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Abstract—This paper presents the introduction of d-ρ-(η, θ)-
univex functions, which are built upon the concepts of d-ρ-
(η, θ)-invex functions and univex functions. By utilizing these
concepts, the paper derives various optimality results for
feasible solutions to be considered as efficient or weak efficient
solutions. Additionally, the paper establishes several duality
theorems for Mond-Weir and Wolf duality.
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I. INTRODUCTION

CONVEXITY plays a key role in optimization theory
as it allows for the relaxation of the assumption of

standard convexity. Over the years, many researchers have
proposed different types of generalized convex functions.
One example is η-invexity (1981), which established that
the KT conditions are sufficient for optimality. Other types
of generalized convexity, such as ρ-(η, θ)-invexity and d-ρ-
(η, θ)-invexity, were proposed by Nahak and Nanda (2005)
and Nahak and Mohapatra (2009) respectively. These con-
cepts have been extensively studied, and various researchers,
including Ben-Isreal and Mond (1986) and Das and Nanda
(1995), have explored their properties, extensions, and appli-
cations. Additionally, Nahak and Mohapatra (2009) have in-
vestigated duality for Mond-Weir and Wolf type duality using
d-ρ-(η, θ)-invexity. Overall, these studies have contributed to
a better understanding for generalized convex in optimization
problems. In 2001, Aghezzaf and Hachimi introduced several
concepts related to convexity and invexity of functions.
These concepts include weakly strictly pseudoinvex, strong-
ly pseudoinvex, weakly quasi-invex, weakly pseudoinvex,
and strongly quasi-invex functions. For nondifferentiable
multiobjective programming, Antczak (2002) proposed the
concept of d-invexity and obtained optimization conditions
and duality results by using Mond-Weir and Wolf duality.
Building upon these concepts, Zhang and Wang (2022) intro-
duced the concepts of d-ρ-(η, θ)-quadiinvex, and strictly d-ρ-
(η, θ)-psedoinvex functions based on the existing d-ρ-(η, θ)-
invexity concept. They further derived some duality results.
These developments have expanded the understanding of
convexity and invexity concepts and their applications in
optimization problems.

This paper introduces the concepts of d-ρ-(η, θ)-univex
functions, which are based on the previous works of Rueda
et al. (1995), Nahak et al. (2009). It then proceeds to establish
several sufficient optimality results for feasible solutions to
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be considered efficient or weak efficient solutions. Addition-
ally, the paper presents duality results for Mond-Weir and
Wolf type, expanding upon the results of Antczak (2002)
and Nahak et al. (2009).

II. PRELIMINARIES

The following conventions are used for x, y ∈ Rn in
the paper:

x 5 y is equivalent to xi 5 yi, i = 1, · · · , n,
x ≤ y is equivalent to xi 5 yi, x ̸= y,
x < y is equivalent to xi < yi, i = 1, · · · , n.

Let X ⊆ Rn be a nonempty set, and let η : X ×X → Rn

and θ : X ×X → Rn be vector functions.
The problem that will be examined in this paper is shown

below:

(V P )

 min f(x) = (f1(x), · · · , fk(x))
s.t. g(x) = (g1(x), · · · , gm(x)) 5 0,

x ∈ X.

Let M = {1, 2, · · · ,m}, F = {x ∈ X | g(x) 5 0} be
the feasible region of (V P ), J = {j ∈ M |gj(x̄) = 0},
J̃ = {j ∈ M |gj(x̄) < 0}. It is clear that J

∪
J̃ = M . Along

the direction η(x, u), the directional derivative f
′
(u, η(x, u))

of f is given below:

f
′
(u, η(x, u)) = lim

λ→0+

f(u+ λη(x, u))− f(u)

λ
.

Definition 1. For all x and some x̄ in F , if f(x) ≮ f(x̄),
then x̄ is named a weak efficient solution for (V P ).

Definition 2. For all x and some x̄ in F , if f(x) � f(x̄),
then x̄ is named an efficient solution for (V P ).

