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Abstract—This paper aims to show an optimum solution
for the real-time examination timetabling problem with a
fixed number of sessions and a set of difficulty level of each
course. The uncertainty and haziness around the problem
are taken into account by defining the weighted precedence
general vague graph. In this paper, the scheduling part of
the examination timetabling problem is approached through
novel greedy coloring technique for the weighted precedence
general vague graph. As per necessity, the new variant of vertex
coloring, namely semi coloring of a graph is defined, such as,
for the given graph G(V,E) and the positive integers r ≤ |E|
and k < χ(G), the graph G can have the proper k−coloring
by removing any r edges from the graph. Finally, the greedy
algorithm set out for obtaining the semi coloring of the weighted
precedence general vague graph and the minimum number of
edge removal.

Index Terms—Coloring, Fuzzy Graph, Vague Graph, Exam-
ination Timetabling Problem

I. INTRODUCTION

THE graph-theoretic model with uncertainty and
haziness is tackled through the use of fuzzy sets,

interval valued fuzzy sets, intuitionistic fuzzy sets, and
vague sets, along with graph theory basics. While fuzzy sets
and interval-valued fuzzy sets do not consider as evidence
the value against x in the vague sets, intuitionistic fuzzy sets
provide advantages by considering both membership and
non-membership degrees to indicate how much a member
of the universe of discourse belongs to a subset of it.
Additionally, interval-valued fuzzy sets and intuitionistic
fuzzy sets are not the same as vague sets, although vague
relation is a generalization of a fuzzy relation. A vague graph
is defined as similar to an intuitionistic fuzzy graph but also
takes into account the hesitation region. The µ−vague graph,
a generalized vague graph for a given fuzzy membership
function, is defined by considering the similarity between
the definitions of fuzzy graph and vague graph. Furthermore,
bounded, regular, strong regular, anti µ−vague graph, and
complement of µ−vague graph are defined, and some of
their properties are established. The purpose of studying the
nature of µ−vague graph is to account for both uncertainty
and haziness in the decision-making problem. This can be
applied to the classical examination timetabling problem by
defining the weighted precedence µ−vague graph and using
it to find the best feasible solution for the given constraints.
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In 1965, Fuzzy Set was introduced by Zadeh [21]. Fuzzy
set is defined as a class of objects with a continuum of grades
of membership. In 1975, Interval-valued fuzzy sets were
introduced independently by Zadeh [20], Grattan-Guiness
[9], Jahn [10], and Sambuc [19]. Atanassov generalized the
concept of a fuzzy set by using two membership functions
for the elements of the universe of discourse in 1983. After
three years, the English version appeared in [1]. In a vague
set, an interval-valued membership value is assigned to each
element by considering both the evidence for x and the
evidence against x. In interval-valued fuzzy sets, evidence
against x is not being considered by the decision maker.
Even vague relation is a generalization of a fuzzy relation,
the interval-valued fuzzy sets are not vague sets. There is a
major difference in the choice on the degree of membership
function between them. The bacteria classification problem
is approached to examine their capabilities in encountering
uncertainty in medical pattern recognition by using the
identified similarity measures of fuzzy sets and intuitionistic
fuzzy sets [11].

In graph theory, the fuzzy graph was first introduced
by Rosenfeld [18] in 1975. The structure of fuzzy graphs
was developed by considering fuzzy relations between
fuzzy sets, which led to the creation of analogs for several
graph theoretical concepts. Subsequently, some comments
on fuzzy graphs and operations on fuzzy graphs were
introduced [3], [15]. Zadeh not only introduced the fuzzy
sets; he also discussed the concept of a convex fuzzy set
in [21]. Later R. Lowan gathered some elementary known
results about convex fuzzy sets and completes the convex
fuzzy set theory by introducing the necessary concepts in
1980 [12]. Although vague relations are a more general
type of fuzzy relations, interval-valued fuzzy sets are not
considered vague sets. There is a significant difference
in how the degree of membership is determined between
these two types of sets. In vague sets, an interval-valued
membership value is assigned to each element, taking into
account both the evidence for and against x. However, in
interval-valued fuzzy sets, the evidence against x is not
considered by the decision maker. In [22], the authors
demonstrated the use of vague sets in the medical diagnosis
of four types of cancer. To accomplish this, they utilized
four new operations of a vague graph: maximal product,
rejection, symmetric difference, and residue product.

