

Abstract—Significant progress has been made in salient

object detection (SOD) based on deep neural networks.
However, existing SOD methods are primarily designed for
low-resolution image inputs, which often suffer from issues such
as sampling depth, receptive field, and model performance
when applied to high-resolution image inputs. To tackle this
issue, this study introduces a lightweight feature extraction
model by replacing the original ResNet network structure with
a RepVGG-based model that incorporates the Efficient
Channel Attention (ECA) module for lightweight purposes. In
order to enhance both the model's accuracy and processing
speed, we introduce the Effective Squeeze-and-Excitation (ESE)
module for feature fusion. To tackle the issue of unclear
boundaries of salient objects, we fuse the Weighted Binary
Cross-Entropy, Structural Similarity (SSIM), and Shape-aware
Loss into a combined loss function, which replaces the
conventional cross-entropy loss. Experimental results
demonstrate that the enhanced algorithm (RepPGNet) achieves
a 2.8% increase in accuracy compared to the original algorithm,
with reduced model parameters and improved clarity of salient
object boundaries. The proposed algorithm is also shown to
have improved speed and is suitable for high-resolution image
scenes.

Index Terms—Saliency detection, High-resolution, PGNet,
Computer vision

I. INTRODUCTION

aliency detection[1] refers to the process of identifying
the most attention-grabbing objects within prominent

scenes. Over the recent years, research on saliency detection
has grown significantly, leading to its wide-ranging
applications in image classification, image compression,
image segmentation[2], object detection, autonomous driving,
visual tracking, among others.

Over the past few decades, a multitude of traditional
methods have emerged to tackle the challenges of saliency
detection. Nevertheless, these approaches predominantly
emphasize low-level features, often neglecting the wealth of
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semantic information available, leading to inconsistent
performance, particularly in intricate scenes. In recent years,
substantial advancements in saliency object detection have
been achieved through the application of deep neural
networks. Hou et al. [3] utilized deep convolutional networks
as encoders to extract multi-level features and designed
multiple modules for feature fusion in a Feature Pyramid
Network (FPN) style. Additionally, Wei et al. [4] achieved
saliency maps with clear boundaries through explicit
supervision the generation of edge pixels. The widespread
use of Transformers [5] in visual tasks has also brought new
advancements in saliency detection. Nevertheless, the
majority of these approaches are tailored for low-resolution
environments and do not readily extend to high-resolution
scenarios.

The majority of existing saliency detection methods
perform well within fixed low-resolution input ranges, such
as 224×224 or 384×384. Due to the rapid advancement of
image capture devices, the resolutions of the images available
to us, such as 1080p, 2K, and 4K, far exceed the range that
existing saliency detection methods can directly adapt to. As
a result, many algorithms have emerged to address
high-resolution image challenges. Guo[6] and colleagues
proposed a new super-resolution segmentation framework
called ISDNet, which integrates shallow and deep networks
in a novel way, effectively addressing the significant
computational and memory burden. Shen et al.[7] introduced
the Continuous Refinement Model (CRM) to bridge the
resolution disparity between low-resolution training images
and high-resolution test images. Additionally, Xie[8] and
collaborators presented a single-stage pyramid grafting
network (PGNet) that fuses fragmented information through
cross-model grafting modules. Research findings have
demonstrated that the PGNet model exhibits outstanding
performance in terms of speed, accuracy, and various other
aspects when compared to state-of-the-art algorithms
concurrently. Although PGNet outperforms other algorithms
in various aspects, there is still potential for enhancing the
capability to detect prominent object boundaries. Therefore,
it is meaningful to make improvements on PGNet.

Given the issues such as the large size and slow speed of
PGNet, this study proposes an improved high-resolution
significant object detection algorithm based on PGNet, which
replaces the original backbone network ResNet with a more
lightweight model for feature extraction, reduces the
parameter count while improving the model's speed and
feature focus. Finally, by adjusting the loss function, the
sharpness of significant object boundaries is further
enhanced.
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II. PRINCIPLE OF THE PGNET ALGORITHM