Definition 3. (Nahak and Mohapatra, 2009) For all x in
F , we define d-ρ-(η, θ)-invexity at u ∈ X for a nonempty set
X ⊆ Rn and a directionally differentiable function h : X →
R as follows: h(x)− h(u) ≥ h′(u, η(x, u)) + ρ∥θ(x, u)∥2.

Definition 4. For all x ∈ X , a nonempty set X ⊆ Rn

and a directionally differentiable function h : X → R at
u ∈ X , h(x) is d-ρ-(η, θ)-uninvex at u: if h

′
(u, η(x, u))+ρ ∥

θ(x, u) ∥25 b(x, u)ϕ(h(x)− h(u)) holds.
Remark 1. If ρ > 0, h(x) is named strongly d-ρ-(η, θ)-

uninvex. On the other hand, if ρ < 0, h(x) is referred to as
weakly d-ρ-(η, θ)-uninvex.

Remark 2. If we set b = 1 and ϕ as the identity function,
d-ρ-(η, θ)-uninvexity reduces to the concept of d-ρ-(η, θ)-
invexity as defined in Nahak and Mohapatra (2009).

Remark 3. When b = 1, ρ = 0, and ϕ is the identity
function, h is referred to as d-invex as defined by Antczak
(2002).

Remark 4. Note that d-ρ-(η, θ)-invexity is a special case
of d-ρ-(η, θ)-uninvexity. In other words, every function that
is d-ρ-(η, θ)-invex is also d-ρ-(η, θ)-uninvex. However, there
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exist functions that are d-ρ-(η, θ)-uninvex but not d-ρ-(η, θ)-
invex.

Example. Define h : R2 → R as follows:

h(x1, x2) =

{
x2
1√

x1x2
, x1 ̸= 0, x2 ̸= 0,

0, x1 = x2 = 0.

Clearly, h is not continuous at the point (0, 0). We define
η : R2 ×R2 → R2 and θ : R2 ×R2 → R2 as follows:

η(x, y) = (x1, x2), θ(x, y) = (x1, 0)

where x = (x1, x2) and y = (y1, y2). Let b(x, y) =
2
√
x1x2 + 1, ρ = 1 and ϕ be the identity function.

Using the concept of the directional derivative, for x1 ̸= 0
and x2 ̸= 0, we have that

lim
λ→0+

λ2x2
1

λ
√
x1x2

λ
=

x2
1√

x1x2
= h

′
(0, η(x, 0)).

We first show that h(x) is d-ρ-(η, θ)-uninvex at (0, 0). To do
so, we need to prove that the inequality below holds:

b(x, 0)ϕ(h(x)− h(0)) = h
′
(0, η(x, 0)) + ρ ∥ θ(x, 0) ∥2 .

Suppose it is not true, that is,

(2
√
x1x2 + 1)

x2
1√

x1x2
<

x2
1√

x1x2
+ x2

1

⇒ 2x2
1 < x2

1

⇒ x2
1 < 0,

which contradicts the fact that x1 ̸= 0 and x1 ∈ R.
Therefore, at (0, 0), h(x) is d-ρ-(η, θ)-uninvex. Next, the aim
is to show that h(x) is not d-ρ-(η, θ)-invex at (0, 0). Suppose
for contradiction. Then,

x2
1√

x1x2
= x2

1√
x1x2

+ x2
1 ⇒ x2

1 5 0,

which contradicts the fact that x1 ̸= 0 and x1 ∈ R. Hence,
the conclusion is completed.

In the following definitions, let ρ = (ρ1, ρ2, · · · , ρk)T ∈
Rk, and ρ1 = (ρ11, · · · , ρ1k)T ∈ Rk, ρ2 ∈ R, ϕ0 : Rk →
Rk, ϕ1 : Rm → Rm, b0, b1 : X ×X → R+.