The diversification of scheduling and assignment
problems increased significantly in the past two decades.
The timetabling problem, a very complex problem, is not
only limited with academic purposes like class timetabling
and exam timetabling, more so, it is growing in sports,
hospital, transport, air fleet, etc. The examination timetabling
problem (ETTP) is one of the mostly experimented general
timetabling problems which is NP-Hard [6]. It can be
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defined as assigning a set of examinations, each associated
with a number of registered students with a fixed number of
slots, depending on satisfying a number of predefined hard
and soft constraints.

The ETTP has been a long-time research topic that uses
hard constraints, such as, two or more exams can not be
scheduled at the same slot for the student and assigning
the invigilators, rooms, labs, chief invigilators for all of
the sessions with limited given resources. As such, this
becomes an exceptionally difficult problem. If resource
allocation is taken into account and the number of students
taking the examination is limited by the capacity of the
room or the laboratory, then the problem is a capacitated
ETTP, otherwise, it is incapacitated. Further, each university
or the institution has its own set of rules to conduct the
examination. To be met with such rules, more number of
constraints are described. Due to this, the higher range
of solution techniques are provided for use with the
mathematical model, which is well-studied in the literature
[16], [13], [14].

This study focuses on solving the university examination
timetabling problem, which involves assigning resources
such as classrooms, laboratories, and academic staff as
invigilators, while accounting for uncertainty and haziness.
To address this, the authors proposed a new variant of
graph coloring and develop a mathematical model. They
then presented a three-stage heuristic solution procedure for
solving a real instance of this problem at the University of
Technology and Applied Sciences, Nizwa, in the Sultanate
of Oman. Their goal is to find an optimal solution that
is better than what could be achieved manually by the
timetabling committee, using less computational time.
While there are existing solution strategies in literature, the
authors found that the direct heuristics based on successive
assignments were insufficient, and instead, recommended a
new technology.

The ETTP was formulated as a graph-theoretic model
by characterizing the weighted precedence µ− vague graph
decomposed into three stages; scheduling exams using semi
coloring, auto room assignment, and invigilator and chief
invigilator allocation with uniform work load distribution.
After applying the greedy coloring algorithm proposed in this
paper, the scheduling process was completed by postponing
/ re-scheduling the least number of examinations for affected
students, and coming up with single room or laboratory
assignments for multiple courses to minimize invigilation
duties, a room or lab assignment has planned by allowing
multiple courses in a single venue that minimizes the total
number of invigilation duties. Therefore, no student group
experienced any clash in their examination schedules. Fur-
thermore, academic staff members saved time, and this could
be spent doing research, as the resource usage was optimized
for the examination. In this paper, the described first phase
of ETTP, examination scheduling, is handled by defining the
weighted precedence µ− vague graph.

II. STRUCTURE OF VAGUE GRAPH

To have a better understanding on how the vague graph
and the fuzzy graph were defined from the vague set
and the fuzzy set, several preliminary definitions have
been studied from the existing literature as described in
[21],[1],[8],[4],[17],[23],[5],[2],[7].

The similarities are observed in the definition of the fuzzy
graph and the vague graph. In the fuzzy graph G = (α, µ),
the membership function µ defined for all the edges uv ∈ E
is defined such that µ(uv) ∈ [0,min{α(u), α(v)}] over
the closed interval [0, 1]. In the same way, the vague
set (tB , fB) for the edges uv ∈ E for all u, v ∈ V
is defined such that tB(uv) ∈ [0,min{tA(u), tA(v)}]
and fB(uv) ∈ [max{fA(u), fA(v)}, 1] (i.e.
1 − fB(uv) ∈ [0,min{1 − fA(u), 1 − fA(v)}]) over
the closed interval [0, 1]. From this, it can be simply stated
that [tB(uv), 1−fB(uv)] ⊆ [0,min{1−fA(u), 1−fA(v)}].
Also, the anti-fuzzy graph defined by the membership
function µ for the edges uv ∈ E for all u, v ∈ V is defined
such that µ(uv) ∈ [max{α(u), α(v)}, 1] over the closed
interval [0, 1]. Similarly, the general structure of vague
graph and anti-vague graph are defined as in Definition 1
and 2, respectively.

