
 

  

Abstract—K-means is one of the most popular clustering 

algorithms. Its simplicity and efficiency enable it to be used in 

various industrial fields such as period partition of time-of-use 

(TOU) tariff. To solve the problems including insufficient 

determination of cluster number and initial cluster centers in 

K-means, we propose a modified K-means clustering algorithm 

based on fuzzy membership functions (FMF), gap statistic (GS), 

and data density (DD). First, the improved initial cluster centers 

are modeled to complete initialization through the first 

calculation based on FMF. Second, the cluster number of the 

dataset is determined by GS evaluation and further calculation 

based on DD is performed if necessary. Next, the efficiency and 

quality of the proposed clustering algorithm are examined by 

using three evaluation indexes: standard deviation, silhouette 

coefficient index, and Davies Boldin index. Finally, the 

effectiveness of the proposed method is verified under a typical 

case study of TOU period partition, and the results show that 

the proposed method can significantly shorten convergence 

time and improve clustering quality, compared to the 

traditional K-means clustering algorithm. 

 
Index Terms—K-means clustering, fuzzy membership 

functions, gap statistic, data density, time-of-use tariff, period 

partition 

 

I. INTRODUCTION 

ith the advent of the big data era, the development of 

machine learning technology is also getting faster. 

Clustering analysis is one of the most representative methods 

in data analysis [1, 2]. And K-means clustering is one of the 

classical partition algorithms [3-5]. It is easy to explain, 

convenient to implement, and has advantages like fast 

convergence and good robustness. It is widely used in the 

electric power industry, such as TOU period partition [6-13], 

as it can divide load curves into different periods. 

As we all know, the traditional K-means clustering 

algorithm (TKM) has two noticeable drawbacks [14,15]: (i) 

cluster number k is pre-set and its value is often difficult to 
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estimate; (ii) clustering effect is pretty sensitive to initial 

cluster centers which are usually randomly selected 

according to convention or experience. How to improve 

TKM has attracted widespread attention. Many studies on 

improving clustering algorithm initialization have been 

carried out [16-19]. Specifically, the initialization can be 

described as two steps: the determination of k and the value 

of each center.  

In the studies on cluster number k, Literature [20] proposes 

a Gaussian mixture clustering algorithm that combines the 

elbow method and expectation maximization to improve the 

user experience of power system customers. The typical 

scenarios are obtained in Literature [21] by using the elbow 

method to determine k. Literature [22] combines with the 

elbow method and GS to determine the optimal number of 

clusters, then determines initial cluster centers. Literature [23] 

gives a GS method based on weighted martingale distance to 

determine the optimal number k. Literature [24] proposes an 

approach based on GS to measure clustering performance. 

The practice of determining clustering number k by statistical 

principles has been commonly used, and in this paper, we 

adopt GS to determine k. 

In terms of calculating the values of initial centers, the 

application of intelligence optimization algorithms has 

solved the over-dependence of TKM on the initial centers 

[25,26]. Literature [27] makes use of an improved particle 

swarm optimization based on support vector machine 

regression to find initial cluster centers. Literature [28] also 

employs particle swarm optimization to improve the 

initialization. Other algorithms like firefly metaheuristic 

optimization algorithm and genetic optimization algorithm 

have been still commonly combined with TKM [29,30]. But 

the methods based on intelligence optimization algorithms 

still have a certain randomness, because the initial swarm and 

update of them are random.  

However, considering the stability, Literature [31] 

employs a maximum distance method to calculate the values. 

Literature [32] analyzes the characteristics of initial centers 

and selects the centers by making the similarity lowest. Based 

on the feasibility of determining k firstly and calculating the 

initial centers secondly is verified by Literature [22], we then 

use FMF and DD to calculate the values of initial centers to 

avoid randomness and make the most of data distribution. 

