obtained in 

this section can be regarded as an extension to Gayathri et al. 

[3], and we omit the repetitive proof process as these results 

can be deduced directly by the proofing tricks presented in 

[3]. To be frank, by means of tricks in Gayathri et al. [3], the 

negative parts can be verified and hence the whole 

conclusions are determined. The examples are given to 

illustrate the results. 

Theorem 1. If ( , , , , , )P N P N P NG    =    has 

(supp( ),supp( ),supp( ),supp( ),supp( ),P N P N P    

 supp( ))N  and its crisp graph is a cycle, then 

• the edge shared by two positive influence cutpair is a 

positive influence bridge; 

• the edge shared by two negative influence cutpair is a 

negative influence bridge; 

• the edge shared by two bipolar influence cutpair is a 

bipolar influence bridge. 

Theorem 2. Let ( , )x yz  be an influence pair in bipolar 

fuzzy influence graph G. We have the following three facts: 

•  ( , )x yz  is a positive influence cutpair 

 no cycle has ( , )x yz  as the positive weakest influence 

pair 


( , ) ( , ) ( , )P P

G x yzICONN x yz x yz−   ; 

•  ( , )x yz  is a negative influence cutpair 

 no cycle has ( , )x yz  as the negative weakest influence 

pair 


( , ) ( , ) ( , )N N

G x yzICONN x yz x yz−   ; 

•  ( , )x yz  is a bipolar influence cutpair 

 no cycle has ( , )x yz  as the bipolar weakest influence 

pair 


( , ) ( , ) ( , )P P

G x yzICONN x yz x yz−    and 

( , ) ( , )N

G x yzICONN x yz−  ( , )N x yz  . 

Proof of Theorem 2. We choose to solely prove the negative 

part (i.e., the second part), and the remainder parts can be 

coped with in the same fashion.  

If ( , )x yz  is a negative influence cutpair, then  

( , ) ( , ) ( , )N N

G x yzICONN u v u v−    

for some vertices (or edges) u and v in G. We suppose a cycle 

is the negative weakest influence pair, then we convert any 

negative influence path between u and v which is negative 

strongest and involves ( , )x yz  to a u v−  negative 

strongest influence path without ( , )x yz  by putting the 

x yz−  path in the resting segment of the cycle, i.e., ( , )x yz  

can’t be a negative influence cutpair, which leads to 

contradictions.  

Suppose that there isn’t a cycle having ( , )x yz  as the 

bipolar weakest influence pair, but 

( , ) ( , ) ( , )N N

G x yzICONN x yz x yz−   . Then, there is a 

x yz−  negative strongest influence path  which doesn’t 

contain ( , )x yz  with negative strength at most ( , )N x yz . 

Hence,   connecting ( , )x yz  results in cycle with ( , )x yz  

as its weakest negative influence pair. 

Now, suppose 
( , ) ( , ) ( , )N N

G x yzICONN x yz x yz−   , and 

we aim to prove that ( , )x yz  is a negative influence cutpair. 

Otherwise, the removing of ( , )x yz  makes no difference in 

the negative influence connectivity among any set of 

elements in G (the vertex set union the edge set). Specifically, 

( , ) ( , )N

G x yzICONN x yz−
 

( , ) ( , )N

G x yzICONN x yz−= ( , )N x yz  , 

which contradicts the hypothesis.                                   

Theorem 3. Let G be a BFIG. 

•  If ( , )x yz  is a positive influence cutpair of G, then 

( , ) ( , )P P

GICONN x yz x yz=  ; 

•  If ( , )x yz  is a negative influence cutpair of G, then 

( , ) ( , )N N

GICONN x yz x yz=  ; 

•  If ( , )x yz  is a bipolar influence cutpair of G, then 

( , ) ( , )P P

GICONN x yz x yz=  and ( , )N

GICONN x yz  

( , )N x yz=  . 

Proof of Theorem 3. Similarly, we only prove the negative 

part.  

As there exists a path , ( , ),x x yz yz  between x and yz, 

and ( , )N

GICONN x yz  is the lowest value of negative 

influence strength of all x yz−  negative influence paths, we 

infer ( , ) ( , )N N

GICONN x yz x yz  . 

If ( , ) ( , )N N

GICONN x yz x yz  , then there is a 

negative strongest x yz−  influence path   with negative 

strength ( , )N x yz  . Hence, each negative influence pair 

of   has the 
N  value strictly smaller than ( , )N x yz . 