Definition 1. For a graph G∗ = (V,E), a triple G =
(µ,A,B) is known as µ−vague graph on G∗ where µ is
a fuzzy membership function on E, A = (tA, fA) is a vague
set on V and B = (tB , fB) is a vague set on E ⊆ V × V
such that for each xy = e ∈ E,

tB(e) ≤ µ(e)(tA(x) ∧ tA(y)) + (1− µ(e))(tA(x) ∨ tA(y)),
and

fB(e) ≥ µ(e)(fA(x)∨ fA(y))+ (1−µ(e))(fA(x)∧ fA(y)),

Two vertices x and y are strongly adjacent, if

tB(e) ≥
1

2
[µ(e)(tA(x) ∧ tA(y))

+(1− µ(e))(tA(x) ∨ tA(y))] ,

and
fB(e) ≤

1

2
[µ(e)(fA(x) ∨ fA(y))

+(1− µ(e))(fA(x) ∧ fA(y))] ,

and it is called weakly adjacent otherwise.

A µ−vague graph G = (A,B) is strong, if

tB(e) = µ(e)(tA(x) ∧ tA(y)) + (1− µ(e))(tA(x) ∨ tA(y)),
and

fB(e) = µ(e)(fA(x)∨ fA(y))+ (1−µ(e))(fA(x)∧ fA(y)),

for every e ∈ E.

A µ−vague graph G = (µ,A,B) is complete, if

tB(e) = µ(e)(tA(x) ∧ tA(y)) + (1− µ(e))(tA(x) ∨ tA(y)),
and

fB(e) = µ(e)(fA(x)∨ fA(y))+ (1−µ(e))(fA(x)∧ fA(y)),

for every x, y ∈ V .
If µ = 1, then a triple G = (1, A,B) is known to be a

vague graph.
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Definition 2. For a graph G∗ = (V,E), a triple G =
(µ,A,B) is called µ−anti vague graph on G∗ where µ is
fuzzy membership function on E, A = (tA, fA) is vague set
on V and B = (tB , fB) is vague set on E ⊆ V × V such
that for each xy = e ∈ E,

tB(e) ≥ (1− µ(e))(tA(x) ∧ tA(y)) + µ(e)(tA(x) ∨ tA(y)),
and

fB(e) ≤ (1−µ(e))(fA(x)∨ fA(y))+µ(e)(fA(x)∧ fA(y)),

If µ = 1, a triple G = (1, A,B) is said to be an anti-vague
graph.

Definition 3. An anti-vague graph is defined to be a pair
G = (A,B), where A = (tA, fA) is a vague set on V and
B = (tB , fB) is a vague set on E ⊆ V × V such that for
each uv ∈ E,

tB(uv) ≥ tA(x) ∨ tA(y), and fB(uv) ≤ fA(x) ∧ fA(y).

The anti-vague set (tB , fB) for the edges uv ∈ E for all
u, v ∈ V is defined such that

tB(uv) ∈ [max{tA(u), tA(v)}, 1]

and
fB(uv) ∈ [0,min{fA(u), fA(v)}]

(i.e. 1− fB(uv) ∈ [max{1− fA(u), 1− fA(v)}, 1])

Over the closed interval [0, 1], it can be stated simply that

[tB(uv), 1− fB(uv)] ⊆ [max{1− fA(u), 1− fA(v)}, 1].