The architecture of PGNet is illustrated in Fig.1, where
two encoders, namely Swin Transformer and ResNet-18, are
parallelly employed. The Transformer encoder captures
accurate global semantic information from low-resolution
image inputs, while the ResNet encoder extracts rich detailed
information from high-resolution image inputs. The
information from both encoders can complement each other.
The features obtained from the Transformer encoder are then
grafted onto the ResNet branch through the proposed
Cross-Model Grafting Module (CMGM), as shown in Fig.2,
to achieve higher-level pyramid features (by grafting two
lower-resolution feature maps from the Transformer encoder),
with minimal computational cost and friendliness to
high-resolution image inputs. Unlike common feature fusion
strategies that rely on pixel-wise operations such as addition
or multiplication, which are limited to local information and
prone to errors, the objective of CMGM is to graft
Transformer information into the ResNet branch. This is
achieved by recalculating ResNet and Transformer features
point-wise, transferring global semantic information from the
Transformer encoder to the ResNet branch. Additionally,
PGNet incorporates an Attention-Guided Loss to supervise
the Cross Attention Matrix (CAM).

In summary, PGNet utilizes an interleaved connection
structure to build a higher-level feature pyramid from two
lower-level pyramids and proposes the Cross-Model Grafting
Module to graft features extracted from two encoders. In
essence, the network achieves greater sampling depth while
minimizing computational costs, addressing the demands
presented by high-resolution inputs.

III. IMPROVED STRATEGY

The manuscript presents optimizations in two aspects
based on various metrics of high-resolution saliency
detection and the PGNet algorithm itself, namely,
optimization of the network backbone and adjustment of the
loss function. The backbone of PGNet adopts ResNet and
Transformer, which is hierarchical and densely connected,
capable of extracting deep features effectively. However, it
may suffer from redundancy, resulting in a substantial
increase in the number of parameters and an inflated model
size. Therefore, in this study, a lightweight model that is
faster, memory-efficient, and more flexible is chosen to
replace ResNet to reduce the model's parameter count and
improve its speed and accuracy. The first part of the
optimization focuses on the network backbone, which serves
as the fundamental feature extractor for the detection task,
responsible for extracting salient features from input images
and producing output. The lightweight feature extraction
model proposed in this study is mainly based on RepVGG[9],
with the incorporation of the ECA[10] module to achieve
lightweight effects, and the addition of the ESE[11] module
for feature fusion, thereby improving the accuracy and speed
of the model. The second part entails modifying the loss
function, where the original conventional standard
cross-entropy loss is improved by integrating a mixed loss
function that combines weighted binary cross-entropy loss,
structural similarity index (SSIM), and shape-aware loss.

This adjustment effectively enhances the boundary clarity
of the saliency map. The improved model, named RepPGNet,
is illustrated in Fig.3, where (a)(b)(c) represent the decoder
blocks in the decoding module, and DBn (Decoder block)
corresponds to the decoding module with n input features
(n=1, 2, 3).

Fig. 1. Illustrates the basic structure of PGNet.
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A. Optimization of Backbone Networks
RepVGG is notably the initial standard model to attain a

Top-1 accuracy exceeding 80% on the ImageNet dataset,
particularly when utilizing an NVIDIA 1080Ti GPU, the
RepVGG model exhibits an 83% speed improvement over
ResNet-50 [12] and a 101% speed enhancement over
ResNet-101, while maintaining superior accuracy in
comparison to state-of-the-art models such as EfficientNet
[13] and RegNet [14]. RepVGG is a simple yet powerful
convolutional neural network architecture, with a similar
inference time as VGG [15], consisting of only multiple 33
convolutions and ReLU activation functions, while the model
during training exhibits a multi-branch topology. The
accuracy and speed are achieved by decoupling the training
process and inference time, using parameter fusion during
forward inference, a technique called reparameterization.

Fig.4 (A) depicts the original ResNet network, which
contains residual structures of Conv11 (11 convolution)
and Identity activation function, solving the gradient

vanishing problem in deep networks and making the network
more prone to convergence. Figure (B) illustrates the training
phase architecture of the RepVGG network, with an overall
structure akin to ResNet, featuring residual structures in both.
The main difference between the two networks is that the
residual blocks in the RepVGG network do not skip across
layers, and as the model goes deeper, more complex residual
structures are used, which not only allows for more robust
feature representation in deep layers but also better handles
the gradient vanishing problem in deep layers. Figure (C)
represents the inference phase architecture of RepVGG
network, which is very simple, consisting of only 3  3
convolutions and ReLU activations, making it efficient for
model inference and acceleration.

The benefits of RepVGG stem from its utilization of
distinct network architectures for both training and inference
stages. During the training phase, the emphasis is on
achieving accuracy, whereas in the inference phase, the
primary concern is speed.

