
 

  

Abstract— The necessity of developing a secure 

communication system that safeguards privacy and sensitive 

data against hacker attacks and eavesdroppers is now widely 

acknowledged. This necessitates the creation of solutions that 

not only deal with security issues but also shouldn't slow down 

our system. Most security systems rely on randomness 

generators to establish safe communication; more randomness 

equals more security. Random generators are essential to the 

encryption process. In this research, a design and 

implementation process for a novel random generator based 

upon Lorenz chaotic signals is presented. NIST's Statistical Test 

Suite for Random and Pseudorandom Generators for 

Cryptographic Applications has been used to evaluate the 

proposed chaotic random generator CRN, and the findings have 

been reviewed. 

 
Index Terms— Chaotic random generator, NIST, 

Randomness, security, wireless 

I. INTRODUCTION 

haotic signals possess several characteristics that render 

them appealing for communication systems. Firstly, 

their wideband nature allows them to withstand the negative 

impacts of multipath fading. As a result, when these signals 

are employed to encode information, they generate spread-

spectrum signals with broader bandwidth and reduced power 

spectral densities. In addition, chaotic signals can generate a 

multitude of spreading waveforms with ease because of their 

sensitivity to initial conditions. Furthermore, they have a 

rather uniform frequency spectrum because of their 

nonperiodic character in the time domain. They are also 

suitable for secure communication because of their noise-like 

signal structure, which offers a high level of secrecy and has 

a minimal likelihood of being detected and intercepted. 

Additionally, the synchronization of chaotic systems is 

theoretically and practically possible [1]-[4].  

The primary attribute of this signal type lies in its ability to 

be effortlessly generated by uncomplicated circuits, enabling 

the cost-effective implementation of the product. Considering 

all the aforementioned properties, chaotic signals are an ideal 

candidate for use in secure communication systems [4]. The 

security aspects of chaos-based cryptosystems have been 

studied in several works [5],[6].  

[7],[8] demonstrated the feasibility of unmasking certain 

chaos-based secure communication systems by modeling and 

predicting the transmitter. Moreover, a recent analysis of the 

receiver parameters in a chaos-based cryptosystem, 

employing chaotic synchronization, indicated that the 
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system's security is vulnerable to specific attacks when the 

dynamic model of the chaos system is known [9],[10]. 

Our main objective is to develop a chaotic cryptosystem 

that achieves "provable security," indicating that 

mathematical proofs demonstrate its ability to withstand 

specific types of attacks. C.E. Shannon conducted 

groundbreaking research in this domain. In his information 

theory, he formulated measures for quantifying the 

information contained within a message and introduced the 

concept of perfect secrecy: a perfectly secret cipher perfectly 

resists all ciphertext-only attacks. An adversary gets no 

information about the plaintext, even if his computing power 

and time resources are unlimited [11]. 

Shannon's perfect secrecy can be summarized in the 

following statement [11]: "An encryption is perfectly secret 

if and only if an adversary cannot distinguish between two 

plaintexts, even if his computing resources are unlimited". 

For instance, if the adversary possesses the knowledge that a 

ciphertext "c" corresponds to the encryption of either "1" or 

"0", their probability of correctly selecting the correct option 

is no greater than 1/2. This probability can be obtained even 

without knowing the ciphertext. In other words, the reception 

of ciphertext doesn’t improve the vision of the adversary or 

increase the probability of any specific plaintext over others. 

Consequently, there is a strong interconnection between 

randomness and the security of cryptographic schemes. 

Without randomness, security cannot be achieved. An 

encryption method provides secrecy only if the ciphertexts 

appear random to the adversary [1].  

The most renowned cipher that achieves perfect secrecy is 

Vernam's one-time pad. This cipher encrypts a message "m" 

by performing a bitwise XOR operation with a genuinely 

random bit string. It successfully withstands all passive 

attacks and can be mathematically proven to be secure using 

Shannon's theory [12]. The one-time pad is considered 

perfectly secret because the resulting bit sequence "c(t)" 

obtained by XORing the encrypted message "m(t)" with the 

truly random key string "k(t)" appears entirely random to any 

potential adversary. Fig. 1 shows Vernam's one-time pad or 

XORing encryption technique.  

