
 

  

Abstract—Traffic flow prediction holds significant practical 

value in enabling efficient traffic management, enhancing 

transportation planning, and optimizing resource allocation. 

However, accurately forecasting traffic flow within a spatio-

temporal context remains challenging due to complex 

dependencies within the traffic network. To model the spatio-

temporal dependence of traffic sequence data, the existing 

traffic flow prediction models usually use the adjacency graph 

based on the prior spatial distribution as the input of shallow 

graph neural network (GNNs), but the over-expression of 

spatial adjacency relationship will affect the extraction effect of 

spatio-temporal dependence. Moreover, the spatio-temporal 

feature extraction ability of traditional GNNs is limited by the 

number of levels and the diffusion speed of node features. To 

address these issues, we propose a novel traffic flow prediction 

model with a unique historical time perspective: Temporal 

Branch Convolution Graph Neural ODE (TBC-GNODE), 

where Temporal Branch Convolution (TBC) is specifically 

designed to capture complex temporal dependencies in the data, 

and the Graph Neural ODE (GNODE) module uses adjacency 

graph with continuous correlation values to extract spatial 

dependencies, and applies optimized graph neural differential 

equations to represent the dynamic system of traffic flow 

variation. These modules are combined in a parallel structure 

and stacked in a residual manner to extract long-range spatio-

temporal dependencies synchronously. Our experiments on 

four real datasets demonstrate that our proposed model 

improves prediction performance by over 4% on average 

compared to the baseline model. This showcases its practical 

application potential in the field. 

 
Index Terms—spatio-temporal forecasting, dynamic system, 

graph neural ODE, dilated convolution 

I. INTRODUCTION 

N recent years, the spatio-temporal prediction task of 

traffic within the context of Intelligent Transportation 

Systems (ITS) has garnered significant attention. Advanced 
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computing capabilities and the availability of vast amounts 

of spatio-temporal data have paved the way for applying 

deep learning methodologies in the prediction of traffic 

patterns. By using deep learning techniques, spatio-temporal 

data can be analyzed, which in turn generates situational 

awareness of the road network for intelligent transportation. 

This plays a crucial role in the downstream modules of ITS, 

such as traffic scheduling, intelligent signal control, and 

road planning [1]. Therefore, research in this field is of 

significant importance to the enhancement of human 

production and quality of life. 

Thus far, the spatio-temporal prediction of traffic remains 

a challenging task. One of the primary obstacles is the 

susceptibility of traffic flow data to the spatial correlation of 

road sensors [2]. However, this correlation cannot be 

entirely determined by the distance between sensors. Fig. 1 

depicts the diverse representations of regional connections 

in a transportation network. Fig. 1(a) illustrates the 

geographical topology of the traffic road network based on a 

prior distance. While Fig. 1(b) exhibits the resulting 

semantic correlation graph structure, obtained via 

calculation, which denotes the weight representing the 

strength of association. In the field of traffic prediction, a 

notable observation is the existence of similar traffic 

patterns between distant roads, despite their spatial 

separation. Conversely, for traffic nodes that are closely 

positioned yet not in each other's essential path, the 

adjacency relationship based solely on realistic distance may 

introduce noise that can adversely affect the predictive 

model [3]. Therefore, the problem of extracting the profound 

spatial associations of traffic nodes is a topic of considerable 

importance in traffic prediction research. Additionally, it is 

crucial to explore suitable approaches for integrating the 

extracted spatial features and temporal patterns to maximize 

the advantages of spatio-temporal features in traffic flow. 

This represents another significant challenge that warrants 

further study. 

Within the realm of traffic prediction, graph neural 

networks (GNNs) have emerged as a popular choice among 

researchers due to their robust processing capabilities of 

graph topological data [4]. GNNs can efficiently aggregate 

the features of graph neighbor nodes in a hierarchical neural 

network structure and have demonstrated exceptional 

performance in tasks such as node classification [5, 6], link 

prediction [7], and scene graph generation [8]. In traffic 

prediction tasks, a significant amount of attention has been 

dedicated to the spatial-association representation of traffic 

nodes, such as the combination of multiple distance 

adjacency matrices with matrices representing their 

individual connections into spatio-temporal synchronization 

graphs [9, 10] or the complete replacement of the prior 
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Fig. 1. Geographical connection and semantic connection in a traffic road network 

graphs adaptive adjacency matrices solely controlled by 

learnable variables [11]. Despite these advancements, the 

over-smoothing problem of GNNs poses difficulties for 

fully adaptive adjacency matrices to learn the complete 

correlation expression between nodes. Although the spliced 

space-time graph can capture the local and global spatial 

correlation of traffic patterns to a certain extent, the 

excessively large graph structure inevitably contains some 

superfluous connections, acting as a limiting factor for graph 

GNNs. In conclusion, for complex traffic flow data, the 

expression of adjacency relationship with necessary 

correlation information is the crucial problem to improve the 

accuracy of prediction results. 

On the other hand, extracting time patterns from complex 

traffic data is also a subject of active research. The RNN-

like structure of Long Short-Term Memory(LSTM) [12, 13] 

and Gated Recurrent Unit(GRU) [14] models, however, 

makes them susceptible to the issue of gradient vanishing or 

explosion when capturing ultra-remote sequence data [15]. 

Moreover, the Transformer model, though promising, 

presents a complex structure for spatio-temporal sequence 

data and entails a high time cost of reasoning [16]. 

Therefore, in the domain of traffic prediction, the 

development of a lightweight and efficient time feature 

extraction method constitutes another significant challenge 

in enhancing the predictive ability of the model. 