Fig. 2. The architecture of cross model grafting module.

(a) (b) (c)
Fig. 3. The structure of RepPGNet.
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Fig. 4. Schematic diagram of RepVGG architecture.

Fig. 5. Lightweight feature extraction model.

The main purpose of this lightweight model is to perform
feature extraction, which is based on RepVGG and
incorporates ECA and ESE for achieving a more lightweight
design, as shown in Fig.5.

1. Efficient Channel Attention Module (ECA): ECA is an
extremely lightweight and plug-and-play attention module
that improves the performance of various deep convolutional
neural network (CNN) architectures. It contains only a small
number of parameters but brings significant performance
improvement. The ECA module adopts a non-reducing local
cross-channel interaction strategy, effectively avoiding the
impact of dimension reduction on channel attention learning.
The idea of the ECA module is very simple, as shown in
Fig.6:

(1) Local inter-channel interaction in one-dimensional
convolution is achieved through fast convolution with a
kernel size of k, where the kernel size k represents the
coverage range of inter-channel interaction, i.e., the number
of regions involved in the attention prediction of a channel.

(2) To avoid manual adjustment of k through
cross-validation, a self-adaptive method has been developed
to determine k, where the coverage range of inter-channel
interaction (i.e., kernel size k) is proportional to the channel
dimension.

Fig. 6. The structure of ECA.

2. ESE: In this study, an Effective Squeeze-Excitation
(ESE) module, which is a more efficient improvement of the
original SE, is employed. SE is a representative channel

attention method used in CNN architectures to explicitly
model the interdependencies among feature map channels for
enhanced representation capability. The SE module
compresses the spatial correlations through global average
pooling to learn descriptors for specific channels, and then
rescales the input feature map using two fully connected (FC)
layers and a sigmoid function to highlight informative

channels. In short, given an input feature map ,
the computation formula for the channel attention map

refer to“(1)”.
/( ) ( ( ( ( ( )))))ch i C C r gap iA X W W X  F (1)

In this context, C represents channel-wise global average
pooling, D denotes the weights of two fully connected (FC)
layers, δ represents the ReLU activation function, and σ
represents the sigmoid function. However, the
Squeeze-and-Excitation (SE) module has limitations, as the
reduction in dimensionality leads to channel information loss.
To alleviate the complexity associated with model expansion,
the SE module incorporates two Fully Connected (FC) layers.
The primary FC layer reduces the input feature channels from
C to C/r, employing a compression ratio denoted as 'r.'
Subsequently, the secondary FC layer restores the
compressed channels to their original size of C. As a result,
the reduction in channel dimensionality leads to channel
information loss. Therefore, this study proposes an efficient
version of the SE module, referred to as Efficient
Squeeze-and-Excitation (ESE), which employs only one FC
layer with C channels instead of two FC layers, avoiding
channel information loss and improving performance.

B. Optimization of the Loss Function
Currently, most loss functions used in salient object

detection rely on cross-entropy (CE) loss. However, due to its
limitations in differentiating boundary pixels during training,
it may result in blurred boundaries. To obtain saliency maps
with high confidence and clear boundaries, this study
proposes a hybrid loss function by modifying the traditional
CE loss, which combines weighted binary cross-entropy
(Weighted BCE) [16], structural similarity index (SSIM) [17],
and shape-aware loss [18].

1.Weighted Binary Cross-Entropy refer to“(2)”.
ˆ ˆ ˆ( , ) ( log( ) (1 ) log(1 ))WCE p p p p p p     (2)

The weighted binary cross-entropy (BCE) loss function is
an extension of the original cross-entropy loss by
incorporating weight parameters for each class. By setting a
weight parameter β > 1, false negatives can be reduced, while
setting β < 1 can reduce false positives. This approach
improves the performance of the loss function in scenarios
where sample imbalance exists, compared to the original
cross-entropy loss.

2. The structural similarity (SSIM) index was originally
proposed for image quality assessment. Owing to the robust
correlations among pixels within an image, these correlations
encapsulate crucial information regarding object structures
within visual scenes. SSIM defines the structural information
of an image based on the brightness and contrast related to the
object structure, allowing it to capture the structural
information in the input image.