Definition 4. For a graph G∗ = (V,E), a triple G =
(µ,A,B) is called a µ−bounded vague graph on G∗ or
general bounded vague graph where µ is a fuzzy membership
function on E, A = (tA, fA) is a vague set on V and
B = (tB , fB) is a vague set on E ⊆ V × V such that
for each xy = e ∈ E,

(tA(x) ∧ tA(y) ≤ tB(xy) ≤(1− µ(e))(tA(x) ∧ tA(y))

+ µ(e)(tA(x) ∨ tA(y)),

and

(fA(x) ∨ fA(y) ≥ fB(e) ≥(1− µ(e))(fA(x) ∨ fA(y))

+ µ(e)(fA(x) ∧ fA(y)),

If µ = 1, a triple G = (1, A,B) is said to be a bounded
vague graph.

Definition 5. The µ−vague graph G = (µ,A,B) is said to
be regular if,

∑
x∈V
x̸=y

tB(xy) = constant and
∑
x∈V
x̸=y

tB(xy) = constant

Moreover, it is called strong regular if, for all xy ∈ E,

1) tB(xy) = tA(x)∧tA(y) and fB(xy) = fA(x)∨fA(y).

2)
∑
x∈V
x̸=y

tB(xy) = constant and
∑
x∈V
x̸=y

tB(xy) = constant.

Definition 6. The complement of a µ−vague graph
G = (A,B) is a vague graph Ḡ = (Ā, B̄), where A = Ā

and B is described as follows:

The true and false membership values for the edges of G
are given below.

tB̄(xy) =µ(xy)(tA(x) ∧ tA(y))

+ (1− µ(xy))(tA(x) ∨ tA(y))− tB(xy)

fB̄(xy) =fB(xy)− µ(xy)(fA(x) ∨ fA(y))

− (1− µ(xy))(fA(x) ∧ fA(y)),

for all x, y ∈ V .

III. APPLICATION

The structure of the µ−vague graph, known as the
generalized vague graph, manages datasets that have
certain and ambiguous data, which is often present in
real-world problems. This type of data can be inconsistent
or indeterminate, and traditional fuzzy graphs and vague
graphs may not be able to adequately address these factors
or obtain the desired results.

Let us consider the mechanism of the University to
prepare for the succeeding semester’s workload of staff
based on the current students’ results:

As an example, the University of Technology and Applied
Sciences assumes that all students passed the courses they
are currently studying in preparation for the succeeding
semester’s class timetabling of courses. Obviously, the
failure rate may vary from 0% to 40% according to the
nature of difficulty of the course. Hence, the assumption
fails to support the pre-planning done for the succeeding
semester. At the same time, it is impossible to assume
that every course may have a fixed percentage of failure
too. In this regard, the information that is required is the
student’s status - whether pass or fail - halfway in the
current semester, based on the progression of the course.
This information provides the motivation to predict the
student’s final mark for the course, which is generally the
sum of the continuous assessment and the final examination.
As a form of formative assessment, students are subjected
to continuous assessments in their courses throughout the
semester. Though there is positive correlation between the
student performance in continuous assessment components
and the final exam, it is difficult and cumbersome to collect
all continuous assessment components for all the students
in the middle of the semester. There are few missing data in
the collection of the marks of continuous assessments that
will be used to predict the final total mark.

A simple model which scales up existing known marks
to out of hundred could be adopted, but it is not going to
be accurate either. The aim of the authors is to propose
a model that takes into consideration a few other external
factors that may affect individual student performance
using fuzzy membership value measures to predict the
final total marks and identify whether a particular student
passes or fails a particular course. It is easy to describe
a functions with range (0, 1) for minimum and maximum
possible mark that the student can attain, say a and b.
These two values are the true membership and the false
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membership values. Simply stated, students could just
provide the marks that will determine whether they will
pass or fail, and these will be a and b. To find the fixed
value instead of the range for each and every student, the
course teacher has to provide the fuzzy membership value
µ which measure the confidence level of the teacher on
the student performance. This model identifies and measure
the student performance more specific using µ−vague graph.