In order to comprehensively capture the effective 

semantic correlation in space and improve the accuracy of 

the model in learning the spatio-temporal characteristics of 

traffic data, a spatial correlation graph without prior spatial 

structure was proposed in this study, inspired by the 

Dynamic Time Warping method [17]. An improved Graph 

Neural Ordinary Differential Equation (GNODE) module 

was constructed to capture the continuous dynamics of 

traffic flow and address the problem of spatial dependence 

extraction. In addition, this paper analyzes the time 

dimension features of traffic sequences from a new 

perspective and proposes two parallel multi-windows 

extended convolution modules to help the model capture 

multi-dimensional time dependence. In summary, the 

primary contributions of this study include: 

1) We propose an innovative method for creating a spatial 

correlation graph solely based on sequence data. This 

approach allows us to represent the semantic correlation 

and specific correlation degree between traffic nodes 

without any prior spatial structure. In contrast to the 

existing integrated spatio-temporal graph model, our 

dynamic spatio-temporal correlation graph is more 

refined in size and contains more abundant and reliable 

spatial dependence information. 

2) This paper presents a novel Graph Neural ODE 

(GNODE) module for effectively extracting association 

information. The GNODE module is derived and 

elaborated upon in detail, emphasizing its unique 

characteristics. Notably, the module incorporates a more 

reasonable parameter matrix and connection mode, 

capitalizing on the interpretability advantage of the 

Sylvester Differential Equation [18, 19]. Moreover, it 

circumvents the limitation of traditional Graph Neural 

Networks (GNN) regarding over-smoothing [20]. To 

further improve the robustness of the model against 

approximation errors, we designed a connection module 

for multi-step GNODE solutions, integrating the 

concept of residual connection. 

3) To extract more comprehensive time-dependent 

features, this study reexamines the composition 

structure of historical data from a novel perspective, 

proposes a subsequence learning approach, and devises 

a Temporal Branch Convolution (TBC) module that is 

parallel to GNODE. The TBC module inherits the 

lightweight features of dilated convolution[21] and can 

focus on the temporal correlation of subsequence traffic 

sequences. This approach enhances the model's 

sensitivity to short-term oscillations, and the residual 

stacking module captures the temporal dependence on 

long-term time scales.  

Furthermore, to improve GNODE's ability to capture the 

dynamics of the original data more accurately, we introduce 

the original data with only feature embedding as input to 

GNODE. We designed a refined residual GNODE spatio-

temporal parallel learning framework to extract spatio-

temporal features of the traffic sequence synchronously. 

II.  RELATED WORK 

A. The Fusion of Spatio-Temporal Features 

In recent years, researchers in the field of traffic 

prediction have focused on extracting and fusing spatio-

temporal features to utilize the characteristics of traffic flow 

fully. In 2018, Li Y. et al. proposed a traffic flow prediction 

model named DCRNN  [22], based on Graph Neural 

Networks, which employs the bidirectional random walk 
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method to model the spatial information of the traffic graph, 

and GRU to extract temporal dynamic information. 

Additionally, Yu B. et al. proposed a spatio-temporal traffic 

flow prediction framework named Spatio-temporal Graph 

Convolutional Network (STGCN), which uses spatial graph 

convolution and one-dimensional temporal convolution for 

spatio-temporal feature extraction [23]. These methods aim 

to enhance prediction accuracy by effectively extracting and 

fusing spatio-temporal features from traffic flow data. Song 

et al. integrated the concept of time step into the spatio-

temporal graph, extending the 𝑁 × 𝑁 dimensional adjacency 

matrix to a larger matrix(3𝑁 × 3𝑁). This allowed for the 

simultaneous representation of spatial and local temporal 

correlations, with the spatio-temporal graph convolution 

module extracting spatial and temporal dependencies 

synchronously. The resulting model was named STSGCN 

[9]. In 2021, Li et al. proposed STFGNN[10], which utilizes 

a DTW similarity matrix as an extension of the original 

distance matrix to further enhance the size and expression 

capacity of the spatio-temporal graph. The resultant graph is 

then used as input to gated time convolution, facilitating the 

extraction of long-range spatio-temporal dependencies. Wu 

et al. designed an adjacency graph entirely defined by a 

learnable parameter matrix [11] and applied GNN and 

extended causal convolution to extract spatio-temporal 

features, respectively. 

However, the majority of the aforementioned studies 

utilize the original distance matrix, which contains certain 

erroneous connections, rendering it challenging to enhance 

the precision of the models. 

B. Neural Ordinary Differential Equation 

In 2018, Chen et al. proposed a novel method for 

modeling continuous-time dynamical systems using neural 

networks called Neural Ordinary Differential Equations [24] 

(Neural ODE). This was achieved by using a differential 

equation solver to compute the evolution of the hidden states 

of the neural network. This approach allows complex data to 

be modeled in continuous time. Based on the original Neural 

ODE method, researchers at home and abroad have begun to 

further study and apply this method in recent years. For 

example, Schildt et al. proposed Stiff Neural ODE [25] for 

classical problems with rigid conditions, which allows 

Neural ODE to be applied in practical issues such as 

chemical kinetics and environmental engineering with 

multiple time scales. An important extension of Neural ODE 

in graph structure modeling is Continuous Graph Neural 

Networks (CGNN), proposed by Xhonneux et al. [26]. This 

study first proposed the concept of continuous graph neural 

networks. Differential equations are used to model the 

discrete evolution process of the graph as continuous, and it 

is proven that the continuous graph neural network is robust 

to the over-smoothing of graph neural networks, meaning 

that the original graph neural network structure can be 

deeper to capture long-term dependencies between nodes. 

Moreover, the continuous nature of the neural network 

enables node features to quickly spread to the entire graph in 

continuous time, which improves stability and efficiency. 

Subsequently, Fang Z. et al. proposed the Spatio-Temporal 

Graph ODE Networks (STGODE) [27], which employ 

parameterized GNODEs instead of traditional GNNs for 

spatio-temporal prediction and have achieved outstanding 

predictive performance. 

However, the CGNN's overall architecture is relatively 

lightweight and may not be well-suited for modeling 

complex traffic flows. Similarly, the GNODE module in 

STGODE only considers for temporal and feature transition 

matrices, with the extraction of spatial features still being 

locally constrained by prior spatial distance. Addressing 

these limitations may offer the potential for further 

enhancements in the model's predictive accuracy. 