Random number generators serve practical purposes in 

diverse fields, as emphasized in [13]: 

• Cryptography and image watermarking to ensure image 

authentication. 

• Generating message keys for ciphers. 

• Creating random challenges for authentication purposes. 

• Generating passwords. 
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• Facilitating secure communication. 

• Enabling simulation, such as Monte Carlo simulation. 

• Serving as initialization vectors for neural networks and 

genetic algorithms. 

• Simulating noise for evaluating communication systems. 

 

 
Fig. 1.  Vernam's One-Time Pad Or XORing Encryption Technique 

 

An RNG (Random Number Generator), whether 

computational or physical, is a device specifically created to 

produce a sequence of numbers or symbols that exhibit no 

discernible pattern, thus appearing random. While computer-

based RNG systems are commonly employed, they often fall 

short of achieving true randomness. However, they may 

satisfy certain statistical tests for randomness, which aim to 

confirm the absence of easily identifiable patterns. [11] 

Let us suppose that the set of possible messages is finite in 

number m1, …,mn that these have a priori probabilities 

P(m1),... , P(mn), and that messages are enciphered into 

possible cryptograms E1,…,Em by 

 

𝐸 = 𝑘𝑖𝑚                                                                           (1)
 

 

When a cryptanalyst intercepts a specific ciphertext "E," 

they can compute the posterior probabilities, denoted as 

PE(m), for different possible messages. Perfect secrecy is 

naturally defined by the condition where, for any ciphertext 

"E" the posterior probabilities are equal to the prior 

probabilities. In such a scenario, intercepting the message 

provides the cryptanalyst with no additional information. A 

necessary and sufficient condition for perfect secrecy can be 

found as follows in the Bayes’ theorem [14] 

 

𝑃𝐸(𝑚) =
𝑃(𝑚)𝑃𝑚(𝐸)

𝑃(𝐸)
                                                         (2) 

 

where  

P(m)  is the a priori probability of message m. 

Pm (E) is the conditional probability of cryptogram E if 

message m is chosen, i.e. the sum of the probabilities of all 

the keys which produce cryptogram E from message m. 

P(E) is the probability of obtaining cryptogram E from any 

cause. 

PE(m) a posteriori probability of message m if cryptogram E 

is intercepted. 

For perfect secrecy, PE(m) must equal P(m) for all E and 

for all m. For our proposed system, the data to be transmitted 

is binary "0" or "1" with equal probability, 

P(0)=P(1)=P(m)=1/2. Because this data is encrypted by a 

random key to produce E, the randomness leads us to say that 

Pm(E)=P(E)=1/2. Therefore, it is obvious that the condition 

of perfect security is satisfied in our system, where PE(m) 

equals P(m).  

The primary obstacle lies in generating and managing 

sufficiently long truly random bit sequences, which is often 

impractical to achieve for perfect secrecy in many cases. To 

address this issue, we propose employing a chaotic random 

number generator for generating the secret key. The 

randomness of the utilized key has been validated through the 

NIST test [15]. By utilizing the XORing technique with the 

proven randomness of the key, we can attain perfect security. 

II. RANDOMNESS CHARACTERISTICS OF THE 

CHAOTIC SIGNAL 

In the suggested CRNG, the parameters of the chaotic 

signal act as random seeds, and the running-key sequence can 

be generated from the binary variables produced by the 

chaotic dynamics. The new approach relies on frequency-

domain aliasing to improve the randomness of the running-

key sequence and improve the security of the key seeds. 