Thus, ( , ) ( , ) ( , )N N

G x yzICONN x yz x yz−   . In this way, 

( , )x yz  connecting   produces a cycle with ( , )x yz  as 

the extreme negative pair, which implies ( , )x yz  cannot be 

a negative influence cutpair.                                               

Theorem 4. Let G be a BFIG. 

•  If ( , )x yz  and ( , ' ')x y z  are positive influence cutpairs 

of G, then x is a positive influence cutvertex of G; 

•  If ( , )x yz  and ( , ' ')x y z  are negative influence cutpairs 

of G, then x is a negative influence cutvertex of G; 

•  If ( , )x yz  and ( , ' ')x y z  are bipolar influence cutpairs 

of G, then x is a bipolar influence cutvertex of G. 

The following instance explains that the converse 

statement of Theorem 4 is not hold. 
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Example 1. As manifested in Fig. 1, a bipolar fuzzy 

influence graph with 1 2 3{ , , }V x x x= , assumes that 

( ) 1P x =  and ( ) 1N x = −  for any x V . Define 

1 2( ) 0.4P x x = , 
1 2( ) 0.4N x x = − , 

2 3( ) 0.6P x x = , 

2 3( ) 0.6N x x = − ,
3 1( ) 0.5P x x = , 

3 1( ) 0.5N x x = − , 

1 1 2 2 2 1 2 2 3( , ) ( , ) ( , )P P Px x x x x x x x x =  =   

3 3 2 3 3 1( , ) ( , )P Px x x x x x=  =   

1 1 3( , ) 0.2P x x x=  = ,  

1 1 2 2 2 1 2 2 3( , ) ( , ) ( , )N N Nx x x x x x x x x =  =   

3 3 2 3 3 1( , ) ( , )N Nx x x x x x=  =   

1 1 3( , ) 0.2N x x x=  = − , 

1 2 3( , ) 0.4P x x x =  and 
1 2 3( , ) 0.4N x x x = − . Since 

there exist 
*

2 3,x x   satisfying  

1 2 3 2 30 ( , ) ( , ) 0.4P P

G x GICONN x x ICONN x x−=  = , 

1 2 3 2 30 ( , ) ( , ) 0.4N N

G x GICONN x x ICONN x x−=  = − , 

1x  is a bipolar influence cutertex of G. But 1x  is a vertex not 

belonging to two bipolar influence cutpairs. 

 

 
Fig. 1.  A bipolar fuzzy influence graph with influence cutvertex. 
 

Theorem 5. Suppose the support (supp( ),supp( ),P N   

supp( ),supp( ),supp( ),P N P   supp( ))N  of a 

bipolar fuzzy influence tree G fails to be a tree, then G 

contains at least a single influence pair ( , )x yz  such that 

( , ) ( , )P P

GICONN x yz x yz   and ( , )N

GICONN x yz   

( , )N x yz . 

Proof of Theorem 5. Now, we show the correctness of 

negative segment.  

To be a negative influence tree, G contains F, which is a 

negative influence subgraph with the characteristics with 

negative support as a tree and ( , )N

FICONN x yz   

( , )N x yz  for each pair ( , )x yz . Moreover, 

( , ) ( , )N N

G FICONN x yz ICONN x yz . 

According to the hypothesis, there exists at least a pair 

( , )x yz F  such that  

( , ) ( , ) ( , )N N N

G FICONN x yz ICONN x yz x yz   . 

Therefore, the result follows.                                              

Theorem 6. If an influence pair ( , )x yz  in bipolar fuzzy 

influence graph ( , ,P NG  = , , , )P N P N     satisfies  

•
*( , ) { ( , ) : ( , ) }P Px yz u vw u vw =    , then ( , )x yz  is 

a positive strong pair; 

•
*( , ) { ( , ) : ( , ) }N Nx yz u vw u vw =    , then ( , )x yz  

is a negative strong pair; 

•
*( , ) { ( , ) : ( , ) }P Px yz u vw u vw =    and ( , )N x yz  

*{ ( , ) : ( , ) }N u vw u vw=    , then ( , )x yz  is a bipolar 

strong pair. 

However, the converse of Theorem 6 is not hold, and the 

following instance is used to illustrate it. 