Definition 5. For x in F , if 0 ≥ ϕ0 (f(x)− f(x̄)) b0(x, x̄)
implies 0 > ρ ∥ θ(x, x̄) ∥2 +f

′
(x̄, η(x, x̄)), then f : F → R

is named weakly strictly pseudo d-ρ-(η, θ)-univex at x̄.
Definition 6. For x in F , if 0 ≥ ϕ0 (f(x)− f(x̄)) b0(x, x̄)

implies 0 ≥ ρ ∥ θ(x, x̄) ∥2 +f
′
(x̄, η(x, x̄)), then f : F → R

is named strongly pseudo d-ρ-(η, θ)-univex at x̄.
Definition 7. For x in F , if 0 > ϕ0 (f(x)− f(x̄)) b0(x, x̄)

implies 0 ≥ ρ ∥ θ(x, x̄) ∥2 +f
′
(x̄, η(x, x̄)), then f : F → R

is named weakly pseudo d-ρ-(η, θ)-univex at x̄.
Definition 8. For x in F , if 0 ≥ ϕ0 (f(x)− f(x̄)) b0(x, x̄)

implies 0 = ρ ∥ θ(x, x̄) ∥2 +f
′
(x̄, η(x, x̄)), then f : F → R

is named weakly quasi d-ρ-(η, θ)-univex at x̄.
Definition 9. For x in F , if 0 = ϕ0 (f(x)− f(x̄)) b0(x, x̄)

implies 0 ≥ ρ ∥ θ(x, x̄) ∥2 +f
′
(x̄, η(x, x̄)), then f : F → R

is named strongly quasi d-ρ-(η, θ)-univex at x̄.
Lemma 1. (KKT Necessary Optimality Condition, Nahak

and Mohapatra, 2009) For (V P ), let x̄ be its a weakly
efficient solution. If gj (j ∈ J̃) is continuous, and at x̄,
both f and g are directionally differentiable, f

′
(x̄, η(x, x̄))

and g
′

J(x̄, η(x, x̄)) being preinvex functions on X , and g
satisfies the generalized Slater constraint qualification at x̄,

then there exists a non-negative vector v̄ ∈ Rm
+ such that

(x̄, v̄) satisfies:

v̄T g(x̄) = 0, (1)

g(x̄) 5 0. (2)

f
′
(x̄, η(x, x̄)) + v̄T g

′
(x̄, η(x, x̄)) = 0, ∀x ∈ X, (3)

III. SUFFICIENT OPTIMALITY CONDITIONS

Theorem 1. For (V P ), let x̄ be its a feasible point, and
the conditions below hold:

v̄T g(x̄) = 0, (ūT f
′
+ v̄T g

′
)(x̄, η(x, x̄)) = 0,

where ū ∈ Rk
++ and v̄ ∈ Rm

+ . Additionally, ūT ρ1 + ρ2 = 0,
and one of (i) and (ii) below holds:

(i) f is strongly pseudo d-ρ1-(η, θ)-univex at x̄, where,
b0 > 0 and a < 0 implies ϕ0(a) ≤ 0, while v̄T g is strongly
quasi d-ρ2-(η, θ)-univex at x̄, where a 5 0 implies ϕ1(a) 5
0.

(ii) f is weakly pseudo d-ρ1-(η, θ)-univex at x̄. Here, b0 >
0 and a < 0 implies ϕ0(a) < 0, while v̄T g is strongly quasi
d-ρ2-(η, θ)-univex at x̄, where a 5 0 implies ϕ1(a) 5 0.

Under these conditions, we can conclude that x̄ is a weakly
efficient solution for (V P ).

Proof. Assuming the conclusion is not true, it implies the
existence of x in the set F with f(x) < f(x̄).

(i) Using the inequality b0 > 0 and a < 0 implies 0 ≥
ϕ0(a), we can obtain

0 ≥ ϕ0(f(x)− f(x̄))b0(x, x̄).

Given that f is strongly pseudo d-ρ1-(η, θ)-convex at x̄, we
can conclude that:

0 ≥ f
′
(x̄, η(x, x̄)) + ρ1 ∥ θ(x, x̄) ∥2 .