Aliasing in the frequency domain is achieved by sampling the 

chaotic signal at a frequency within its bandwidth. This 

results in a flatter and whiter frequency spectrum of the 

sampled discrete-time sequence, which enhances 

randomness. Moreover, the running-key sequence derived 

from the sampled chaotic signal is highly sensitive to the 

sampling frequency. The enhanced security of the 

cryptosystem can be attributed to the heightened randomness 

of the running-key sequence and the nonanalytical 

characteristics of the sampling frequency. The randomness of 

the running-key sequence and its sensitivity to the sampling 

frequency are quantitatively evaluated by the correlation 

functions. In the realm of stream cipher cryptography, an 

important challenge is the efficient generation of a lengthy 

running-key sequence from short and random keys, also 

known as key seeds [16]. In chaos-based cryptosystems, the 

random seeds are denoted by the parameters and initial 

conditions of the chaos systems, while the running-key 

sequences are derived from the sampled state variables of the 

system obtained through chaotic dynamics. Due to the 

sensitivity of chaotic systems to both initial conditions and 

parameter changes, certain chaotic systems offer a 

sufficiently large parameter space to accommodate random 

key seeds. The running-key sequence can be recovered from 

the receiver side by synchronization of the chaotic systems 

[2]-[4]. In order to enhance the randomness of the operational 

key sequence, a sampling method for the continuous-time 

chaotic signal is showcased, employing a sampling frequency 

significantly lower than the chaotic signal's bandwidth. Since 

the spectrum of the sampled discrete-time sequence can be 

flattened due to frequency-domain aliasing, its degree of 

randomness can be increased by slowing down the sampling 

frequency. Thus, the sampled discrete-time sequence as the 

running-key sequence and the sampling frequency can be 

used together with the chaotic system parameters as the key 

seeds. 

The Simulink model for the sample Lorenz chaotic signal 

is depicted in Fig. 2. The Lorenz system, which comprises 

three interconnected first-order ordinary differential 

equations as outlined in equations 4-6, is utilized in this 

model. 
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𝑑𝑢

𝑑𝑡
= 𝐾(𝑐1𝑣 − 𝑐1𝑢)                     (4)                                                                                                                                            

𝑑𝑣

𝑑𝑡
= 𝐾(𝑐2𝑢 − 𝑣 − 𝑢𝑤)                                                   (5) 

     
𝑑𝑤

𝑑𝑡
= 𝐾(𝑢𝑣 − 𝑐3𝑤)                                                        (6) 

where c1 , c2 and  c3 are arbitrary constants with the values 

10, 28, and 2.666 respectively. K represents the time scaling 

factor of the Lorenz system [17]. The frequency spectra of the 

sampling periods are shown in Fig. 3, where Ts=0.1, 0.01 sec, 

and the spectra of AWGN is added for comparison purpose. 

There are several reasons to support the notion that 

utilizing sampled chaotic sequences with frequency domain 

aliasing can significantly enhance the secure protection of a 

cryptosystem against attacks. Firstly, the sampled running-

key sequence is highly sensitive to the non-analytical nature 

of the sampling frequency. This sensitivity improves the 

security of the key seeds when the sampling frequency is 

incorporated into them. Consequently, there is no information 

regarding the original sampling rate of the running-key 

sequence contained in the encrypted data sequence 

transmitted through the communication channel. 

Secondly, frequency aliasing renders it impossible to 

reconstruct the original continuous-time chaotic signal from 

the running-key sequence. 

Lastly, the running-key sequence with frequency domain 

aliasing provides minimal information for directly estimating 

the parameters of the continuous-time chaotic systems. In 

contrast, recent research has demonstrated that using only the 

continuous-time chaotic signal makes the cryptosystem 

vulnerable to certain attacks. [18,19,20]. 

III. CHAOTIC RANDOM NUMBER GENERATOR 

(CRNG) 

The schematic diagram for the proposed chaotic random 

number generator (CRNG) is shown in Fig. 4. As shown in 

the Figure, the chaotic signal is sampled at regular intervals 

using a sample and hold circuit. The sampled signal is 

mapped into either “0” or “1” by a decision circuit and then 

the output is fed to a buffer register. Finally, the randomness 

of the generated sequences is assessed by the NIST test suites. 