Example 2. Consider the bipolar fuzzy influence graph 

presented in  Fig. 2, where 1 2 3 4{ , , , }V v v v v= , the value of 

P  for each vertex is assumed to be 1, and value of 
N  for 

each vertex is supposed to be 1− . Set  

1 2( )P v v =  
1 3( ) 0.4P v v = , 

1 2 1 3( ) ( ) 0.4N Nv v v v = = − , 

1 1 2 2 2 1 1 1 3( , ) ( , ) ( , )P P Pv v v v v v v v v =  =   

2 2 1 1 1 3( , ) ( , )P Pv v v v v v=  =   

3 3 1( , ) 0.2P v v v=  = , 

1 1 2 2 2 1 1 1 3( , ) ( , ) ( , )N N Nv v v v v v v v v =  =   

3 3 1( , ) 0.2N v v v=  = − , 

2 3 1( , ) 0.4P v v v = , 
2 3 1( , ) 0.4N v v v = − , 

4 2 1( , ) 0.3P v v v =  and 
4 2 1( , ) 0.3N v v v = − . 

In G, 
*{ ( , ) : ( , ) } 0.4P u vw u vw   =  and { ( , ) :N u vw   

*( , ) } 0.4u vw  = − , while 
4 1 2( , ) 4 1 2( , )P

G v v vICONN v v v− =  

4 1 2( , ) 4 1 2( , ) 0N

G v v vICONN v v v− = . It implies that 4 1 2( , )v v v  

is a bipolar strong pair, but 
4 1 2( , ) { ( , ) :P Pv v v u vw     

*( , ) }u vw   and 
*

4 1 2( , ) { ( , ) : ( , ) }N Nv v v u vw u vw     . 

Theorem 7. Let ( , , , , , )P N P N P NG    =    be a 

bipolar fuzzy influence graph such that ( , )G x yz−  is 

connected for an influence pair ( , )x yz . Then 

• ( , )x yz  is positive strong  

*( , ) { ( , ) : ( , ) }P Px yz u vw u vw  =    ; 

• ( , )x yz  is negative strong  

*( , ) { ( , ) : ( , ) }N Nx yz u vw u vw  =    ; 

• ( , )x yz  is bipolar strong  

*( , ) { ( , ) : ( , ) }P Px yz u vw u vw  =     

and ( , )N x yz =  
*{ ( , ) : ( , ) }N u vw u vw   . 
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 Fig. 2.  A bipolar fuzzy influence graph for Example 2. 
 

Proof of Theorem 7. We only manifest the proof of the 

negative part.  

Assume that ( , )x yz  is negative strong, then 

( , ) ( , ) ( , )N N

G x yzICONN x yz x yz−   . 

Hence, any x yz−  negative paths have a negative strength 

of negative influence ( , )N x yz . It reveals from the 

connectedness of ( , )G x yz−  that a negative incidence path 

exists between any vertex and edge in ( , )G x yz− . Thus, in 

terms of any negative influence pair, we get a negative 

influence x yz−  path. Hence, any negative influence pair 

has its 
N  value ( , )N x yz  . Therefore, ( , )x yz  has 

minimum  
N  value among all negative influence pairs.  

The converse segment can be obtained in light of the 

negative part of Theorem 6.                                                

It is noteworthy that there exists a positive effective pair 

(resp. negative effective pairs, or bipolar effective pairs) 

which is not positive strong (resp. negative strong or bipolar 

strong), which is showcased below. 

Example 3. Consider the bipolar fuzzy influence graph in  

Fig. 3, we have 1 2 3{ , , }V x x x= , and assume that 

( ) 1P x =  and ( ) 1N x = −  for any x V . Define 

1 2( ) 0.3P x x = , 
1 2( ) 0.3N x x = − , 

2 3( ) 0.1P x x = , 

2 3( ) 0.1N x x = − ,
3 1( ) 0.2P x x = , 

3 1( ) 0.2N x x = − , 

1 1 2 2 2 1 2 2 3( , ) ( , ) ( , )P P Px x x x x x x x x =  =   

3 3 2 3 3 1( , ) ( , )P Px x x x x x=  =   

1 1 3( , ) 0.1,P x x x=  =

1 1 2 2 2 1 2 2 3( , ) ( , ) ( , )N N Nx x x x x x x x x =  =   

3 3 2 3 3 1( , ) ( , )N Nx x x x x x=  =   

1 1 3( , ) 0.1N x x x=  = − , 

2 1 3( , ) 0.2P x x x = ,
2 1 3( , ) 0.2N x x x = − , 

3 1 2( , ) 0.3P x x x =  

and 
3 1 2( , ) 0.3N x x x = − . It can be checked that 2 1 3( , )x x x  

is a bipolar effective pair, but is not bipolar strong. 