The main work of this paper is summarized as follows: 

Section II presents theoretical models of traditional K-means 

clustering (TKM), gap statistic (GS), fuzzy member 

functions (FMF), and data density (DD). Section III proposes 

a modified K-means clustering algorithm (MKM), which 

consists of improved initial cluster centers based on FMF and 

DD, and optimal cluster number k based on GS. Section IV 

presents three different evaluation indexes (standard 
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deviation, silhouette coefficient index, and Davies Boldin 

index) to evaluate the proposed algorithm. Section V 

analyzes the proposed method which is verified under a 

typical case study of TOU period partition. Finally, Section 

Ⅵ summarizes this work. 

II. RELATED WORK 

A. Traditional K-means Clustering Algorithm 

TKM is a classical clustering algorithm as it is efficient 

and simple. The specific steps of the algorithm are shown as 

follows [33-35]. 

Step 1: k is set as the number of clusters, and k initial 

centers are randomly selected: v1, v2, …, vk. 

Step 2: For each sample xt, the distances from it to 

different initial cluster centers (v1, v2, …, vk) are calculated 

respectively. Then it is divided into the cluster cj with the 

shortest distance. It can be expressed in Eq. (1). 

 

,   ( , ) ( , )t j t j t iif d dx c x v x v                      (1) 

 

Where, d(xt,vj) indicates the distance between xt and vj. 

Step 3: The mean value of the cluster cj is taken as the new 

center. It is calculated by Eq. (2). 

 

1

t j

j t
x cj

v x
c 

=                              (2) 

 

Step 4: Repeat Step 2-Step 3 until the cluster centers no 

longer change or the objective function in Eq. (3) is met. 

 

2
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( , ) min
t j

k

t j
j x c

J x v
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= − x v                     (3) 

 

When Eq. (3) is satisfied, the algorithm process stops and 

the clustering is completed. It is obvious that the random 

initial centers badly affect the efficiency and quality of the 

algorithm performance. 

B. Gap Statistic 

The principle of GS is based on comparing the dispersion 

degree between the dataset and the data generated from the 

reference distribution. The detailed steps of the model are 

shown as follows.  

Step 1: The samples in x are divided into k clusters by 

TKM: c1, c2, …, ck, and the sum of squared distances between 

samples within each cluster cr is calculated. The calculation is 

given in Eq. (4). 
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Step 2: The compactness Wk is obtained by normalizing 

and summing Dr. It is calculated by Eq. (5). 
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Step 3: Construct statistic Gap (k) by Eq. (6). 

*( ) {log( )} log )(k k
Gap k WWE= −                    (6) 

 

Where, E*{log(Wk)} is the expectation of log(Wk). It is 

estimated by using the logarithmic mean value of 

W*
k,b~U(min(x),max(x)): 
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Where, B is the number of reference datasets. According to 

the laws of large numbers, when B is large enough, the error 

caused by TKM randomness is negligible. 

Step 4: Calculate standard deviation sd(k). 
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Step 5: Choose kmin, which meets Eqs. (9) and (10), to 

determine k. 

 

1( ) ( 1) kGap k Gap k s + + −                   (9) 
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After determining the cluster number k by GS evaluation, 

only the values of initial cluster centers need to be calculated 

to complete the initialization. 

C. Fuzzy Membership Functions 

FMF belongs to fuzzy evaluation methods. It is a 

comprehensive evaluation method of objects in the form of 

fuzzy sets [36]. It describes the correlation of each sample 

with clusters without the specific distribution of the initial 

cluster centers. For each xt in the domain x, if uA(xt)∈[0,1], A 

is called a fuzzy set on the domain x, and uA is the fuzzy map 

(FMF) of x to A. The closer uA(xt) is to 1, the higher the 

degree of xt belongs to A. It is expressed in Eq. (11). 

 

  ( ) 0,1 , |A
t A t t

u A x u x x⎯⎯⎯→  = x x        (11) 

 

When there are multiple fuzzy sets on x, we have the 

following representation in Eq. (12). 

 

( )

( )
A

B

u

u

 
 
 
 
 

U =

x

x                               (12) 

 

Where, uA(x) is the row vector of the membership degree. 

In the fuzzy theory, FMF is diverse and in general can be 

divided into three types: big-scale, small-scale, and 

middle-scale [37-39]. These three types of membership 

degrees can help us calculate general cluster centers. 