Statistical tests evaluate the randomness of a bit sequence 

by analyzing its probability characteristics. The NIST Suite 

and the Diehard Suite are widely regarded as the most 

rigorous statistical tests for assessing randomness among all 

internationally recognized tests. They both include dozens of 

independent and computationally intensive statistical tests. 

Most of these tests return a test statistic and its corresponding 

probability value (p-value) [15]. The p-value is the 

probability of obtaining a test statistic as “impressive” as the 

one observed if the sequence is random so that the statistic 

was the result of chance alone. In other words, the p-value 

summarizes the strength of the evidence against the perfect 

randomness hypothesis. Small values (p-values < 0.01) are 

interpreted as evidence that a sequence is unlikely to be 

random. Here 0.01 is the significance level, usually denoted 

as α. 

The NIST Suite [15] provides a battery of 16 statistical 

tests. They assess the presence of a pattern which, if detected, 

 
Fig. 2.  Simulink model for sampling Lorenz chaotic signal 
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Fig. 3.  Frequency spectra of xs with different sampling periods. 

 

Engineering Letters, 31:4, EL_31_4_22

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



 

would indicate that the sequence is non-random. In each test, 

a p-value is calculated. The significance level α for all tests 

in the NIST Suite is set to 1%. A p-value of zero indicates 

that the sequence appears to be completely non-random. A p-

value less than α would mean that the sequence is non-

random with a confidence of 99%. If a p-value is greater than 

α, the sequence is random with a confidence of 99%. 

IV. NUMERICAL ANALYSIS 

In the following section, NIST test results for a CRNG like 

that shown in Fig. 4 are demonstrated. where the chaotic 

source is represented by the Lorenz oscillator. The sampling 

should be done at a frequency much less than the fundamental 

frequency of the chaotic oscillator (fsampling<<ffundamental). The 

fundamental frequency is determined by the reciprocal of the 

time taken for one complete rotation around a chaotic 

attractor. This implies that the variation in the chaotic signal 

between two consecutive samples is significant enough to 

enhance the randomness processing and fulfill the 

requirements of the frequency aliasing technique. Fig. 5 

 
Fig. 4. Schematic Diagram for Chaotic Random Number Generator (CRNG) 

 

 
Fig. 5.   u-Lorenz chaotic signal with different time scaling versus sampling frequency (a) u-Lorenz signal with time scaling equals 200 ms (b) u-Lorenz 

signal with time scaling equals 20 ms (c) u-Lorenz signal with time scaling equals 1 ms (d) sampling signal. 
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(a),(b),(c) represent the Lorenz u-signal with time scaling 200 

ms, 20 ms, and 1 ms respectively, and Fig. 5.(d) represents the 

sampling signal that will apply for all cases and its value is 

supposed to be constant and equals 50 Hz for all three cases. 

As shown in Fig. 5(c), in the case of high-time scaling of 1 

ms, the u-signal appears to exhibit characteristics of a noise 

signal in relation to the sampling signal. Consequently, it is 

expected that the randomness, in this case, would be higher 

compared to the other two cases.  

Fig. 6 shows the Simulink model used in numerical 

analysis. The time scaling for three Lorenz differential 

equations is 250 µs and the initial conditions for u, v, and w 

are taken as 15, 20, and 30 respectively. The numerical results 

of P-values for the 16 statistical tests conducted by NIST are 

presented in Tables I to VII, showcasing the outcomes for 

various combinations of Lorenz time scaling and sampling 

frequencies. 

V. SIMULATION RESULTS 

Tables I and II demonstrate that when the sampling 

frequency (50 kHz) and time scaling (1 ms and 400 µs) fall 

short, they do not offer any degree of randomness, resulting 

in failure across all NIST tests. 

The outcomes presented in Table III indicate that when 

using a sampling frequency of 50 kHz and time scaling of 250 

µs, a noticeable level of randomness is achieved. Nearly half 

of the NIST tests are successfully passed. 

The data presented in Table IV reveals that when the time 

scaling is held at 250 µs and the sampling frequency is 

reduced to 20 kHz, a certain level of randomness begins to 

emerge. In this case, two tests are successfully passed. 