 
 Fig. 3.  A bipolar fuzzy influence graph for Example 3. 

 

Theorem 8. Let ( , , , , , )P N P N P NG    =    be a 

bipolar fuzzy influence graph and ( , )x yz be an influence 

pair. 

• ( , )x yz  is positive strong  

( , ) ( , )P P

Gx yz ICONN x yz  = ; 

• ( , )x yz  is negative strong 

( , ) ( , )N N

Gx yz ICONN x yz  = ; 

• ( , )x yz  is bipolar strong 

( , ) ( , )P P

Gx yz ICONN x yz  =  and 

( , )N x yz = ( , )N

GICONN x yz . 

Proof of Theorem 8. We only verify the negative part. 

First, assume ( , )x yz  is negative strong, then there exist 

: , ( , ),x x yz yz  as a x yz−  negative influence path and 

hence ( , ) ( , )N N

Gx yz ICONN x yz  . Once   is the 

unique path from x to yz, then ( , )N x yz =  

( , )N

GICONN x yz . Or else, we think about another x yz−  

negative influence path  . If ( , )x yz  , then 

( ) ( , )N Ni x yz   . If ( , )x yz  , then ( , )G x yz−  

involves the x yz−  negative influence path  . Since  

( , )x yz  is negative strong,   

( , )( , ) ( , )N N

G x yzx yz ICONN x yz−   

and  

( , )( ) ( , )N N

G x yzi ICONN x yz−  . 

Hence, we have ( , ) ( )N Nx yz i   , which indicates the 

negative strength of influence of any x yz−  negative 

influence path is at least ( , )N x yz . Thus, ( , )N x yz   

( , )N

GICONN x yz  and therefore, ( , )N x yz = ( , )N

GICONN x yz . 

Second, we assume ( , ) ( , )N N

Gx yz ICONN x yz = . 

Since ( , )G x yz−  is a negative influence subgraph of G, we 

deduce ( , ) ( , ) ( , )N N

G x yz GICONN x yz ICONN x yz−  . So, 
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( , ) ( , ) ( , )N N

G x yzICONN x yz x yz−   . Therefore, ( , )x yz  

is negative strong.                                                                

Theorem 9. The pair ( , )x yz  in bipolar fuzzy influence 

graph G is 

• a positive influence cutpair   it is a positive  -strong 

pair; 

• a negative influence cutpair   it is a negative  -strong 

pair; 

• a bipolar influence cutpair   it is a bipolar  -strong 

pair. 

Proof of Theorem 9. We only verify the negative part. 

Suppose ( , )x yz  a negative influence cutpair, then we 

verify  

( , )( , ) ( , )N N

G x yzx yz ICONN x yz−   

which implies ( , )x yz  is a negative  -strong pair. 

Now, suppose ( , )x yz  is a negative  -strong pair, and 

hence 
( , )( , ) ( , )N N

G x yzx yz ICONN x yz−  . It means 

there is a unique strongest x yz− negative influence path 

obtained by : , ( , ),P x x yz yz , and the removing of 

( , )x yz  reduces the x yz− negative influence path, which 

uncovers ( , )x yz  is a negative influence cutpair.               

Theorem 10. The BFIG ( , , , , , )P N P N P NG    =    

is a bipolar fuzzy influence forest if and only if a pair 

( , )x yz  exists in any bipolar fuzzy cycle C of G satisfying 

( , )( , ) ( , )P P

G x yzx yz ICONN x yz−   and 

( , )( , ) ( , )N N

G x yzx yz ICONN x yz−  . 

Proof of Theorem 10. We only verify the negative part. 

Suppose that G meets the demands of bipolar fuzzy 

influence forest. Given a negative fuzzy cycle C, there is a 

( , )x yz C  not belonging to bipolar influence forest F with 

( , )( , ) ( , ) ( , )N N N

F G x yzx yz ICONN x yz ICONN x yz−   . 

On the other hand, we suppose to search an ( , )x yz  in a 

fixed bipolar fuzzy cycle C such that 

( , )( , ) ( , )N N

G x yzx yz ICONN x yz−  . Among all such pairs 

with such characteristics, select the pair with the largest 
N  

value and remove this selected pair from C. This action is 

repeated on all such cycles, and we confirm that the 

remaining bipolar influence graph is a negative influence 

forest.                                                                                   

Theorem 11. If a BFIG G without any bipolar fuzzy 

influence cycles is connected, then we call it a bipolar fuzzy 

influence tree. 