III. PRELIMINARIES 

A. Problem Formulation 

Traffic flow prediction falls under the category of 

sequence prediction, wherein the objective is to forecast 

future traffic flow data based on past observations. In the 

context of traffic flow prediction, the graph information G  

represents the network topology, while the input sequence 
N H dX    comprises the graph signal, which is the data 

recorded by N  sensors. The output sequence N FY   

corresponds to the predicted traffic flow at a future time step 

T  . The objective is to learn a mapping function that can 

accurately predict the traffic flow T  steps: 

 ,i j

n n

f
X G Y  ⎯→   (1) 

Where 0 i T  , 'T j T  ,
i

nX  denotes the i-th step 

historical traffic data of the n-th node, and j

nY  denotes the j-

th step future traffic data of the n-th node. 

B. Neural ODE 

Neural ODE enables the integration of neural networks 

with dynamic systems. It involves a differential equation 

and employs a neural network to parameterize a vector field. 

The propagation process of a neural network is modeled as a 

solution process of a differential equation with the state of 

neurons regarded as the state variable in a dynamic system. 

Neural differential equations offer another perspective for 

comprehending and designing neural networks. An 

illustrative example of Neural ODE is as follows: 

 ( ) ( ) ( )( )00 , , 0 ,h h h t ODE f h t= =，  (2) 

Since Neural ODE is a continuous dynamic system, t  in 

the above equation denotes a continuous time range, ( )h t  

represents the state vector of the neuron at time t , ( )0h  is 

the initial state,   is the model's parameter, and 
1 1: k kd d d d

f
 

 → can be any standard neural 

network architecture. ( )ODE   indicates the operation for 

solving differential equations, which can be expressed as a 

standard differential equation form:  

 ( )
( )

( )( )00 , ,
dh t

h h f h t t
dt

= =,  (3) 

Where ( )f   is considered as a function of the dynamic 

system in Neural ODE and /( )dh dt t  represents the 

derivative of the neuron state ( )h t  with respect to time t . 

This equation signifies the progression of the neural network 

over time. The input of the Neural ODE consists of the 

initial state (0)h  and the dynamic system f , and the 

independent variable is the time variable t . The hidden state 

( )h T  of the neural network at the target time point T  can be 

determined by solving the ODE. 
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IV. MODEL 

A. Adjacency Matrix 

The adjacency matrix is a matrix that describes the 

correlation information of the nodes in a graph and serves as 

the foundation of the graph convolution operation. In the 

previous work [9, 10, 23, 27], the adjacency matrix for 

traffic is usually defined using spatial distance information 

as follows: 

 ,

,

1,

0,

i j

i j

if d
A

otherwise

 
= 



 (4) 

Where ,i jd  represents the spatial distance between traffic 

detector node i  and node j , while   is the threshold that 

regulates the sparsity of nodes. 

To a certain extent, spatial distance can indicate the 

correlation between nodes. However, in a real complex 

traffic network, the adjacency matrix that uses the 

geographical distance between two nodes as a correlation 

index may not always accurately represent the correlation 

degree between nodes. For instance, consider two 

intersecting traffic routes in reality, such as overpasses. 

Although their starting and ending points are not similar, 

there may be detector nodes located near their intersection. 

In such cases, the spatial distance between the pair of 

detector nodes would be extremely small, but the similarity 

of their traffic flow may not be substantial. 

 
Fig. 2. The data comparison of two sample traffic nodes in 

the real data 

Fig. 2 displays traffic flow data from two detector nodes 

during the same time period. It is evident that the traffic 

patterns between the two nodes differ significantly with 

respect to the onset time of fluctuations and the period of 

fluctuation. Consequently, an edge between these two nodes 

in the graph structure will not facilitate GNN learning and 

might even introduce noise. Unfortunately, despite the 

dissimilarity in traffic patterns, these nodes are situated in 

close proximity to each other in the actual traffic network. It 

results in an edge being present between the nodes in the 

graph structure constructed using traditional distance 

measurement methods, thereby contributing to noise in the 

GNN. In contrast to prior work, we utilize only the DTW 

distance to gauge the similarity of traffic nodes and create a 

graph adjacency matrix N N
A

  that expresses the degree 

of node dependence. The refined size of A  represents the 

correlation of traffic patterns between graph nodes. 

The DTW method [17] is a frequently used technique for 

measuring sequence similarity, boasting strong adaptability 

to fluctuations within sequences and an ability to handle 

local translation and scaling matching effectively. DTW can 

conduct similarity-matching computations on specific time 

steps within traffic flow sequences. Its specific calculation 

formula is presented below:  

 ( ) ( ), ,X YDTW X Y D L L=  (5) 

In Equation (5), XL  and YL  denote the data sequence 

length of nodes andX Y , respectively, while D  represents 

the alignment cost matrix of the two nodes. When provided 

with a Euclidean distance matrix M , Equation (5) can be 

used to compute ( , )D i j  via the recursive Equation (6): 

( ) ( ) ( ) 
,( , )

1, , , 1 , 1, 1

i jD i j M

min D i j D i j D i j

=

+ − − − −
 (6) 

Where i  and j  denote the recurrence term, while the initial 

condition for the recurrence formula is given as follows: 

 ( )
0 0

0 0 0 0

0 0

0 0 0

, 0 0

  0 0?

i and j

D i j i and j

i and j

= =


=  = 


  =

，

，

，

 (7) 

Typically, the adjacency graph produced by Equation (4) 

can indicate whether nodes are similar enough to have 

connected edges. Nevertheless, when we use similarity as 

the basis for adjacency, this expression may not fully reflect 

the degree of similarity between their traffic patterns. Hence, 

we utilize similarity as the weight of edges to enhance the 

adjacency graph, enriching it with more comprehensive 

node dependence information. Ultimately, our adopted 

method for constructing the adjacency matrix is as follows: 

 
2 2

,

( , ) ( , )
 

0

i j

DTW i j DTW i j
exp if exp

otherwise

A

       
− −           =        




，

，


 

 (8) 

To control the sparsity of the matrix, threshold parameters 

  and   are used in Equation (8), to ensure the 

effectiveness of the adjacency information and mitigate the 

impact of poor associations on graph learning, any 

connections below a designated threshold   are set to 0. 