D. Data Density 

DD is the number of samples contained in a given range. It 

can help us to analyze the distribution of the dataset. To get 

the density, it is necessary to specify the clustering radius ϒ 
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and calculate the number of contained samples based on the 

distances d between the centers and other samples. If d ≤ ϒ, 

the samples belong to the range of the center; If d >ϒ, the 

samples are out of the range of the center. This is beneficial 

for us to calculate the density of each sample and further filter 

out the most compact one.  

III. MODIFIED K-MEANS CLUSTERING ALGORITHM 

The TKM has the drawbacks including insufficient 

determination of cluster number and initial cluster centers. 

The modified K-means clustering algorithm (MKM) 

proposed in this paper aims to find appropriate initial cluster 

centers and optimum cluster number k to achieve better 

clustering performance. The basic MKM framework is 

presented in Fig. 1.  

 

Initialize cluster centers by FMF

N

Y

 Improve initial cluster centers by DD

 Output initial cluster centers 

 Run K-means clustering algorithm

 GS determines optimal cluster number k 

Initial centers meet  k 

  
Fig. 1.  Basic framework of MKM. 

 

We first use FMF to obtain the dataset membership degree, 

then calculate the initial cluster centers. Next, the optimal 

cluster number k is determined by GS evaluation. If the 

previously initialized centers do not meet GS-based k, then 

they will be optimized by DD. Finally, the improved centers 

are used for K-means clustering. 

A. Modified Initial Cluster Centers 

1) Initial cluster centers based on FMF 

The clusters of any dataset satisfy the constraint 2k  . The 

fewer the clusters, the easier the distribution of cluster centers 

can be estimated, but selecting a reasonable method to 

determine the initial cluster centers is still significant. For any 

datasets that satisfy 2 3k  , FMF can appropriately 

describe general data distribution. In this paper, p-trapezoidal 

FMF is used to describe three types of membership degree of 

the dataset. They are shown as follows. 

The middle-scale FMF is shown in Fig. 2. 
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0 a b c d x
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p=1

u

 
Fig. 2.  Middle-scale FMF. 

 

As can be seen from Fig. 2, the membership degree of the 

data belonging to [b, c] is always 1. When p>1, the 

membership degree outside [b, c] tends to be convex outward. 

While p<1, it is concave inward. The middle-scale FMF is 

calculated as Eq. (13). 
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The big-scale FMF and small-scale FMF are shown in Fig. 

3 and Fig. 4, respectively. Similar to the middle-scale FMF, 

the membership degree tends to be outwardly convex when 

p>1, and conversely inwardly concave when p<1. The 

calculation is uniformly expressed by Eq. (14). 
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Fig. 3.  Big-scale FMF. 
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Fig. 4.  Small-scale FMF. 
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Where, is the control parameter. When =0 , Eq. (14) is 

big-scale; when =1 , it is small-scale. 

For comparison, the normalization constraint has to be 

satisfied in Eq. (15). 

 

, ,
1

s.t. 1,     0 1
k

j t j t
j

u u
=

=                    (15) 

 

It can be seen that, when p=1, the function curves are linear 

and data are neutral to different FMF. While 1p  , the 

function curves are all nonlinear: when p<1, the FMF are 

conservative, and when p>1, the FMF show a positive trend.  

TKM is hard and its cluster centers are determined only by 

the samples within the clusters where they are located. This 

limits the available information for cluster center 

initialization. However, combined with FMF, the 

initialization is softened and more information can be utilized. 
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The FMF-based initialization is expressed by Eq. (16). 
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Where, m is the fuzzy exponent. 

Unlike random initialization, the centers determined by Eq. 

(16) are global and stable, considering the membership 

degree of all samples to different clusters. It can definitely 

improve the robustness of K-means. 

To select proper p, we then investigate the attitude change 

of initial cluster centers to cluster types at different p values. 

So, the constraint in Eq. (17) must be met. 

 

, ,

,

, 1,...,
j p p j p

j p

v v
j k

v


+ −
 =                (17) 

 

Where, p is the step length;  is the threshold. 