Theorem 12. Suppose bipolar fuzzy influence graph G is 

connected, and G is a bipolar fuzzy influence tree if and only 

if no bipolar  -strong pair belongs to G. 

Theorem 13. Suppose a BFIG ( , , , ,P N P NG    =  

, )P N   is complete, then for any 
*x  , we have 

( , ) ( , ) ( , )P P Px yz y yz z yz   =  , 

( , ) ( , ) ( , )N N Nx yz y yz z yz   =  . 

Furthermore, 

• ( , ) ( , ) ( , )P P Px yz y yz z yz =  =   

( ) ( ) ( )P P Px y z     ; 

• ( , ) ( , ) ( , )N N Nx yz y yz z yz =  =   

( ) ( ) ( )N N Nx y z     . 

Theorem 14. There are at least two positive (resp. negative) 

fuzzy influence end vertices for any nontrivial bipolar fuzzy 

influence tree. 

However, the following example shows that the reverse of 

Theorem 14 is not true. 

Example 4. As can be seen in  Fig. 4, 1 2 3 4{ , , , }V x x x x= , 

and assume that ( ) 1P x =  and ( ) 1N x = −  for any 

x V . Define 
1 2( ) 0.3P x x = , 

1 2( ) 0.3N x x = − , 

2 3 4 1( ) ( ) 0.2P Px x x x = = ,
2 3( )N x x =  

4 1( ) 0.2N x x = − , 

3 4( ) 0.4P x x = , 
3 4( ) 0.4N x x = − ,  

1 1 2( , )P x x x = 2 2 1 2 2 3( , ) ( , )P Px x x x x x =   

3 3 2 3 3 4( , ) ( , )P Px x x x x x=  =   

4 4 3 4 4 1( , ) ( , )P Px x x x x x=  =   

1 1 4( , ) 0.1P x x x=  = ,

1 1 2 2 2 1 2 2 3( , ) ( , ) ( , )N N Nx x x x x x x x x =  =   

3 3 2 3 3 4( , ) ( , )N Nx x x x x x=  =    

4 4 3 4 4 1( , ) ( , )N Nx x x x x x=  =   

1 1 4( , ) 0.1N x x x=  = − ,

1 3 4 3 1 2( , ) ( , ) 0.1P Px x x x x x =  = , 
1 3 4 3( , ) ( ,N Nx x x x =   

1 2 ) 0.1x x = − ，
2 4 1 4 2 3( , ) ( , )P Px x x x x x =   0.2=  and 

2 4 1 4 2 3( , ) ( , )N Nx x x x x x =  0.2= − . Clearly, G has two 

bipolar fuzzy influence end vertices, but G is not an influence 

tree. 

Theorem 15. Any two members in 
* *   of a complete 

bipolar fuzzy influence graph ( , , , , ,P N P N PG    =   

)N  can be connected by a bipolar strong influence path.  

As shown by the example below, if the complete BFIG 

with a connected bipolar fuzzy influence graph is replaced, 

then Theorem 15 will not be true. 

Example 5. As depicted in Fig. 5, 1 2 3 4 5{ , , , , }V x x x x x= , 

and assume that ( ) 1P x =  and ( ) 1N x = −  for any 

x V . Define  

1 2 3 4 4 5( ) ( ) ( ) 0.3P P Px x x x x x  = = = ,  

1 2 3 4 4 5( ) ( ) ( ) 0.3N N Nx x x x x x  = = = − , 

1 1 2 2 2 1 3 3 4( , ) ( , ) ( , )P P Px x x x x x x x x =  = 
 

4 4 3 4 4 5( , ) ( , )P Px x x x x x=  =   

5 5 4( , ) 0.1P x x x=  = , 
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 Fig. 4.  A bipolar fuzzy influence graph for Example 4. 

 

1 1 2 2 2 1 3 3 4( , ) ( , ) ( , )N N Nx x x x x x x x x =  =   

4 4 3 4 4 5( , ) ( , )N Nx x x x x x=  =   

5 5 4( , ) 0.1N x x x=  = , 

2 3 4( , ) 0.2P x x x =  and 
2 3 4( , ) 0.2N x x x = − . It can be 

acquired that 4 5x x− , the bipolar influence path is bipolar 

strong. 