B. Graph Neural ODE Module 

The core idea of a graph neural network involves 

updating a node's feature information by aggregating its 

neighboring nodes' features within the graph. The 

commonly utilized graph convolution formula, grounded in 

spectral graph theory  [28], can be expressed as follows:  

 ( ) ( )1
( )

l l
H AH W

+
=  (9) 

Where ( )1lH +  represents the output state of layer l , ( )lH  

represents the feature matrix of layer l , N N
A

  represents 

the adjacency matrix after regularization, 1l ld d
W +  

represents the weight matrix between layer l  and layer 1l + , 

which is one of the parameters that the model learns, and   

represents the activation function. However, the main issue 

with this model is its tendency to over-smooth, which results 

in a limited depth of the convolutional layer. Drawing 

inspiration from [26] and [27], we view GNN based on 

spectral graph theory as a time-varying neural dynamic 

system that extends the capabilities of Neural ODE and 

Graph Neural Networks (GNNs) to handle time series data 

and adaptively adjusts model complexity. This allows us to 

effectively address the over-smoothing problem by 
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incorporating spatio-temporal information of graph 

structures into the continuous time domain. To enhance the 

spatial-temporal modeling and expression capability of 

GNN for graph data, we consider a discrete dynamic as 

follows: 

 ( ) ( ) ( )1 0l l

N T CH H WA W W H
+

=     +  (10) 

In Equation (10), the output feature of the -thl  layer is 

denoted by ( )l N T CH   , while ( )0H  represents the 

residual term of the restart distribution which is added to 

mitigate the issue of over-smoothing. 1 1 1C

TW Q Q=   and 

2 2 2T

TW Q Q=   are diagonalizable feature transformation 

matrix and time transformation matrix respectively, where 

iQ  is the learnable orthogonal matrix, and i  is the 

learnable vector with all elements greater than 0 and less 

than 1, both having all eigenvalues less than 1. Unlike 

previous works, our approach aims to make the node 

sequence learn synchronously in time and space dimensions 

by transforming or adjusting the feature matrices of different 

nodes, and further stimulating the strong diffusion potential 

of GNODE. For this purpose, we introduce an auxiliary 

space transformation matrix 3 3 3N

TW Q Q=  , which 

dynamically supplements the graph structure and 

participates in the time evolution of discrete dynamics. 

Finally, the product of the tensor and the corresponding 

dimension of the matrix is denoted by " ", this operation is 

often referred to as Einstein operation[29] and can be 

calculated as follows:  

, , ,... , , ,

, , ...

i j k

i j k

D A B C     =     (11) 

In this equation, , ,A B C
 et al. is a tensor with appropriate 

indices, and the indices labeled , ,i j k  et al. are summed, 

while the indices , , 
 et al. that have not been summed 

are in the resulting tensor D . To ensure clarity in 

subsequent derivations of the dynamic system, it is essential 

to note that   has specific mathematical properties that are 

similar to common matrix multiplication: 

1) Associative property: The results of Einstein operation 

are controlled by the input tensor and the manipulated 

index, which ensures that the method is group-

independent. For example:  

 ( ) ( )A B C A B C A B C  =   =    (12) 

2) Distributive property: Einstein operation is distributive 

over addition, meaning we can distribute the operation 

over a sum of tensors. For example:  

 ( )A B C A C B C+  =  +   (13) 

In the context of the Einstein operation, many of the 

mathematical properties that apply to matrix multiplication 

also apply, including linearity, product rule, and chain rule 

of matrix derivatives. This enables us to compute derivatives 

of complex functions involving tensors using Einstein 

expressions. However, it should be noted that the Einstein 

operation is not the same as matrix multiplication and 

involves different indices that must be appropriately 

contracted to obtain the desired result. This extension allows 

us to compute derivatives of complex functions involve 

tensors.  

Therefore, in the following derivations of ODEs, the 

Einstein operation can still be regarded as a matrix 

multiplication extended to the relevant dimension. The 

feature matrix tuple { , , }N T CW W W  dynamically adjusts the 

spatial, temporal, and embedded features of the neural ODE 

in Equation (10), allowing for rapid diffusion of high-

dimensional features across the entire graph structure. The 

explicit formula for this dynamic system can be obtained as 

follows: 

( ) ( )( )0

0

l
il i i i

N T C

i

H A H W W W
=

=      (14) 

 In order to construct a continuous dynamic system, we 

replace the original discrete layer variable l  with a 

continuous variable 0t + . We consider Equation (14) as 

the Riemann sum of the integrals from time 0t =  to time 

lt = , which enables the extension of the discrete 

propagation process to the continuous propagation case. We 

let 1j i= − , 1 0 1( ) / ( )t t n −= + + , and t n= , yielding the 

following equation: 

 ( ) ( )0

0

l
j tl j t j t j t

N T C

j

H A H W W W t
   

=

=     （ ）  (15) 

When n →  , the following equation holds true:  

 ( ) ( )1 0

0

tl

N T CH A H W W W d
   



+

=      (16) 

Furthermore, by solving the second derivative of the left 

and right terms in the equation as mentioned above and 

carrying out another integral operation, it is possible to 

obtain that the discrete dynamics in Equation (10) can be 

discretized from the following ODE: 

 

( )
( ) ( )

( ) ( ) ( )0

t

t t

N

t t

T C

dH

dt
lnA H H lnW

H lnW H lnW H

=  + 

+  +  +

 (17) 

In model calculations, computing matrix logarithms as 

shown in Equation (17) can be a complicated process. To 

simplify this calculation, a first-order Taylor expansion [26] 

can be used as an approximation, where lnM is 

approximated by M I− : 