SSIM measurement system comprises three contrast
modules, namely brightness, contrast, and structure.
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The estimation of brightness measurement requires the
calculation of the image's average grayscale level using a
brightness contrast function. Refer to“(3)”.
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Therefore, which represents the brightness contrast function
for two images. Refer to“(4)”.
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The contrast function determines the image's standard
deviation by applying the contrast measurement estimation
formula refer to “(5)”.
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Thus, the contrast function of the two images refer to“(6)”.
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The structural comparison function refer to“(7)”.
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Finally, the formula for the SSIM function is obtained by
integrating the three comparison functions mentioned above.
refer to“(8)”.:

        
     

, , , , , ,

                  , , ,

SSIM x y f l x y c x y s x y

l x y c x y s x y
  



           
(8)

where α, β, and γ, all of which are greater than 0, serve to
fine-tune the significance of the three modules. If α, β, and γ

are all 1, then
2

3 2
CC 

,refer to“(9)”.
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3.The Shape-aware Loss considers the shape information in
addition to pixel-level losses commonly used in other loss
functions. Specifically, it calculates the average Euclidean
distance between the predicted segmentation curve and the
ground truth curve at points surrounding the curve, and uses
this distance as a coefficient for the cross-entropy (CE) loss
function. The formulation of the Shape-aware Loss refer to
“ (10) ” .(Where "CE" refers to the cross-entropy loss
functionrefer to“(11)”)

ˆ ˆ( , ) ( , )shape aware i
i

L CE y y iECE y y     (10)

ˆ( , )i GTE D c C (11)
The research findings indicate that employing a hybrid loss

function as described may yield improved details and edges,
effectively enhancing the overall accuracy of salient region
detection.

IV. ANALYSIS OF EXPERIMENTS AND RESULTS

A. Dataset Selection
(1) High-resolution datasets: The available

high-resolution datasets used in this study include UHRSD
[19] (4932 images for training and 988 images for testing),
which contains diverse and rich scenes with significant
objects of various sizes, complexities, and levels of detail.
The HRSOD dataset [20] (1610 images for training and 400
images for testing) is also used in this study. Additionally,
DAVIS-S [21], which is a dataset with pixel-perfect
annotated object masks, is used for evaluation.

(2) Low-resolution dataset: DUTS-TR [22], which is part
of the DUTS dataset and contains 10553 images, is the largest
and most commonly used training dataset for salient object
detection, and is used for training the model in this study.
Furthermore, the proposed method is evaluated on widely
used benchmark datasets, including ECSSD [23] with 1000
images, DUT-OMRON [24] with 5168 images, PASCAL-S
[25] with 850 images, DUTS-TE [22] with 5019 images, and
HKU-IS [26] with 4447 images.

B. Experimental Platform and Resource Consumption
The experiments were carried out on a computer system

featuring an Intel Core i7-11700 CPU and an NVIDIA
GeForce GTX 3070 GPU. The experiments were conducted
on a system running the Windows 10 operating system,
utilizing the PyTorch 1.8-GPU deep learning framework, and
the PyCharm Community IDE. During the training process,
the model employed the mini-batch gradient descent
algorithm with a batch size of 32, running 1200 iterations on
the training set. Each iteration took approximately 1.1
minutes and consumed 8GB of GPU memory.

During the inference process, the model performed
saliency detection on a high-resolution image with an
average processing time of 0.09 seconds and used 0.5GB of
GPU memory. Since offline training was used and the
network bandwidth requirements during the testing phase
were negligible, network bandwidth consumption was not a
consideration.

C. Experimental Evaluation Criteria
In this study, the performance of the algorithm is evaluated

using the following metrics. Firstly, the Mean Absolute Error
(MAE), refers to(12), where S represents the predicted image,
G represents the ground truth, and W and H denote the width
and height of S, respectively.

1 1

1 ( , ) ( , )
W H

x y
MAE S x y G x y

W H  

 
  (12)

The second metric is the Max F-measure ( ), where β2
is set to 0.3, refer to (13),

2

2
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Pr Re

ecision callF
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(13)

Finally, in this study, the Structural Similarity (S-measure)
is employed as a performance evaluation metric, refer to(14).
The E-measure (Eξ) can be referred to in [27].

(1 )o rS S S      (14)
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In this study, the value of α is configured at 0.5, where So
signifies the similarity of object structures, and Sr denotes the
similarity of region structures.

D. Ablation Experiments
The effectiveness of the loss function is demonstrated

through the introduction of a lightweight feature extraction
model and the optimization of the network structure. Table I
presents the results of ablation experiments for data
comparison. Subsequently, a comparison of the optimized
parameter quantity and network model size is shown,
followed by a comparative analysis of the experimental
results against other models used for salient object detection.
To validate the effectiveness of RepPGNet, this study
conducts experiments on each optimization scheme
separately during the optimization process. Table I reveals
that RepPGNet attains the highest level of performance.