It is easy to understand that the smaller  is, the centers are 

more sensitive; the larger  is, the centers are more likely to 

be found. However, each type of FMF can only calculate one 

initial cluster center. In other words, the above FMF can only 

calculate three general centers. For more initial cluster 

centers, we have the following models. 

2) Improved initial cluster centers based on GS-DD 

When GS determines k>3, it is necessary to further explore 

new initial cluster centers based on dataset distribution. But, 

the method in Eq. (17) cannot be used multiple times to find 

new centers because we are not always able to find an 

objective threshold  , and overuse of the above method will 

bring great subjectivity to the selection of the centers, so the 

threshold  is not valid here.  

According to the characteristics of clustering algorithms, 

the higher the density of the cluster is, the more conducive 

they are to converge. Here, the distribution of dataset and 

general initial centers are available, so we propose a method 

based on DD to improve initial centers [40]. When k>3, we 

make the following process. 

Step 1: Define the maximum distance between center vj,p 

and other samples in the dataset as dmax(vj,p), the minimum 

distance as dmin(vj,p). 

Step 2: The mean radius ϒj,p is defined by Eq. (18). 
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Step 3: Obtain the density ρj,p of the region with vj,p as the 

center and ϒj,p as the radius, the number of samples contained 

in the region is calculated by Eqs. (19) and (20). 
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Step 4: vj,p with the max ρj,p is taken as the new center. 

Similarly, the second or third max one is also applicable to 

optimize more initial centers, until GS-based k is satisfied.  

Based on the above analysis, all initial cluster centers are 

confirmed and the dataset can be clustered directly using 

K-Means clustering algorithm. 

B. Modified K-Means Clustering Algorithm 

We provide a detailed solution process of the MKM 

clustering algorithm as follows.  

We first set the threshold  and the exponent p of FMF, and 

save the exponent p to P before calculating initial centers. If 

the change of centers under p does not satisfy Eq. (17), we 

update p by step length p and calculate the initial centers 

again until the constraint in Eq. (17) is satisfied. 

Subsequently, we calculate k using GS and check the 

previous centers: if GS-based k is satisfied, clustering is 

performed directly; if not, new centers are improved based on 

DD and finally clustering is performed [41]. MKM considers 

the characteristics of the clustering algorithm, and focuses on 

the stability of the initial solution and distribution of the 

dataset. The detailed steps of MKM are shown in Fig. 5. 

 

N

Calculate membership degree by Eqs. (13)-(14)

Set p=pmin for Eqs. (13)-(14)

P     p

Output  initial cluster centers

p meets Eq. (17) 

Calculate sum of distances Dr by Eqs.(1)-(4)

Calculate compactness Wk by Eq. (5)

Calculate statistic Gap(k) by Eqs. (6)-(7)

Calculate standard deviation sd(k) by Eq. (8)

Choose optimal k by Eqs. (9)-(10)

Initial centers meet k 

Calculate dmax(vj,p) and dmin(vj,p)

Start

Partition periods using K-Means by Eqs. (1)-(3)

End

Y

N

Y

Calculate mean radius         by Eq. (18),j p

p p p= + 

Set threshold    by Eq. (17)

Generate initial cluster centers  by Eqs. (15)-(16)

Improve initial cluster centers by Eqs. (19)-(20)

 
Fig. 5.  Solution flowchart of MKM clustering algorithm. 

IV. EVALUATION INDEXES FOR MODIFIED K-MEANS 

A good clustering algorithm is efficient and able to 

produce high-quality clusters: high intra-cluster similarity 
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and low inter-cluster similarity. In this paper, the clustering 

efficiency and quality of the proposed MKM are evaluated by 

the following indexes. 

A. Evaluation Index for Clustering Efficiency 

The excellent efficiency of clustering algorithms requires a 

short convergence time and low error of its objective function 

value J. For the error, we use standard deviation for 

efficiency evaluation. It is calculated by Eq. (21). 
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B. Evaluation Indexes for Clustering Quality 

1) Silhouette coefficient evaluation index 

Silhouette coefficient index (SC) combines both 

intra-cluster dissimilarity and inter-cluster dissimilarity to 

evaluate clustering effect [35]. It is expressed as Eqs. 