As ū > 0, we can deduce that

0 > ūT f
′
(x̄, η(x, x̄)) + ūT ρ1 ∥ θ(x, x̄) ∥2 . (7)

Given v̄ = 0 and the feasibility of x, it can be inferred that
0 = v̄T g(x). When combined with v̄T g(x̄) = 0, we are easy
to get

0 ≥ v̄T g(x)− v̄T g(x̄).

Using the fact that a 5 0 implies ϕ1(a) = 0, and b1 = 0,
we obtain

0 = ϕ1(v̄
T g(x)− v̄T g(x̄))b1(x, x̄).

By the strong quasi d-ρ2-(η, θ)-univexity of v̄T g at x̄, we
get

0 > v̄T g′(x̄, η(x, x̄)) + ρ2∥θ(x, x̄)∥2. (8)

The expression obtained by adding (7) and (8) is:

(ūT f
′
+ v̄T g

′
)(x̄, η(x, x̄)) + (ūT ρ1 + ρ2) ∥ θ(x, x̄) ∥2≤ 0

As ūT ρ1 + ρ2 = 0, we have:

0 > (ūT f
′
+ v̄T g

′
)(x̄, η(x, x̄))

This contradiction invalidates equation (1) and concludes the
proof.
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(ii) Given that b0 > 0 and a < 0, we can conclude that
ϕ0(a) < 0, which implies:

0 > ϕ0(f(x)− f(x̄))b0(x, x̄).

Using the weak pseudo d-ρ1-(η, θ)-univexity of f , we can
derive:

0 > f
′
(x̄, η(x, x̄)) + ρ1 ∥ θ(x, x̄) ∥2,

Since ū > 0, we can get that:

0 > ūT f
′
(x̄, η(x, x̄)) + ūT ρ1 ∥ θ(x, x̄) ∥2 .

The rest follows a similar logic as in (i) and is therefore
omitted for brevity.

Theorem 2. For (V P ), suppose x̄ is its a feasible point,
and ū ∈ Rk, v̄ ∈ Rm satisfy:

v̄T g(x̄) = 0 (9)

ū ≥ 0, v̄ = 0 (10)

0 5 (ūT f
′
+ v̄T g

′
)(x̄, η(x, x̄)) (11)

Additionally, ūT ρ1+ρ2 = 0 and f is weakly strictly pseudo
d-ρ1-(η, θ)-univex at x̄, where a < 0 implies ϕ0(a) ≤ 0 and
b0 > 0. Also assume that v̄T g is strongly quasi d-ρ2-(η, θ)-
univex at x̄, where a 5 0 implies ϕ1(a) 5 0. Then, x̄ is a
weakly efficient solution for (V P ).

Proof. Assuming the conclusion is false. Then, for some x
in F , we have f(x) < f(x̄). Since a < 0 implies ϕ0(a) ≤ 0,
and b0 > 0, we can conclude that:

0 ≥ b0(x, x̄)ϕ0(f(x)− f(x̄)).

By the weakly strictly pseudo d-ρ1-(η, θ)-univex of f at x̄,
we are easy to get:

0 > f
′
(x̄, η(x, x̄)) + ρ1 ∥ θ(x, x̄) ∥2 .

As ū ≥ 0, we can derive:

0 > ūT f
′
(x̄, η(x, x̄)) + ūT ρ1 ∥ θ(x, x̄) ∥2 . (12)

As x is feasible for (V P ), and v̄ = 0, we can conclude
that 0 = v̄T g(x). Combining this with v̄T g(x̄) = 0, we can
derive:

0 = v̄T g(x)− v̄T g(x̄).

By a 5 0 implies ϕ1(a) 5 0, and b1 = 0, we can derive the
following inequality:

0 = ϕ1(v̄
T g(x)− v̄T g(x̄))b1(x, x̄).

Using the fact that v̄T g is strongly quasi d-ρ2-(η, θ)-univex
at x̄, we can obtain:

0 ≥ v̄T g
′
(x̄, η(x, x̄)) + ρ2 ∥ θ(x, x̄) ∥2 . (13)

By combining (12) and (13), we get:

0 > (ūT f
′
+ v̄T g

′
)(x̄, η(x, x̄)) + (ūT ρ1 + ρ2) ∥ θ(x, x̄) ∥2 .