ETTP has been used in real-time experiments during
the past two academic years in UTAS, Nizwa. This model
was developed to semi-automate the process and increase
the satisfaction level of the various University stakeholders.
During the early implementation of the project, the ETTP
scheduling is done through graph-coloring of conflict graph.
The minimum number of colors required to color the conflict
graph is either 12 or 13. Later after pandemic, the constraint
is to schedule the examinations within 10 sessions, though it
requires 12 or 13. How this could be possible? Obviously, it
is impossible to have the proper coloring which requires the
number of colors is lesser than the chromatic number. This
situation motivated the authors to look for the minimum
edge removal of the conflict graph to make it contain 10 or
less chromatic numbers. Moreover, the student satisfaction
level may increase only by having the proper gap between
examination schedules in order to give them more time
preparing for their examinations. Majority of students have
common understanding about the difficulty of the courses
they are currently registered, and thus, they are asked to
define α and β for the course as percentages easy and
difficult in terms of how they prepare for their examinations.
Here α + β is not necessarily be equal to one, because of
the incomplete data due the haziness of the student in the
choice of selecting the outcomes as either difficult or easy

in terms of percentage. The ratios
α

α+ β
and

β

α+ β
are

the values that lie in [0, 1]. The sum α + β ≤ 1. If the
student may not take the decision for some of the outcomes,
whether they are easy or difficult, such outcomes are with
missing data. The ETTP is added with additional constraint
that is to optimize the gap between the two courses which
has lower α and higher β values.

If the model is able to find a coloring, then, the level of
student satisfaction in regard to the timetable schedule will
also increase among students. Hence, every vertex of the
conflict graph should be assigned with the true membership
and false membership values based on students choice of
the values α and β. For this model,the conflict graph is
considered as a vertex and edge-weighted vague graph. The
investigation has taken place to get the optimum stratification
of stakeholders on the solution of the ETTP. Further, this
work requires to consider the fuzzy measure of the difficulty
level of courses in terms of the course teacher. According
to the membership value assigned for the courses by the
course teachers, it could be further generalized. If the model
considers the additional fuzzy membership function µ that
defines the choice of confidence or acceptance of the course
teacher on the decision made by the students, then it is
easy to obtain the optimum scheduling by considering it as
µ−vague graph for investigation.

IV. EXAMINATION TIMETABLING PROBLEM WITH
UNCERTAINTY

The basis of this timetabling problem includes assigning
exams to a given number of days within a defined
examination session with provided higher satisfaction of
all hard and maximum number of soft constraints. By
considering the purpose of timetabling, a feasible solution
is one, which all hard constraints are met, but the soft
constraints are also possibly attained. The university ETTP
includes major administrative activities. The quality of the
obtained solution of university examination timetabling
problem is measured by means of the higher percentage of
soft constraint satisfaction, because the provided conditions
aim to satisfy all hard constraints. An increasing number
of student enrollment, wide range of courses, fixed
available resources, and verity of soft constraints increase
the complication of scheduling and assignment process.
The examination timetabling problem involves a set of
constraints, and there have been numerous approaches
proposed in the literature. Here, the uncertainty is taken
in to account. Consider the courses are outcome based.
The courses are classified based on the student ability to
learn or prepare for the examination. If the student feels the
outcome is difficult, then map it with 1. If the student feels
the outcome is easy, then map it with 0. The student may
feel that only few outcomes can be mapped with values that
are between 0 and 1 in terms of difficulty. Also, they may
not map the value for few of the outcomes due to haziness
in evaluating them.

A real-world examination timetabling problem in the
University of Technology and Applied Sciences is handled
with these uncertainty measures defined for each course.
Particularly, the data presented here is real data of final
examination for Semester II, Academic year 2022. The
data presented here has been processed excluding courses
that have no examinations. Further, the original data is
modified, replacing the appropriate exams accordingly.
In this data, the cardinals are 283 courses, 818 exams
groups with 14047 students, and 75857 enrollments. The
number of exam days and sessions are 5 and 15, respectively.