 

 
 Fig. 5.  A bipolar fuzzy influence graph for Example 5. 

 

Theorem 16. Weak positive (resp. negative) influence pairs 

do not exist in a complete BFIG if and only if ( , )P x yz  

(resp. ( , )N x yz ) is a constant for any 
*( , )x yz  . 

Theorem 17. An influence pair ( , )x yz  in bipolar fuzzy 

influence graph G is a 

• positive influence bound if and only if it is a positive 

influence cutpair; 

• negative influence bound if and only if it is a negative 

influence cutpair; 

• bipolar influence bound if and only if it is a bipolar 

influence cutpair. 

Theorem 18. A bipolar fuzzy influence block has no 

bipolar influence cutbonds. 

IV. CODING CONJECTURE ON THE MEMORY OF WATER 

In recent years, materials with memory function have 

become an intriguing topic in the field of chemistry and 

materials, and the related products are popular with the public. 

The products include mattresses with memory functions, and 

some materials that can be restored after being deformed by 

soaking in water, and so on. One of the important mysteries 

in the scientific community is why water has a memory 

function, which involves the phenomenon of long-distance 

transfer of DNA. Unraveling such phenomena leads our 

understanding of water to new heights.  

It reveals that the aqueous solution containing viral DNA 

is highly diluted to a theoretical state of pure water, that is, 

the water is free of impurities. The characteristics of the virus 

DNA that originally existed still can be detected in the diluted 

pure water, just like pure water with certain characteristics of 

memory. And the properties of DNA can also be remotely 

transferred to another pure water sample. This reveals that 

water not only has memory, but also can transfer 

characteristics remotely. Specifically, it prepares an aqueous 

solution that once it contains the virus, and completely gets 

the DNA inside removed, and then it performs a high dilution. 

The obtained aqueous solution is subjected to 

electromagnetic detection, and the test instrument obtains a 

low-frequency electromagnetic signal. They made the signal 

into a 6-second audio file and sent it to colleagues in Italy by 

email. Collaborators received the audio and played it 

repeatedly over a sample of distilled water, then put this 

distilled water that "hears" the audio into a machine that can 

synthesize DNA. The results showed that the 

machine-generated DNA was highly similar to the original 

viral DNA (up to 98%). This shows that DNA can be copied 

remotely, because water plays an intermediary role in it. 

Therefore, water has a memory function for transmitting and 

receiving signals. More details can be referred to Montagnier 

et al. [32-34]. 

One explanation lies in that information about the water 

could be digitally encoded and reinserted into another water 

sample. If we assume that such a digital code exists, then 

what kind of coding is possible? Here, it is imperative to 

consider the following questions: 

(1) In what way are water molecules combined with other 

molecular structures? Apparently, fusion between ordinary 

molecules cannot explain water's memory, because in 

Montagnier's experiment, virus molecules have been 

removed and highly sparse operations are performed. It can 

be considered that such processed pure aqueous solution does 

not contain virus molecules, but only some kind of "memory". 

So where does this "memory" come from without molecular 

structure fusion? 

(2) The encoded information will not be weakened by the 

scarcity of water, so what information does not exist 

independently of the substance level? 

Here, we give an encoding conjecture from the perspective 

of the BFIG. There is a need to explain how membership 

functions are essentially different from probability functions. 

The probability function is collapsible, but the membership 

function is not. To illustrate, in the human relationship 

network, each individual is a vertex, and if we define the edge 

between two vertices as "family", then the whole graph is a 

probability graph. Suppose a boy is in love with a girl, and the 
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probability of marriage between them is p. As soon as they 

get married or break up, whether there is an edge between 

them has been determined, this probability p will be invalid at 

this time. If we define the edge between two vertices as "like" 

or "love", then the whole graph becomes a fuzzy graph, 

because loving is a personal feeling and will not be 

completely determined directly by a special event. 

Due to the non-collapsibility of the membership function, 

the code formed by the membership function is not at the 

quantum level, i.e., once it is established, it will not disappear 

due to the disappearance of the material layer. For example, if 

one of your relatives dies, you need to delete his 

corresponding vertex from the corresponding human 

relationship network. However, at the level of your personal 

thoughts and emotions, you still retain the memory of this 

relative, so the membership function of the edge representing 

"love" still exists, and the code obtained from it will not 

disappear because of the disappearance of the vertex. 