 

( ) ( )

( )

( ) ( )0

( )

t

t

t

N

t

T

t

C

dH
H H W I

d
H W I

H W I H

A I
t

=  +  −

+  −

+  − +

−（ （ ）

（ ）

（ ）

）

 (18) 

Similar to the previous work [26], the differential 

equation presented above can also be reformulated into the 

general form of Sylvester Differential Equation [19], which 

is given by:  

 

( )
( ) ( )

(0)

t
t tdX

A X B X C
dt

X D

 
=  +  + 

 
 = 

 (19) 

By utilizing Equation (18), we can derive the following 

expression: 

( )

( ) ( )
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0

0
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





=

 (20) 

In this context, let 3 N T C

N T CW W W I W  + + − = , we 

can obtain the following expression: 
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In the context of predictive models, Sylvester Differential 

Equations possess two essential properties: 

1) Given an initial value condition (0)H , the Sylvester 

Differential Equation has a unique solution ( )tH , which 

is essential for ensuring the accuracy and reliability of 

the model predictions. 

2) As the dynamic time approaches infinity, the solution of 

the equation approaches a stable value, ensuring that the 

model predictions are not affected by long time spans, 

which are typically represented by numerous layers in 

discretization graph neural networks. 

Thus far, Equation (18) has provided an approximate 

representation of the differential equation used in the solver. 

Additionally, when the Sylvester operator ( )
( )

t
A I H= − S  

( )t
H W+  is set, Equation (18) has a unique solution in the 

following form: 
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 (22) 

To validate the accuracy of the formula as mentioned 

above, we can substitute the initial value 0
(0)H H=  into the 

following expression:  

 ( )
0 0 0 0

1 10
H H H H H− −= − + =S S  (23) 

In our approach, we interpret the given differential 

equation as a continuous dynamic system, and use the initial 

state 0H , obtained through feature embedding of the input 

data, to solve the system. We specify a time point tensor 

0 1 2[ , , ]t t t t=  to solve the ODE at various time instants, with 

the input value  )0,it    serving as the initialization point 

for the solver. To ensure that the subsequent residual 

connection is effective, we set the time step of the solution 

using the half-value link, which is 1 2 2/t t= . Numerical 

methods can then be employed to solve the problem at 

corresponding time points. By solving the ODE, we can 

obtain the numerical solutions at all time instants, 

representing the system's spatio-temporal dynamics. 

In the previous simplification of the matrix logarithm, we 

utilized the first-order Taylor approximation, which yields a 

small error that accumulates as the ODE solving time step 

increases. To comprehensively incorporate the solution state 

of different time steps, we define the output solution state as 

0 1 2[ , , ]X X X , and obtain the final output as follows: 

 ( ) 1 21GODEX X X = − +  (24) 

In the equation above,   is a linear weight parameter 

used to balance the contribution value. Notably, the 

GNODE applied to the ODE Solver considers the restart 

distribution term 0H , which means that the initial state 0X  

is not considered in the residual connection of the equation 

above. This condition is crucial for ensuring the reliability 

of the dynamic system's results. 

C. Temporal Branch Convolution Module 

In the context of spatio-temporal sequence prediction, 

while the GNODE above possesses robust spatial 

representation capabilities and stable performance, their 

accuracy is somewhat limited due to the complex and 

variable nature of traffic flow data. Consequently, the 

extraction of temporal features constitutes another crucial 

factor in this task, alongside spatial correlation feature 

extraction. To tackle this challenge, we developed a 

pioneering approach called Temporal Branch Convolution 

(TBC). 

 

 

Fig. 3. Details of the TBC-Block 
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In the task of traffic prediction, the predicted future data 

is contingent upon the historical data, and therefore the 

extent to which the prediction results depend on the 

historical time data may vary depending on the frequency 

and amplitude of oscillations. In other words, different 

historical time steps may exert varying degrees of influence 

on the prediction results. In consideration of the time 

characteristics of traffic data, we partition the entire 

sequence into two subsequences, the front subsequence and 

the back subsequence. These subsequences represent the 

deep historical distribution containing the long-term 

potential distribution in the historical data and the future 

trend distribution with trend dynamic characteristics, 

respectively. In the task of data-driven sequence prediction, 

we aim to apply different temporal convolution operations 

to the subsequences with distinct potential features so as to 

acquire more comprehensive and diverse multi-dimensional 

features. 

The details of the TBC-Block are shown in Fig. 3. where 

sequence elements with different stages and roles are 

represented by different colors, in the TBC-Block, inS  refers 

to the input sequence, which is considered to have 

hierarchical temporal characteristics. This sequence is split 

into two sub-sequences: head subsequence 1S  and rear 

subsequence 2S , representing the deep historical and 

shallow future trend sequences, respectively. Multi-

dimensional hierarchical features are extracted from these 

sub-sequences and used as input for two synchronous 

dilated convolutions, which are then concatenated to 

generate the prediction output. Moreover, we propose two 

sets of Mask Vectors, 1V  and 2V , as learnable parameters in 

the model framework. This can be interpreted as an attention 

mechanism applied to historical time steps, allowing the 

model to adaptively adjust the contribution of different 

positions in the sub-sequence during training. 

In the process of model training, it is common for the 

model to learn deep features that are not representative of 

the original sequence when two subsequences are 

completely separated. This phenomenon leads to the 

overfitting of branch granularity and negatively affects the 

overall model expression. To ensure the robustness and 

generalization of the deep features of the branch, we 

propose focusing on the middle sequence while learning 

multidimensional features. Specifically, we simultaneously 

shift the central part of the input sequence (the orange 

sequence elements in Fig. 3) to the right and left ends of the 

two subsequences. This approach ensures that the model 

always has comprehensive features with a robust overall 

representation during the learning process, thus avoiding 

overfitting issues in branch convolution learning. 

In addition, we consider the iterative training mechanism 

and optimize the subsequence composition comprehensively. 