Considering the examination timetabling problem with
few uncertainty measures requires the µ−vague graph
for further investigation. It is the novel approach for the
scheduling and assignment problem such as ETTP. One
of the important soft constraints is to increase the gap
between the courses that are treated as difficult by the
student in the examination schedule. In terms of graph
theory, the variant of the coloring has to be defined for
weighted precedence µ−vague graph for the scheduling. In
this paper, a method is proposed to infer the edge weight
of the conflict graph of ETTP scheduling. Every vertex
of the precedence graph is mapped with a weight and
vague interval. This weight denotes the number of students
that have conflicts with the course being scheduled. If we
draw a loop for every single student, then this number
represents the number of loops on the respective vertices.
Similarly, the edge weight is the number of students that
has a conflict between the two courses that are associated
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with the vertices of the edge. If we draw a parallel edge
for every single student who has conflict, then the edge
weight is nothing but the number of parallel edges between
the courses associated with the vertices. Simply, in the
weighted precedence µ−vague graph, the weight function
ω is defined to map the weight for vertices as well as
edges. In other words, vertex weight is the number of
students enrolled in the course mapped with the vertex.
Edge weight is the enrolled students in both the courses
mapped with the vertices. To illustrate the definition of the
weighted precedence µ−vague graph, information about
five courses is listed in the table below to provide an example

Table I: Course mapping with true and false membership
function

Vertex Course Code Student tA fA
v1 ITNT101 5 0.7 0.2
v2 MATH1202 304 0.8 0
v3 ITIS101 40 0.5 0.3
v4 ENTW1200 271 0 0.9
v5 ITDB101 17 0.4 0.6

The tA for the course is determined by dividing the
number of difficult outcomes selected by students by the
total number of outcomes. Similarly, the fA for the course
is determined by dividing the number of easy outcomes
chosen by students by the total number of outcomes.

Table II shows the clash list between courses. The edge
weight is mapped with the enrolled students in the respective
two courses.

Table II: Clash list and its true and false membership function

Edge Course1 Course2 # tA fA
v1v2 ITNT101 MATH1202 3 0.6 0.3
v2v3 MATH1202 ITIS101 26 0.5 0.35
v3v4 ITIS101 ENTW1200 34 0 0.9
v4v5 ENTW1200 ITDB101 17 0 0.9
v5v1 ITDB101 ITNT101 3 0.2 0.7
v4v1 ENTW1200 ITNT101 4 0 1

Figure 1 illustrates the weighted precedence vague graph.

The student’s measures tA and fA for every course
are defined and considered for elevating the student’s
satisfaction to schedule the two courses vi and vj . The
validation of the student evaluation could be done using
another fuzzy membership function µ defined for every
pair of courses by the teacher. Instead of considering the
minimum {tA(vi), tA(vj)} as the upper bound for tB(vivj)
by only considering the student input, the value µ(vivj) is
used to increase the upper bound of tB(vivj). Primarily, this
value is used to evaluate the difficulty level of having two
courses vi and vj as continuous exams. Adding this fuzzy
measure µ increases the accuracy in modeling the real time
examination timetabling problem in terms of uncertainty
involved in it. For a vertex v of graph G, N(v), the open
neighborhood of v, is the set of adjacent vertices of v and

5, [0.7,0.8]

304, [0.8,1]

40, [0.5,0.7]271, [0,0.1]

17, [0.4,0.4]

3, [0.6,0.7]

26, [0.5, 0.65]

34, [0,0.1]

17, [0,0.1]

3, [0.2,0.3]

4, [0, 0]

v1

v5 v2

v4 v3

e4

e5 e1

e2

e3

e6

Figure 1: Weighted precedence vague graph

the closed neighborhood of v, N [v], is N(v) ∪ v.

Definition 7. For a vertex v of properly colored graph
G and given color i, the open i−neighborhood of
G, denoted by Ni(v), is the set of adjacent vertices
of v which belong to the color class C[i]. i.e.,
Ni(v) = {u : uv ∈ E(G) and u ∈ C[i]}

Figure 2 illustrates the weighted precedence µ−vague
graph.