The main idea raised in this paper is also on the ground of 

the following hypotheses that have not been scientifically 

proven. It is assumed that matter is closely related to the 

vibration of the field and the accumulation of energy, and this 

field space is eternal. It is not just one level, but consists of 

many levels, and each level is separated according to the 

energy status. In other words, within space, actual matter is 

mirrored within field space with distinct layers. But in the 

process of material changes, there is also a filling to store 

information, which is called "morphogenetic field", which is 

a part of the layer. There is also an intermediate layer, called 

the "hyperlayer", which lies within the field space, between 

the morphogenetic layers and material layer. The 

"hyperlayer" will not be limited by the material layer, and it 

belongs to the category of the consciousness layer, but it 

influences the material layer by means of certain ways (see  

Fig. 6). 

 

 
 Fig. 6.  Material Hierarchy Hypothesis. 

 

Now, we propose our coding conjecture on the memory of 

water. When the aqueous solution is fused with other viral 

DNA molecules, the original multiple molecular graphs can 

be regarded as multiple components on one molecular graph. 

When the molecular structure is modelled by a bipolar fuzzy 

influence graph, multiple components are connected by 

influence pairs (for instance, Fig. 5 is a disconnected graph 

from the perspective of a bipolar fuzzy incidence graph, but 

from the perspective of a BFIG, there is some 

uncertainty-based influence between vertices and edges 

between different connected subgraphs, so that multiple 

components are connected in view of influence pairs). The 

fuzzy information after fusion is stored in the hyperlayer in 

light of unknown encoding, so that this information goes 

beyond the scope of the material layer. When the viral DNA 

molecule is deleted and the water is diluted, the ambiguous 

code with the viral DNA information remains in the 

hyperlayer. Since the intermediate layer connects the 

morphogenetic field and the material layer, in a certain state, 

the bipolar fuzzy influence graph information originally 

retained in the hyperlayer is re-excited in terms of the 

morphogenetic field and mirrored to the material layer, 

thereby making water have a memory function. Refer to Fig. 

7 for a schematic diagram of the fusion of water molecules 

and viral DNA molecules via a bipolar fuzzy influence graph.  

As a medium, water molecules store the structural 

information of other molecules by combining with fuzzy 

graph information. The linking of information between 

different molecular structures is tackled based on the 

influence pair of the BFIG. Due to the non-collapsibility of 

the membership function, when a certain encoding 

mechanism is applied to encode this bipolar uncertainty, the 

encoding information will exist independently of the graph 

structure, and then will be            

 

 
 Fig. 7.  Water molecule and virus DNA molecule are fused by bipolar fuzzy 

influence graph. 

 

retained in the hyperlayer by a certain unknown mechanism. 

Afterwards, it will be stimulated through the morphogenetic 

field in a certain principle, and then manifested as water 

having a certain "memory" on the physical layer. 

What we must emphasize is that our article only gives a 

hypothesis on the explanation of the memory of water, but we 

cannot confirm it from rigorous experiments. If this 

perspective is to be verified, the following facts must be 

clarified in the future: 

(1) How to overcome the difficulty of describing the 

membership function of vertices and edges on the BFIG, in 

other words, how to describe the uncertainty of atoms and 
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atomic bonds? Most importantly, how to characterize the 

bipolar uncertainty represented by the influence pair? 

(2) What mechanism does the hyperlayer use to store the 

topology of the bipolar fuzzy influence graph and the 

corresponding uncertainty? 

(3) What mechanism does the topological information of 

the graph and the information of the uncertainty of the 

membership function use to stimulate the morphogenetic 

field, which in turn affects the material layer? 

V. CONCLUSION 

This contribution introduces the concept of BFIGs, and 

extends the theoretical results from fuzzy influence graphs 

into bipolar settings. Furthermore, we put forward a 

hypothesis from the perspective of bipolar fuzzy influence 

graphs, to explain why water has memory. Our hypothesis is 

based on the following facts: 

(1) The membership function that characterizes the 

uncertainty is not collapsible, so the encoding with fuzzy 

information will not be lost due to the loss of the structure in 

the graph. 

(2) The influence pair is used to describe the interaction of 

vertices and edges between different components. 

However, the establishment of this hypothesis is also 

based on some theories that cannot be verified at present, 

such as the existence of the intermediate layer of every 

substance. We hope that this idea will inspire other scholars' 

related research. 
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