The sequence prediction model training can be regarded as a 

left-out-stack advancement process, where most data 

changes from the rear subsequence to the head subsequence 

as shown in Fig. 4.  

To learn the time characteristics of the rear subsequence 

and consider its deep features when it becomes the head 

subsequence, a padding operation is performed on the right 

side of the rear subsequence. Similarly, the padding 

operation is performed on the left side of the head 

subsequence to retain the shallow features of the previous 

sequence as the rear subsequence when the rear subsequence 

becomes the head subsequence. 

 We perform these padding operations to ensure that the 

data in the head subsequence is retained during the learning 

process when it is used as a rear subsequence. Following 

this, two multilayer convolutions with the same structure 

extract features from the padded sequence, resulting in two 

time series 1outS  and 2outS  with length '/ 2T . Finally, these 

two series are concatenated in series according to the 

original sequence, where the notation 
j

iS  refers to the -thj  

element in the output sequence iS . 

 
' '1 2 ( /2) 1 2 ( /2)

1 1 1 2 2 2, , , , , , ,T T

out out out out out out outS S S S S S S=    (25) 

D. TBC-GNODE 

Given that the features extracted by the convolution layer 

typically correspond to nonlinear high-dimensional 

representations of the input data, the complex and nonlinear 

 
Fig. 4. Head and rear subsequence relationships in multiple iterations 
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nature of these features may impact the ability of the 

GNODE module to capture potential patterns and dynamics 

in the data effectively. Therefore, it is important to carefully 

consider the impact of the convolutional layer on the 

original data when inputting these features into the GNODE 

module. 

To fully utilize the capabilities of the GNODE module 

and capture the continuous evolution of graph node 

characteristics over time or spatial position, we propose a 

parallel synchronous structure consisting of the GNODE 

module for capturing spatial dependence and the TBC 

module for acquiring deep traffic flow patterns. Compared 

to previous work with a “sandwich” structure, featuring 

three layers of modules arranged in sequence [9, 27], this 

synchronous architecture for feature extraction in the spatio-

temporal domain can capture more complex nonlinear 

dynamics in the original data, thus enhancing the model's 

fitting ability. 

Incorporating the design mentioned above considerations, 

the architecture and connectivity details of the final model 

are illustrated in Fig. 5. Where Fig. 5(a) displays the 

forecasting framework of TBC-GNODE, where the nodes in 

the graph are shaded with different connection colors to 

represent their degrees of association. The input sequence 

and output sequence lengths of the model are T and T', 

respectively. Fig. 5(b) presents the fusion mode of TBC-

GNODE internal modules. After feature embedding, the 

original data and the prior-free spatio-temporal adjacency 

graph are input to the ODE solver to obtain richer spatio-

temporal feature expressions. The TBC module extracts 

spatio-temporal correlation features of different historical 

depths synchronously, and the branch features obtained 

from it are fused element-wise. To capture long-range 

spatio-temporal dependencies without losing low-level 

features, residual connections are incorporated among 

multiple TBC-GNODE modules. Fig. 5(c) illustrates the 

stack architecture of TBC-GNODE connected by the 

residual structure. 

In order to reduce the sensitivity to outliers, the model 

utilizes the Huber loss function  [30], this loss function 

strikes a balance between the Mean Squared Error (MSE) 

and Mean Absolute Error (MAE) loss functions. Huber loss 

is expressed as: 

( )( )
( )( ) ( )

( ) ( )

2

2

1
,

2
,

1
,

2

Y f X if Y f X

L Y f X

Y f X if Y f X




  


− − 

= 
 − − − 


 
(26)

 

In the given equation, Y  represents the ground truth value, 

( )f X  represents the predicted value, and   represents the 

hyperparameter in Huber loss, which is utilized to regulate 

the impact of outliers on the loss function. 

V. EXPERIMENTS  

A. Datasets and Baselines 

The performance of the TBC-GNODE was evaluated on 

four widely-used public datasets, namely PeMS03, PeMS04, 

PeMS07, and PeMS08, which comprise real traffic data 

collected and curated by California Transportation 

Performance Measurement System (PeMS)  [31]. The 

specifics of these four datasets are presented in Table I, 

where each dataset provides traffic flow information at five-

minute intervals. 

 
Fig. 5. The architecture and connection method details of TBC-GNODE 
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TABLE Ⅰ 
DETAILS OF THE FOUR DATASETS 

Datasets Data Source Region 
Number of 

Sensors 

Total Time 

Steps 

PeMS03 Northern California 358 26208 

PeMS04 San Francisco Bay Area 307 16992 

PeMS07 Los Angeles 883 28224 

PeMS08 Santa Clara County region 170 17856 

To evaluate the TBC-GNODE performance of our model, 

we conduct a comparative study against the following 

baseline models: 

1) DCRNN [22]: Deep Convolutional Recurrent Neural 

Network, which combines graph convolutional 

networks and spatio-temporal GRU to capture spatial 

dependencies and temporal dynamics of traffic data. 

2) STGCN [23]: Spatio-Temporal Graph Convolutional 

Network, which utilizes graph convolutional networks 

to capture the spatial and temporal patterns in time 

series data. 

3) GraphWaveNet [11]: Graph WaveNet, which introduces 

adaptive adjacency matrices and utilizes dilated causal 

convolutions for spatio-temporal feature extraction.. 

4) STSGCN [9]: Spatio-Temporal Synchronous Graph 

Convolutional Networks, which is an extension of the 

STGCN model that utilizes a synchronous strategy to 

capture the temporal dependencies and spatial 

correlations in spatio-temporal data by exploiting the 

information from different times simultaneously. 

5) STFGNN [10]: spatio-temporal Fusion Graph Neural 

Networks, which extends the original adjacency matrix 

using DTW distance and integrates spatio-temporal 

information through a gated mechanism. 

6) STGODE [27]: Spatio-Temporal Graph ODE Networks, 

which is an extension of continuous GNNs and fuses 

TCN for spatio-temporal feature extraction, inherits the 

advantage of continuous GNNs that can avoid over-

smoothing problem. 