5, [0.7,0.8]

304, [0.8,1]

40, [0.5,0.7]271, [0,0.1]

17, [0.4,0.4]
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26, [0.7,0.85], 0.8
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3, [0.2,0.3], 0.2

4, [0, 0], 1

v1

v5 v2

v4 v3

e4

e5 e1

e2

e3

e6

Figure 2: Weighted precedence µ−vague graph

Definition 8. For a subset S ∈ V of weighted graph G,
the weight of S, denoted by w(S), is the sum of weights of
each vertices of S.
For a subset R ∈ E of weighted graph G, the weight of R,
denoted by w(R), is the sum of weights of each edges of R.

Definition 9. For a vertex v of properly colored graph G
and given color i, the edge incidence of v, denoted by I(v),
is the set of all incidence edges of v whose other end vertex
belongs to the color class C[i].
i.e., Ii(v) = {uv : uv ∈ E(G) and u ∈ C[i]}

Definition 10. For a graph G with chromatic number χ,
r−semi k−coloring of the graph for k < χ(G) is defined
as the possible k−coloring after removing s ≥ r edges from
the graph G.

Engineering Letters, 31:4, EL_31_4_25

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



A graph G with chromatic number χ is called r−semi
k−colorable graph for k < χ(G) if the graph has r−semi
k−coloring.

In other words, the graph G is k−colorable after removing
minimum of s ≥ r edges from the graph G.

Let us consider the graph G. Given r, the graph G − R
where R ⊆ E can have the proper k−coloring such that
|R| ≤ r. Based on the assumption, we can say that the
unweighted graph has the weight for each edge 1.

In the weighted graph, the edge removal can be done in
such a way that w(R) ≤ s. Minimum of such possible all
w(R) is defined as the density of r−semi k−colorable graph.

ALGORITHM
A linear runtime algorithm can be used to perform a greedy
coloring for a given ordering of vertices. This algorithm
processes the vertices in a specific descending sequence
based on the sum of weights of all edges incident to each
vertex. It assigns the smallest possible available color
to each vertex as it processes them. The k colors are
represented by the numbers {0, 1, 2, . . . , k − 1}.

To find the smallest available color for the vertex vj ,
we may use the k × 2 dimensional array to have the sum
of the weights of the edges of neighbors of each color
i, and replace the values of first column with w(Ii(vj))
for the index i, then replace the values of the second
column with w(Ii−1(vj)) + w(Ii+1(vj)) and then scan
the array to find the index of its smallest in the first
column. If we have multiple such smallest values in the
first column then scan the array to find the index of
the smallest value of the second column. After assigning
the color to the vertex vj , we can repeat the process for vj+1.

OUTPUT:
The output of the algorithm for the figure 1 is v3 ← 0,

v4 ← 1, v2 ← 1, v5 ← 0, v1 ← 0

The required edge removal : I0(v1) ie., {v1v5}

RESULTS:
The scheduling and assignment for the academic year
2021–2022, ETTP at UTAS, Nizwa, were prepared by em-
ploying the semi-coloring proposed algorithm. The main
impact of this application is that:

• the list of students who have conflict in the examina-
tion schedule is obtained before the publication of the
examination timetable to the students. Previously, the
number of clashes are found after the publication, if
the students report it. The number of the students with
conflict in examination is minimized in the schedule.

• the number of continuous exams has been kept to min-
imum, fulfilling one of the objectives of this research.

• the exams are distributed with the maximum gap be-
tween the exams.