Conversely, when the time scaling is reduced to just 25 µs 

while maintaining a sampling frequency of 20 kHz, the level 

of randomness intensifies, resulting in the successful passing 

of 8 out of 16 tests, as indicated in Table V. 

Displayed in Table VI are the outcomes obtained by 

decreasing the time scaling to 16.667 µs and applying a 

sampling frequency of 20 kHz. The results reveal the 

successful passing of the majority of tests (11 out of 16), 

while the remaining two tests are unable to be finalized due 

to an insufficient number of cycles.  

By decreasing the sampling frequency to only 500 Hz 

while maintaining a time scaling of 250 µs, all tests are 

successfully passed, resulting in the attainment of 

randomness, as shown in Table VII. 

VI. CONCLUSIONS 

This research paper aimed to address a prevalent issue 

involving the generation of true random numbers. This issue 

holds significant implications for various industries that 

depend on random number generation, spanning from credit 

card companies and secure communication to lotteries. The 

concern stems from the potential vulnerability if an attacker 

manages to predict the underlying mechanism of the 

randomness generation, enabling them to exploit it. 

Regrettably, the process of generating authentic random 

numbers appears deceptively simple compared to its actual 

complexity. In essence, achieving truly random numbers 

through any deterministic device is fundamentally unfeasible. 

This work tries to find an alternative way of thinking to 

produce a randomness number that diverges significantly 

from conventional approaches reliant on pseudo-random 

number generators (PRNGs), which follow predictable 

patterns through mathematical formulas, or from the 

utilization of quantum processes. 

The simulation tests demonstrate that the suggested CRNG 

produces a highly unpredictable final number, which makes 

it suitable for most practical purposes requiring randomness. 

Through simulation, this study conclusively demonstrates 

that the randomness of the Cryptographically Secure Random 

Number Generator (CRNG) is primarily governed by two key 

factors: the sampling frequency and the time scaling of the 

Lorenz generator. The previous NIST test results affirm the 

presence of a trade-off process associated with these factors. 

This compromise entails two distinct cases: 

The first case involves maintaining a consistent sampling 

frequency while reducing the scaling time, resulting in an 

augmentation of the randomness characteristics of the 

generated bits. 

The second case involves maintaining a constant scaling 

 
 

Fig. 6. Simulink® simulation for Lorenz CRNG used in the analysis 
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time while decreasing the sampling frequency, leading to an 

improvement in the randomness properties of the generated 

bits. However, it is worth noting that in either scenario, the 

computation simulation time will increase. In the first case, 

the simulation steps must be increased to accurately capture 

the rapid variation of the Lorenz signal. In the second case, 

the simulation time for our model needs to be extended to 

generate the same number of bits before reducing the 

sampling frequency. 

Throughout our analysis, several noteworthy points have 

been deduced, including: 

1- Choosing a stream cipher for encryption, utilizing its 

beneficial attributes like rapid encryption/decryption 

operations. This choice aligns with the design objective of a 

high-speed transmission system with real-time applications. 

Additionally, the implementation can be accomplished using 

a straightforward circuit like XOR. 

2- Applying the sampling theory to chaotic signals to 

devise a genuine Cryptographically Secure Random Number 

Generator (CRNG). At the same time, the concept of 

frequency aliasing presents considerable obstacles in the 

process of reconstructing the initial continuous-time chaotic 

signal from the operational key sequence. 