TABLE I
COMPARISON OF ABLATION EXPERIMENTAL DATA

Compsition
HRSOD-TE

MAE Eξ Sm
Baseline-ResNe
t+RepVGG 0.931 0.026 0.937 0.928

Baseline-ResNe
t+RepVGG
+ECA

0.942 0.023 0.948 0.939

Baseline-ResNe
t+RepVGG
+ECA+ESE+L
OSS(ours)

0.966 0.020 0.977 0.950

As illustrated in Figure 7, (a) represents the input image, (b)
is the ground truth of the image, (c) shows the results
obtained from RepPGNet, (d) shows the results obtained by
replacing only the backbone network with RepVGG (Rep),
and (e) shows the results obtained by incorporating the ECA
attention mechanism into RepVGG (Rep+ECA). It is evident
from the comparison in (d) that the saliency map obtained
after replacing ResNet is not as satisfactory. This is attributed
to the significant reduction in parameters in RepVGG, which
eliminates redundancy in the model data but sacrifices some
features. However, from the comparative analysis of the
results in (c), (d), and (e), it can be observed that RepPGNet
effectively addresses this issue.

E. Implementation details and Parameters
In this study, we employed the mini-batch Adam algorithm

for model optimization and initialized the parameters using

the Kaiming method. This optimization algorithm exhibits
efficient computational performance and excellent handling
of sparse gradients. To address scale variations in images, we
utilized bilinear convolution as the upsampling and
downsampling function. To prevent overfitting, we
introduced Batch Normalization and Dropout techniques.
Batch Normalization ensures that the inputs to each layer
follow a standard normal distribution, while Dropout
temporarily drops out some neurons during the training
process. Grid search was employed to select the optimal
hyperparameter values. For the Dropout parameter, we
explored values in the range of [0.1, 0.2, 0.3] and ultimately
determined the optimal value to be 0.1. Furthermore, we
incorporated a Learning Rate Scheduler to implement an
adaptive learning rate decay strategy, further optimizing the
model's performance.

Observing Table II, it becomes apparent that RepPGNet
exhibits the lowest parameter count when compared to the
original PGNet model.

TABLE II
COMPARISON OF NETWORK MODEL SIZES

Model Parameters
PGNet-ResNet 72,666,404

RepPGNet 63,347,827

To highlight the superiority of RepPGNet in terms of
inference speed, this study conducted a comparison between
RepPGNet and PGNet. To ensure consistency and eliminate
randomness, this comparison was carried out on a
standardized set of 500 images, each with resolutions of 1024
×1024, 2k, and 4k. The average inference speed, measured in
images processed per second, was calculated for each image.
The results, as presented in Table III, clearly demonstrate that
RepPGNet outperforms PGNet in terms of inference speed.

To evaluate the efficacy of high-resolution salient object
detection, this study conducts a quantitative performance
comparison between RepPGNet and contemporary SOD
models. This assessment encompasses five benchmark
datasets, with evaluation metrics including max F-measure,
MAE, E-measure, and S-measure. As illustrated in Table IV,
the results demonstrate that RepPGNet exhibits a notable
performance enhancement on the majority of high-resolution
datasets when compared to competing algorithms.

To further exemplify the advantages of the RepPGNet
approach, this study compares RepPGNet with nine
state-of-the-art algorithms, including CTD, CPD, PGNet,
DASNet, F3Net, GCPA, LDF, PFS, and SCRN. As shown in
Table IV, RepPGNet has achieved significant improvements
in high-resolution datasets.

To visually showcase the superiority of RepPGNet, Fig. 8
presents representative examples of visual comparisons
between RepPGNet and other algorithms. Lines one to four
are from the UHRSD-TE dataset, while lines five and six are
from the HRSOD-TE dataset. It can be observed that
RepPGNet is capable of capturing fine details and generating
clear object boundaries (as shown in the first and second
rows).

(a) (b) (c) (d) (e)
Fig. 7. Comparison of ablation experiment effects.