B. Experiment Settings 

To ensure a fair comparison with the baseline model, we 

partitioned the four baseline datasets into training, validation,  

and test sets in a ratio of 6:2:2, respectively. We used 12 

consecutive historical time steps to predict the traffic flow 

data for the next 12 time steps. All experiments were 

conducted on a Linux server with an Intel(R) Xeon(R) Gold 

6330 CPU @ 2.00GHz and an NVIDIA RTX 3090 (24GB) 

GPU. We applied the Runge-Kutta method  [32] in the 

ODEsolver. The hidden dimensions of the TBC module 

were set to 32 and 64, with each layer containing three 

TBC-GNODE blocks. We used three evaluation metrics: 

Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE). 

Lower values for these metrics indicate better model 

performance in predicting spatio-temporal traffic flow. 

C. Experiment Results and Analysis 

Table II presents a comparison between the performance 

of our proposed model and a baseline model. The cells with 

underscored data indicate where the baseline model 

achieved superior results and the bold part is the best result 

in all models.  

From the comparison of the baseline model, STSGCN 

and STFGNN have achieved better results by taking into 

account spatio-temporal correlation. However, These 

models use large neighborhood graphs with redundantly 

connected primitive distances, potentially impacting the 

GNN's learning ability. Additionally, the discrete aggreg-

ation process in GNN restricts its capacity to model high-

dimensional and spatio-temporal features, leading to over-

smoothing. Therefore, the STGODE model, which 

decouples the original distance matrix from the semantic 

adjacency matrix and utilizes GNODE, exhibits superior 

performance. Nevertheless, the semantic adjacency matrix 

used in STGODE still represents adjacency relationships 

discretely, with matrix values limited to 0 or 1. While this 

approach simplifies the adjacency graph's complexity, it 

restricts the representation of spatio-temporal dependence. 

Furthermore, the STGODE model is structured as a 

"sandwich" [7], with an ODE module placed between two 

TCN modules. This could constrain ODE's powerful 

continuous representation ability for sequential data, which 

is crucial in traffic prediction tasks that rely heavily on the 

original data distribution. 

TABLE Ⅱ 
PERFORMANCE COMPARISON OF TBC-GNODE AND BASELINE MODELS ON PEMS DATASETS  

Datasets Metric DCRNN STGCN GraphWaveNet STSGCN STFGNN STGODE TBC-GNODE 

PeMS03 

MAE 18.18 17.49 19.85 17.48 16.91 16.50 15.74 

MAPE(%) 18.91 17.15 19.31 16.78 16.42 16.69 14.89 

RMSE 30.31 30.12 32.94 29.21 28.37 27.84 26.45 

PeMS04 

MAE 24.70 22.70 25.45 21.19 20.45 20.84 19.61 

MAPE(%) 17.12 14.59 17.29 13.90 16.74 13.77 13.19 

RMSE 38.12 35.55 39.70 33.65 32.49 32.82 31.52 

PeMS07 

MAE 25.30 25.38 26.85 24.26 23.33 22.59 21.63 

MAPE(%) 11.66 11.08 12.12 10.21 9.15 10.14 8.78 

RMSE 38.58 38.78 42.78 39.03 36.50 37.54 35.32 

PeMS08 

MAE 17.86 18.02 19.13 17.13 16.89 16.81 15.77 

MAPE(%) 11.45 11.40 12.68 10.96 10.53 10.01 9.64 

RMSE 27.83 27.83 31.05 26.82 26.20 25.97 24.92 
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Regarding MAE, our proposed TBC-GNODE model 

achieved a reduction of 4.6%, 4.1%, 4.2%, and 6.1% 

compared to the previously superior model on four datasets 

with varying regional and complexity characteristics. The 

other two error evaluation metrics also exhibited reductions 

of over 4% on average. Thus, TBC-GNODE demonstrated 

an absolute advantage over the four benchmark datasets. 

D.  Ablation Experiments 

In order to validate the effectiveness of each module and 

the necessity of structural design, we conducted a series of 

ablation experiments on the PEMS04 and PEMS08 datasets, 

which exhibit high traffic information complexity. 

Specifically, we devised four variants of TBC-GNODE as 

follows:  

1) TBC-GNN: We substituted the GNODE module with a 

general shallow GNN to verify the efficacy of the 

GNODE design. To ensure fairness, we incorporated 

the same form of hierarchical residual connection into 

GNN. 

2) TCN-GNODE: We replaced the TBC module with the 

classic TCN module to test the effectiveness of TBC in 

extracting subsequence order features. 

3) TBC-GNODE-with-Spatial: In addition to the DTW 

similarity matrix, we introduced the spatial distance 

matrix as the input graph of the TBC-GNODE module. 

We took the best result in the experiment to verify the 

effectiveness of using only DTW distance to represent 

distribution similarity. 

4) TBC-GNODE-Sandwich: We placed the GNODE 

module in the middle of the model to accept the data 

characteristics fitted by TCN, following the settings of 

STSGCN and STGODE. This experiment was designed 

to verify the necessity of the GNODE module directly 

processing the raw data. 

Table Ⅲ presents the results of the ablation experiments 

conducted to evaluate the performance of our proposed 

model against various sub-models. Among all the sub-

models, the performance degradation is most significant 

when the generic GNN module is used in place of the 

GNODE module, followed by the model using the 

'Sandwich' structure. This suggests that using a suitable 

GNODE module effectively extracts spatio-temporal 

dependent representations of the original distribution for 

forecasting traffic series. The fusion of the original distance 

and the DTW distance as the adjacency matrix of the 

GNODE has relatively little impact on the PEMS08 dataset, 

where the overall oscillation amplitude is more stable. Still, 

the prediction performance decreases more significantly on 

the PEMS04 dataset. This indicates that when the oscillation 

frequency of the traffic is more complex, the redundant 

connections sometimes cause the node features with 

dissimilar traffic characteristics to be affected by the 

original distance correlations, and this effect will be 

amplified as the complexity of the flow pattern increases. 