 
TABLE I  

NIST RESULTS FOR LORENZ WITH TIME SCALING 1 MS AND SAMPLING 

FSAMPLING=50 KHZ 

Test ID  u v 

Frequency 

(monobit) test 

P_value 0.0 0.0 

status Failure Failure 

Frequency Test within a 

Block 

P_value 0.0 0.0 

status Failure Failure 

Runs Test 
P_value 0.0 0.0 

status Failure Failure 

Test for the Longest Run of 

Ones in a Block 

P_value 0.0 0.0 

status Failure Failure 

Binary Matrix Rank Test 
P_value 0.0 0.0 

status Failure Failure 

Discrete Fourier 

Transform (Spectral) Test 

P_value 0.0 0.0 

status Failure Failure 

Non-overlapping Template 

Matching Test 

P_value 0.0 0.0 

status Failure Failure 

Overlapping Template 

Matching Test 

P_value 0.0 0.0 

status Failure Failure 

Maurer's "Universal 

Statistical" Test 

P_value 0.0 0.0 

status Failure Failure 

Linear Complexity Test 
P_value 0.0 0.0 

status Failure Failure 

Serial Test 

 

P_value1 0.0 0.0 

P_value2 0.0 0.0 

status Failure Failure 

Approximate Entropy Test 
P_value 0.0 0.0 

status Failure Failure 

Cumulative Sums forward 

Test 

P_value 0.0 0.0 

status Failure Failure 

Cumulative Sums Reverse 

Test 

P_value 0.0 0.0 

status Failure Failure 

Random Excursions Test 
P_value 0.0 0.0 

status Failure Failure 

Random Excursions 

Variant Test 

P_value 0.0 0.0 

status Failure Failure 

 
TABLE II 

 NIST RESULTS FOR LORENZ WITH TIME SCALING 400 µS AND SAMPLING 

FSAMPLING =50 KHZ 

Test ID  u v 

Frequency 

(monobit) test 

P_value 0.0 0.0 

status Failure Failure 

Frequency Test within a Block 
P_value 0.0 0.0 

status Failure Failure 

TABLE II CONT. 

 
Test ID  u v 

Runs Test 
P_value 0.0 0.0 

status Failure Failure 

Test for the Longest Run of Ones 

in a Block 

P_value 0.0 0.0 

status Failure Failure 

Binary Matrix Rank Test 
P_value 0.0 0.0 

status Failure Failure 

Discrete Fourier Transform 

(Spectral) Test 

P_value 0.0 0.0 

status Failure Failure 

Non-overlapping Template 

Matching Test 

P_value 0.0 0.0 

status Failure Failure 

Overlapping Template Matching 

Test 

P_value 0.0 0.0 

status Failure Failure 

Maurer's "Universal Statistical" 

Test 

P_value 0.0 0.0 

status Failure Failure 

Linear Complexity Test 
P_value 0.0 0.0 

status Failure Failure 

Serial Test 
 

P_value1 0.0 0.0 

P_value2 0.0 0.0 

status Failure Failure 

Approximate Entropy Test 
P_value 0.0 0.0 

status Failure Failure 

Cumulative Sums forward Test 

 

P_value 0.0 0.0 

status Failure Failure 

Cumulative Sums Reverse Test 

 

P_value 0.0 0.0 

status Failure Failure 

Random Excursions Test 
P_value 0.0 0.0 

status Failure Failure 

Random Excursions Variant Test 
P_value 0.0 0.0 

status Failure Failure 

 

 