(22)-(23). 

 

1

( ) ( )

max{ ( ), ( )}
SC( )

T

t

b t a t

a t b t
k

T

=

−

=


                      (22) 

, ,( ) min{ ,..., }j t k tb t b b=                      (23) 

 

Where, a(t) is the average distance from sample xt to other 

samples in the same cluster; bj,t is the average distance from xt 

to all samples in different cluster cj. The larger the SC, the 

better the clustering effect. 

2) Davies Boldin evaluation index 

Davies Boldin index (DB) is defined by Davis and Bouldin 

[35]. It is shown in Eqs. (24)-(26). 
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Where, zj is the mean value of the cluster cj; Si is the average 

distance between the data and the center in the cluster cj; dij 

measures the dispersion degree between the cluster ci and 

cluster cj. The smaller the value of DB(k), the better the 

quality of clustering. 

V. CASE STUDY BASED ON TOU PERIOD PARTITION 

A. Experimental Case 

The peak-valley period partition of TOU tariff is a typical 

case to verify the performance of partition clustering 

algorithms [12, 27], therefore we choose it to discuss the 

clustering performance of MKM. To make experimental case 

more comprehensive and obtain a more accurate period 

partition, this paper uses a daily load curve with a 15-minutes 

time interval, as shown in Fig. 6.  

 
Fig. 6.  Daily load curve. 

 

According to Fig.2 and Eq. (13), parameters a and d are the 

minimum and maximum values of the load data, respectively. 

The rest parameters b and c are the mean values of the load. 

The remaining parameters are set as shown in Table I. 

 
TABLE I 

PARAMETER SETTINGS 

Parameters Values 

B 1000 

minp  0.1 

p  0.01 

m 2 

  0.01% 

B. Results and Discuss 

The general initial cluster centers under different p are 

shown in Fig. 7. 
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Fig. 7. General cluster centers under different p. 

 

As p increases, the peak period cluster center increases and 

the valley period cluster center decreases, while the flat 

period cluster center is almost constant. As marked in the 

figure, when p=1.57, the change of centers is no longer 

obvious and meets the constraint in Eq. (17). So, peak, flat 

and valley centers are determined. 

The GS-based k is shown in Fig. 8. 

 

 
Fig. 8. Change of Gap(k) and Wk under different k. 
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It is easy to find that Wk decreases gradually. However, 

from k=4, the decrease of Wk slows down significantly. The 

change of Gap(k) is not monotonic, but only when k=4, the 

constraint in Eq. (9) is met. So, the optimal number k is 4. 

In TOU period partition studies, the most common is to 

divide the load curve into three periods or four periods: peak, 

shoulder, flat and valley. In this paper, simulation scenarios 

are established as shown in Table II. 

 
TABLE Ⅱ 

SIMULATION SCENARIOS 

Scenarios Clustering algorithms Period types 

Scenario 1 MKM peak, shoulder, flat, valley 

Scenario 2 MKM peak, flat, leg, valley 

Scenario 3 MKM peak, flat, valley 

Scenario 4 TKM peak, flat, valley 

 

Because of the special structure of middle-scale FMF, the 

flat center remains almost linear at the same level as p 

increases (Fig. 7). Therefore, the initial centers improved by 

Eqs. (18)-(20) are only considered to exist in valley and peak 

periods, without considering the flat period. All determined 

initial cluster centers are shown in Table Ⅲ. 

 
TABLE Ⅲ 

INITIAL CLUSTER CENTERS 

Period types Values (kW) 

Peak 2353.62 

Shoulder 1968.42 

Flat 1519.08 

Leg 863.16 

Valley 520.39 

 

Partition TOU periods according to the centers in Table Ⅲ, 

we have the iteration process which are shown in Fig. 9. 
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Fig. 9. The iterations of J. 