TABLE III
COMPARISON OF REASONING SPEED BETWEEN REPPGNET AND PGNET

Model 1024×1024 2k 4k
RepPGNet 0.074795 0.852847 0.099844

PGNet 0.083923 0.887194 0.102988

Engineering Letters, 31:4, EL_31_4_24

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



Besides accurate delineation of high-quality boundaries, a
crucial facet of high-resolution SOD is its capability to
segment tiny and nuanced objects that can be easily missed in
low-resolution scenarios (as evident in the third, fifth, and
sixth rows), further underscoring RepPGNet's superiority.
Moreover, RepPGNet performs well even in extremely
complex scenes (as shown in the fourth row). From the
images, it's evident that RepPGNet excels at precisely
identifying salient objects across a range of application
scenarios, particularly in cases where the saliency contrast
with the background is minimal, surpassing other algorithms
in performance.

V. CONCLUSION

This study introduces an advanced saliency object
detection method for high-resolution images, built upon an
enhanced PGNet network. The method replaces the ResNet
branch in PGNet with a lightweight feature extraction model
and introduces an efficient loss function optimization scheme.
Additionally, it leverages the cross-model grafting module

and attention-guided loss proposed by PGNet, synergizing
the advantages of ResNet and Transformer while
compensating for their common shortcomings. The enhanced
algorithm, named RepPGNet, achieves a 2.8% improvement
in accuracy compared to the original PGNet, with reduced
model size and increased speed. However, saliency detection
on high-resolution images still faces various challenges, such
as complex textures, intricate details, and a vast amount of
information. To further enhance the accuracy of
high-resolution image saliency detection models, various
techniques can be employed, including segmentation and
fusion, pyramid structures, context modeling, introducing
prior knowledge, and multimodal information fusion. These
methods enhance the model's saliency detection by
considering image context and domain-specific knowledge,
improving accuracy and robustness. Future research will
delve deeper in this direction.

(a) Image (b) True plot (c) RepPGNet (d) CPD (e)CTD (f) DASNet (g) PGNet (h)F3Net (i)GCPa
Fig. 8. Visualization comparison between this method and advanced methods.

TABLE IV
PERFORMANCE COMPARISON OF VARIOUS METHODS

method
HRSOD-TE DAVIS-S UHRSD-TE DUT-OMRON DUTS-TE

MAE Eξ Sm MAE Eξ Sm MAE Eξ Sm MAE Eξ Sm MAE Eξ Sm

SCRN[32] 0.880 0.042 0.887 0.888 0.893 0.027 0.911 0.902 0.904 0.051 0.880 0.887 0.811 0.056 0.863 0.837 0.888 0.040 0.888 0.885

CPD[29] 0.867 0.041 0.891 0.881 0.871 0.029 0.921 0.893 0.894 0.055 0.884 0.878 0.797 0.056 0.866 0.825 0.865 0.043 0.887 0.869

DASNet[30] 0.893 0.032 0.925 0.897 0.902 0.020 0.949 0.911 0.914 0.045 0.892 0.889 0.827 0.050 0.877 0.845 0.895 0.034 0.908 0.894

LDF[16] 0.904 0.032 0.919 0.904 0.911 0.019 0.947 0.922 0.913 0.047 0.891 0.888 0.820 0.051 0.873 0.838 0.898 0.034 0.910 0.892

F3Net[31] 0.900 0.035 0.913 0.897 0.915 0.020 0.940 0.914 0.909 0.046 0.887 0.890 0.813 0.053 0.871 0.838 0.891 0.035 0.902 0.888

GCPA[13] 0.889 0.036 0.898 0.898 0.922 0.020 0.934 0.929 0.912 0.047 0.886 0.896 0.812 0.056 0.860 0.839 0.888 0.038 0.891 0.891

PFS[33] 0.911 0.033 0.922 0.906 0.916 0.019 0.946 0.923 0.918 0.043 0.896 0.897 0.823 0.055 0.875 0.842 0.896 0.036 0.902 0.892

CTD[28] 0.905 0.032 0.921 0.905 0.904 0.019 0.938 0.911 0.917 0.043 0.898 0.897 0.826 0.052 0.875 0.844 0.897 0.034 0.909 0.893

PGNet[8] 0.931 0.021 0.944 0.930 0.936 0.015 0.947 0.935 0.931 0.037 0.904 0.912 0.835 0.045 0.887 0.855 0.917 0.027 0.922 0.911

RepPGNet 0.959 0.020 0.977 0.950 0.960 0.014 0.978 0.945 0.958 0.032 0.927 0.920 0.846 0.040 0.898 0.866 0.917 0.022 0.920 0.918
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