 
TABLE III  

NIST RESULTS FOR LORENZ WITH TIME SCALING 250 µS AND SAMPLING 

FSAMPLING=50 KHZ 

Test ID  u v 

Frequency 

(monobit) test 

P_value 0.257214 0.459300 

status PASS PASS 

Frequency Test within a 

Block 

P_value 0.044656 0.098090 

status PASS PASS 

Runs Test 
 

P_value 0.455496 0.749383 

status PASS PASS 

Test for the Longest Run 

of Ones in a Block 

P_value 0.271688 0.371372 

status PASS PASS 

Binary Matrix Rank Test P_value 0.480366 0.233657 

status PASS PASS 

Discrete Fourier 

Transform (Spectral) Test 

P_value 0.000000 0.000000 

status Failure Failure 

Non-overlapping Template 

Matching Test 

P_value 0.000000 0.000000 

status Failure Failure 

Overlapping Template 

Matching Test 
P_value 0.000000 0.000000 

status Failure Failure 

Maurer's "Universal 

Statistical" Test 

P_value 0.000000 0.000000 

status Failure Failure 

Linear Complexity Test P_value 0.958956 0.224222 

status PASS PASS 

Serial Test 
 

P_value1 0.000000 0.000000 

P_value2 0.000000 0.000000 

status Failure Failure 

Approximate Entropy Test P_value  0.000000  0.000000 

status Failure Failure 

Cumulative Sums forward 

Test 

P_value 0.041007 0.010509 

status PASS PASS 

Cumulative Sums Reverse 

Test 
P_value 0.000403 0.000587 

status Failure Failure 

Random Excursions Test P_value 0.000000 0.000000 

status Failure Failure 

Random Excursions 

Variant Test 

P_value 0.000000 0.000000 

status Failure Failure 
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TABLE IV  
NIST RESULTS FOR LORENZ WITH TIME SCALING 250 µS AND SAMPLING 

FSAMPLING =20 KHZ 

Test ID  u v 

Frequency 

(monobit) test 

P_value 0.3856 0.3399 

status PASS PASS 

Frequency Test within a Block 
P_value 0.0 0.0 

status Failure Failure 

Runs Test 
P_value 0.0 0.0 

status Failure Failure 

Test for the Longest Run of Ones 

in a Block 

P_value 0.0 0.0 

status Failure Failure 

Binary Matrix Rank Test 
P_value 0.0 0.0 

status Failure Failure 

Discrete Fourier Transform 

(Spectral) Test 

P_value 0.0 0.0 

status Failure Failure 

Non-overlapping Template 

Matching Test 

P_value 0.0 0.0 

status Failure Failure 

Overlapping Template Matching 

Test 

P_value 0.0 0.0 

status Failure Failure 

Maurer's "Universal Statistical" 

Test 

P_value 0.0 0.0 

status Failure Failure 

Linear Complexity Test 
P_value 0.6486 0.4196 

status PASS PASS 

Serial Test 

 

P_value1 0 0 

P_value2 0 0 

status Failure Failure 

Approximate Entropy Test 
P_value 0 0 

status Failure Failure 

Cumulative Sums forward Test 
P_value 0.0013 8.40e-004 

status Failure Failure 

Cumulative Sums Reverse Test 
P_value 0.0042 0.0041 

status Failure Failure 

Random Excursions Test 
* Insufficient number of cycles to complete 

the test (considered fail). 

P_value * * 

status Failure Failure 

Random Excursions Variant Test 
* Insufficient number of cycles to complete 

the test (considered fail). 

P_value * * 

status Failure Failure 

 

TABLE V  
NIST RESULTS FOR LORENZ WITH TIME SCALING 25 µS AND SAMPLING 

FSAMPLING =20 KHZ 

Test ID  u v 

Frequency 

(monobit) test 

P_value 0.162714 0.649829 

status PASS PASS 

Frequency Test within a 

Block 
P_value 0.000078 0 

status Failure Failure 

Runs Test P_value 0 0 

status Failure Failure 

Test for the Longest Run 

of Ones in a Block 

P_value 0.532683 0.001174 

status PASS Failure 

Binary Matrix Rank 

Test 

P_value 0.233986 0.348678 

status PASS PASS 

Discrete Fourier 

Transform (Spectral)  
P_value 0.457296 0.440804 

status PASS PASS 

Non-overlapping 

Template Matching Test 

P_value 

 