It is not feasible to compare the solution obtained by the
proposed greedy algorithm with the existing algorithms in
the literature, because the proposed semi-coloring is allowing
the minimum possible conflict to reduce the number of

Algorithm 1: Greedy Coloring Algorithm
Input: Weighted precedence vague graph G and

number of colors k
Output: Vertex coloring of G and list of edge

removal
Data: Vertices V = {v1, v2, ..., vn}, Edges

E = {e1, e2, . . . , em}, and the weight
w(vi, vj) = 0 if there is no edge vivj exists in
G

1 for j = 0 to n− 1 do
2 w[j][0] := j + 1 // labelling each

vertex vj+1

3 w[j][1] :=
n∑

i=1

w(vivj+1) // assigning

weight for each vertex vj+1

4 w[j][2] :=
tA(vj+1) + fA(vj+1)

2
// assigning vague value for each
vertex vj+1

5 Sort the array w in descending order of second
column and name it as W

6 for j = 0 to n− 1 do
7 if j = 0 then
8 color := 0

9 else
10 for i = 0 to k − 1 do
11 if i = 0 then
12 a := W [j][0]
13 c[i][0] := w(Ii(va))
14 c[i][1] := w(Ii+1(va))

15 else if i = k − 1 then
16 a := W [j][0]
17 c[i][0] := w(Ii(va))
18 c[i][1] := w(Ii−1(va))

19 else
20 a := W [j][0]
21 c[i][0] := w(Ii(va))
22 c[i][1] := w(Ii−1(va)) + w(Ii+1(va))

23 multicolor := list[min(c[i][0])]
24 if length(multicolor)=1 then
25 color := multicolor

26 else
27 color := smallest i in which the

min(c[i][0]) and min(c[i][1]) exist

28 W [j][1] := color a least possible color from
{0, 1, 2, . . . , k − 1}
// Assign the color W [j][1] to the

vertex W [j][0]
29 return vW [j][0] ← [j][1] // printing

color for each vertex vj+1

30 if min(c[i][0])] > 0 then
31 The required edge removal : return

Icolor(vW [j][0])

examination schedules. Hence, few observations are listed
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below in terms of graph theory:
• Any graph G with chromatic number χ is a−semi

b−colorable if b < χ and a ≥ ω
• For any graph G with χ−colorable k > 1 components,

the graph G is a−semi b−colorable iff each component
of graph G is a−semi b−colorable.

• For every graph G with chromatic number χ, there
exists a sequence of numbers a1, a2, ..., aχ such that
the graph G is ai-semi χ− i−colorable.

V. CONCLUSION AND FUTURE WORK

The approach comprises three stages. Initially, a heuristic
algorithm is utilized, which is based on a proposed variant
of graph coloring, to determine the color classes of the
exams. In the second stage, this algorithm is combined with
another algorithm that orders courses to assign exams to
specific rooms. In the final stage, pairs of invigilators are
assigned to each room or laboratory. Throughout all three
stages, the set of soft and hard constraints are considered
to achieve a feasible and optimal solution, although these
constraints may be uncertain. Prior to these three stages,
ETTP-UTAS follows a set of predefined steps to collect
necessary data. This data is categorized as static or dynamic,
with the dynamic data changing for each exam, such as the
exam dates.

In this work, a novel greedy coloring algorithm is
presented for the precedence graph of the examination
timetabling problem with uncertainty. Out of the main three
stages, scheduling courses in different slots by minimizing
the number of clashes included the uncertainty. The other
two might be automated with other algorithms in the
future work. For the scheduling, we propose the edge
decomposition from the actual precedence graph to have
lesser number of coloring than the actual required. Such
coloring process is defined as semi-coloring. The novel
greedy algorithm is developed to get the semi coloring by
considering weights of edges that are actually mapped with
the measures of uncertainty.

The primary objective of the ETTP of UTAS, Nizwa is
the number of days for examination schedule in ten slots
with the minimum of conflicts. Also, minimizing the resource
assignment and maximize the satisfaction for the student
and invigilators on their schedule and assigned resources
are considered as additional objectives. To the programmers
of the educational technological center of UTAS, Nizwa,
the Examination Management System proposes to develop
the required reports generation and to display the proposed
scheduling to ensure the smooth functioning of university ex-
aminations by improving the existing examination scheduling
practices. The required details and reports can be accessed
online easily and securely by the admin staff, academic staff,
and students as per their requirement.
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