 

Compare the iterations of scenarios 3 and 4, the MKM 

converges faster noticeably (3 and 13, respectively) and has a 

smaller standard deviation of J (242.00 and 20355.70, 

respectively). Overall, MKM is better than TKM. From the 

comparison of scenarios 1 and 2, the convergence time of 

scenario 1 is shorter than scenario 2, and the convergence 

value of scenario 2 is better. So, for the same algorithm and 

the same number of clusters, the selection of the initial cluster 

centers also significantly affects the clustering performance. 

Since scenarios 3 and 4 have the same convergence values, 

they divide the load curve into the same periods. The above 

scenarios can produce three kinds of TOU period partitions. 

They are shown in Fig. 10. 
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               (c) Scenarios 3 and 4 

Fig. 10. TOU period partitions in different scenarios. 

 

The specific time points of each period in different 

scenarios are shown in Table IV. 

 
TABLE Ⅳ 

SPECIFIC TIME POINTS 

Scenarios Period types Time points Total time 

1 

peak 
07:45~12:00 
13:00~16:00 

7h15min 

shoulder 

06:00~07:45 

12:00~13:00 
16:00~19:45 

6h30min 

flat 
05:00~06:00 

19:45~21:30 
2h45min 

valley 
00:00~05:00 

21:30~00:00 
7h30min 

2 

peak 
07:45~12:00 
13:00~16:00 

7h15min 

flat 

06:00~07:45 

12:00~13:00 
16:00~21:00 

7h45min 

leg 
04:00~06:00 

21:00~23:00 
4h 

valley 
00:00~04:00 
23:00~00:00 

5h 

3&4 

peak 
07:45~12:15 

13:00~16:00 
7h30min 

flat 

06:00~07:45 

12:15~13:00 
16:00~21:30 

8h 

valley 
00:00~06:00 

21:30~00:00 
8h30min 
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Compare scenarios 1 and 2, we can find that the time 

points and total time of the peak period are the same. The 

partitions of the peak in scenarios 3 and 4 are also almost the 

same as scenarios 1 and 2, only with a 15 min difference. 

However, the other period partitions vary. The total time of 

the flat in scenario 1 is 5 hours less than scenario 2 and 

5h15min than scenario 3, respectively. Besides, the total time 

of the valley in scenario 2 is 2h30min less than scenario 1 and 

3h30min than scenario 3, respectively. This indicates that the 

peak period of this load curve is significantly different from 

other periods, which is easily recognized by K-means. The 

evaluation of each scenario is shown in Table Ⅴ. 

 
TABLE Ⅴ 

EVALUATION OF CLUSTERING QUALITY 

            Indexes 
Scenarios 

SC DB 

Scenario 1 0.7190 0.0188 

Scenario 2 0.6960 0.0262 

Scenario 3&4 0.5724 0.0423 

 

The evaluation rule is that the larger the SC and the smaller 

the DB, the better the clustering and the higher the quality of 

the period partitions. From the above evaluation indexes, the 

period partition quality of scenarios 1 and 2 is better than that 

of scenarios 3 and 4, and scenario 1 can better reflect the load 

feature compared to scenario 2. Therefore, the load curve in 

this paper is best divided into four periods: peak, shoulder, 

flat, and valley. 

VI. CONCLUSION 

To improve the clustering quality and solving efficiency of 

the traditional K-means clustering algorithm, we proposed an 

MKM clustering algorithm that improves the initial cluster 

centers and number of clusters. Due to the significant impact 

of initial cluster centers on K-means clustering performance, 

we first used fuzzy membership functions to obtain the 

general initial cluster centers, rather than randomly selecting 

based on experience. Then, we used DD to further improve 

the previous initial cluster centers and optimized the number 

of clusters through gap statistics. In addition, the silhouette 

coefficient index and Davies Boldin index were used to 

evaluate the performance of the proposed MKM algorithm. 

Finally, the comparative analysis results based on different 

scenarios indicate that the proposed MKM clustering 

algorithm has significant performance advantages in solving 

efficiency and clustering quality compared to the TMK 

algorithm. 
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