0.1294 0.0397 

 status PASS PASS 

Overlapping Template 

Matching Test 
P_value 0 0 

status Failure Failure 

Maurer's "Universal 

Statistical" Test 

P_value 0.009265 0.000271 

status Failure Failure 

Linear Complexity Test P_value 0.762675 0.407226 

status PASS PASS 

Serial Test P_value1 0.002504 0 

P_value2 0.931594 0.046910 

status Partial PASS Partial PASS 

Approximate Entropy 

Test 

P_value 0 0 

status Failure Failure 

Cumulative Sums 

forward Test 
P_value 0.266181 0.915089 

status PASS PASS 

Cumulative Sums 

Reverse Test 

P_value 0.110476 0.516382 

status PASS PASS 

Random Excursions Test P_value 0.4488 0.4549 

status PASS PASS 

Random Excursions 

Variant Test 
P_value 0.7325 0.5215 

status PASS PASS 

TABLE VI  
NIST RESULTS FOR LORENZ WITH TIME SCALING 16.667 µS AND SAMPLING 

FSAMPLING =20 KHZ 
Test ID  u v 

Frequency 

(monobit) test 

P_value  0.485177 0.353408 

status PASS PASS 

Frequency Test within a Block 
P_value 0.000354 0.000955 

status Failure Failure 

Runs Test 
P_value 0 0 

status Failure Failure 

Test for the Longest Run of 

Ones in a Block 

P_value 0.730426 0.256572 

status PASS PASS 

Binary Matrix Rank Test 
P_value 0.441499 0.197806 

status PASS PASS 

Discrete Fourier Transform 

(Spectral) Test 

P_value 0.514698 0.526611 

status PASS PASS 

Non-overlapping Template 

Matching Test 

P_value  0.2649 0.3207 

status PASS PASS 

Overlapping Template Matching 

Test 

P_value 0.048116 0.019115 

status PASS PASS 

Maurer's "Universal Statistical" 

Test 

P_value 0.143473 0.810594 

status PASS PASS 

Linear Complexity Test 
P_value 0.712669 0.819432 

status PASS PASS 

Serial Test 

P_value1 0.077330 0.004559 

P_value2 0.486258 0.270332 

status PASS Partial PASS 

Approximate Entropy Test 
P_value 0 0 

status Failure Failure 

Cumulative Sums forward Test 
P_value 0.763576 0.206624 

status PASS PASS 

Cumulative Sums Reverse Test 
P_value 0.712989 0.682964 

status PASS PASS 

Random Excursions Test 

* Insufficient number of cycles to 

complete the test (considered fail). 

P_value 0.4492 * 

status PASS Failure 

Random Excursions Variant 

Test 

* Insufficient number of cycles to 

complete the test (considered fail). 

P_value 0.5313 * 

status PASS Failure 

 

 
TABLE VII 

NIST RESULTS FOR LORENZ WITH TIME SCALING 250 µS AND SAMPLING 

FSAMPLING=500 HZ 

Test ID  u v 

Frequency 

(monobit) test 

P_value 0.257214 0.459300 

status PASS PASS 

Frequency Test within a Block 
P_value 0.044656 0.098090 

status PASS PASS 

Runs Test 

 

P_value 0.455496 0.749383 

status PASS PASS 

Test for the Longest Run of 

Ones in a Block 

P_value 0.271688 0.371372 

status PASS PASS 

Binary Matrix Rank Test 
P_value 0.480366 0.233657 

status PASS PASS 

Discrete Fourier Transform 

(Spectral) Test 

P_value 0.578611 0.890517 

status PASS PASS 

Non-overlapping Template 

Matching Test 

P_value 

(mean) 
0.5134 0.5293 

status PASS PASS 

Overlapping Template 

Matching Test 

P_value 0.301860 0.049567 

status PASS PASS 

Maurer's "Universal 

Statistical" Test 

P_value 0.306558 0.202464 

status PASS PASS 

Linear Complexity Test 
P_value 0.049207 0.354250 

status PASS PASS 

Serial Test 

 

P_value1 0.737745 0.504885 

P_value2 0.724442 0.351622 

status PASS PASS 

Approximate Entropy Test 
P_value 0.718234 0.851571 

status PASS PASS 
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TABLE VII CONT. 

 
Test ID  u v 

Cumulative Sums forward 

Test 

P_value 0.331430 0.468936 

status PASS PASS 

Cumulative Sums Reverse 

Test 

P_value 0.414308 0.774705 

status PASS PASS 

Random Excursions Test 

P_value 

(mean) 
0.3277 0.5884 

status PASS PASS 

Random Excursions Variant 

Test 

P_value 
(mean) 

0.2607 0.5167 

status PASS PASS 
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