Additionally, when replacing the TBC module, the RMSE 

error in the prediction results is significantly impacted 

compared to the MAE. This highlights the superior 

performance of the TBC module in capturing accurate 

sequence features, particularly in specific cases or outliers, 

surpassing the capabilities of the traditional TCN module. 

E. Hyperparameters Analysis 

In TBC-GNODE, two critical hyperparameters 1t  and 

  require careful consideration. For clarity, the variable 

1t  represents the number of steps utilized in the neural 

ODE solver to approximate the solution of the ordinary 

differential equation. It is solely a numerical count and 

does not possess any specific physical dimension. 

Similarly, the variable   represents the lower threshold of 

the adjacency matrix and is a numerical limit without 

physical units. Both 1t  and   are dimensionless quantities, 

and no units will be added to them later in the 

hyperparameter tuning legend.  

The threshold   controls the model's tolerance for node 

similarity. A low   may lead to the influence of 

semantically distant nodes, affecting prediction perfor-

mance, while a high   may hinder the model's ability to 

capture spatio-temporal dependencies effectively.  

The time step 1t  used in the ODE solver directly affects 

the model's fitting ability, with a low 1t  limiting learning 

depth and a high 1t  increasing convergence time cost. It 

should be noted that the first output of the ODE solver is 

always the initial state of the dynamical system, but in 

practice, we typically focus more on the solution at 

subsequent time steps. Hyperparameter tuning can 

significantly affect the performance of the model on 

prediction tasks.  

TABLE Ⅲ 
ABLATION EXPERIMENTS OF TBC-GNODE 

Datasets The original model and Variants MAE MAPE(%) RMSE 

PEMS04 

TBC-GNN 20.26 13.45 31.96 

TCN-GNODE 20.14 13.60 32.25 

TBC-GNODE-with-Spatial 19.86 13.41 32.06 

TBC-GNODE-Sandwich 20.03 13.53 32.17 

TBC-GNODE 19.61 13.19 31.52 

PEMS08 

TBC-GNN 16.31 9.93 25.52 

TCN-GNODE 16.12 9.90 25.44 

TBC-GNODE-with-Spatial 15.83 9.81 25.31 

TBC-GNODE-Sandwich 15.95 9.86 25.36 

TBC-GNODE 15.77 9.64 24.92 
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Fig. 6. Performance of different hyperparameters 

Fig. 6 presents the performance evaluation of our model 

with different choices of hyperparameters using the 

PEMS03 dataset. The solid vertical line in the figure 

represents the performance of our final selection of 

hyperparameters and the short vertical line segments at each 

value point are error bars for the results of 10 times of 

experiments. As depicted in Fig. 6(a), the experimental 

results confirm the stabilization of the prediction error when 

the time step 1t  of the ODE solver is set to a value greater 

than or equal to 3. This finding provides further evidence of 

the reliability and consistency of GNODE, showcasing its 

ability to yield stable predictions for the given task.  

Fig. 6(b) reveals a significant trend: as the adjacency 

matrix threshold   increases to 0.7, the error bar gradually 

converges. What excites us is the consistent demonstration 

of good stationarity in the experimental results, even when 

the threshold   exceeds 0.7 We could attribute this 

achievement to our adjacency matrix construction method, 

which operates independently of the prior spatial structure, 

effectively mitigating the negative impact caused by certain 

realistic distance relations. Furthermore, the adaptive 

learning strategy for the matrix allows automatic adjustment 

of adjacent weights as semantic adjacent edges gradually 

increase. This crucial feature ensures the stability of 

prediction results as the model dynamically adapts to 

evolving semantic associations. Overall, these findings 

highlight the effectiveness and robustness of our proposed 

approach in handling spatio-temporal traffic flow 

forecasting tasks. 

VI. CONCLUSION 

In spatio-temporal prediction tasks, current methods 

mainly rely on increasing the scale and dimension of the 

adjacency graph to capture spatial dependencies between 

nodes while applying one-dimensional TCN module to 

extract temporal dependencies. However, there is limited 

consideration of the structural refinement of the adjacency 

graph and the composition of historical temporal patterns. 

This paper proposes a new spatio-temporal traffic flow 

forecasting model, TBC-GNODE based on Graph Neural 

ODE. The model leverages a refined semantic adjacency 

graph to represent the complete semantic association of 

spatio-temporal data, mitigating the impact of redundant 

connection noise on the spatio-temporal model. Moreover, 

the model reanalyzes the historical data composition of the 

time series from a new perspective, utilizing a temporal 

branch convolution to fuse the deep historical distribution 

and future trend distribution in the established data. 

Additionally, a parallel spatio-temporal dependence 

extraction architecture without upstream modules is 

designed, enabling the acquisition of long-term spatio-

temporal dependence by stacking the overall module. The 

comparison experiments demonstrate that TBC-GNODE 

outperforms the optimal baseline model by reducing the 

prediction error by over 4%. Finally, the detailed additional 

experiments further validate the effectiveness and stability 

of the proposed model. 

In general, Our research is diligently focused on 

delivering a powerful solution idea and framework for 

spatio-temporal traffic flow prediction. The experiments 

demonstrate that the prior structure and distance of the 

traffic network are not necessary conditions for accurate 

predictions. By employing appropriate spatio-temporal 

feature extraction methods, we can even achieve superior 

models without relying on prior spatial information.  

However, in the long run, the performance of traffic flow 

prediction may depend on various related factors, such as 

further optimization of Neural ODE and graph neural 

network technology, the expression of space-time 

dependence, and the extraction of global time trend features, 

among others. These factors can directly or indirectly 

enhance prediction accuracy. In future work, we will 

continue to devote ourselves to further research on traffic 

spatio-temporal prediction, contributing innovative thinking 

and new progress to the field of advanced intelligent 

transportation. 
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