Since ūT ρ1 + ρ2 = 0, it implies that:

0 > (ūT f
′
+ v̄T g

′
)(x̄, η(x, x̄)),

which contradicts (9). Thus, the proof is completed.
Theorem 3. For (V P ), suppose x̄ is its a feasible point,

and ū ∈ Rk and v̄ ∈ Rm satisfy:

v̄T g(x̄) = 0 (14)

ū > 0, v̄ = 0 (15)

0 5 (ūT f
′
+ v̄T g

′
)(x̄, η(x, x̄)) (16)

Additionally, suppose that ūT ρ1 + ρ2 = 0, and (i) or (ii)
is met: at x̄

(i) f is strong pseudo d-ρ1-(η, θ)-univex with a ≤ 0
implies ϕ0(a) ≤ 0 and b0 > 0; v̄T g is strong quasi d-ρ2-
(η, θ)-univex with a 5 0 implies ϕ1(a) 5 0.

(ii) f is weak pseudo d-ρ1-(η, θ)-univex with a ≤ 0
implies ϕ0(a) < 0, and b0 > 0; v̄T g is strong quasi d-
ρ1-(η, θ)-univex with a 5 0 implies ϕ1(a) 5 0.

Then we have that x̄ is an efficient solution for (V P ).
Proof. Assume the conclusion is not true. Then, for some

x in F , we have f(x) ≤ f(x̄).
(i) Using the inequality b0 > 0 and a ≤ 0 ⇒ ϕ0(a) ≤ 0,

we can derive:

0 ≥ ϕ0(f(x)− f(x̄))b0(x, x̄).

At x̄, since f is strongly strictly pseudo d-ρ1-(η, θ)-univex,
we can obtain:

0 ≥ f ′(x̄, η(x, x̄)) + ρ1∥θ(x, x̄)∥2.

Multiplying both sides by ūT , and by ū > 0, we get:

0 > ūT f ′(x̄, η(x, x̄)) + ūT ρ1∥θ(x, x̄)∥2. (17)

Since x is feasible for (V P ) and v̄ = 0, we have 0 =
v̄T g(x). Combining this with v̄T g(x̄) = 0, we derive:

v̄T g(x)− v̄T g(x̄) 5 0.

This is the desired inequality.
Using the fact that b1 = 0, and a 5 0 implies ϕ1(a) 5 0,

we can write:

ϕ1(v̄
T g(x)− v̄T g(x̄))b1(x, x̄) 5 0.

At x̄, since v̄T g is strongly quasi d-ρ2-(η, θ)-univex, we
obtain:

v̄T g′(x̄, η(x, x̄)) + ρ2∥θ(x, x̄)∥2 ≤ 0. (18)

Adding equations (17) and (18), we get:

0 > (ūT f ′ + v̄T g′)(x̄, η(x, x̄)) + (ūT ρ1 + ρ2)∥θ(x, x̄)∥2.

Since ūT ρ1 + ρ2 ≥ 0, we can conclude that:

0 > (ūT f ′ + v̄T g′)(x̄, η(x, x̄)),

which contradicts equation (14). Therefore, we have proved
that our assumption that x̄ is not an efficient solution for
(V P ) leads to a contradiction, and the proof is completed.

(ii) From b0 > 0, and a ≤ 0 implies ϕ0(a) < 0, we can
have

0 > ϕ0(f(x)− f(x̄))b0(x, x̄).

At x̄, since f is weak pseudo d-ρ1-(η, θ)-univex, we can
derive

0 ≥ f
′
(x̄, η(x, x̄)) + ρ1 ∥ θ(x, x̄) ∥2,

Multiplying both sides by ū, and using ū > 0, we can obtain
that

0 > ūT f
′
(x̄, η(x, x̄)) + ūT ρ1 ∥ θ(x, x̄) ∥2 .

The rest of the proof can be shown in a similar way as in
case (i), and hence, we omit the details.
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Theorem 4. For (V P ), suppose x̄ is its a feasible point,
and ū ∈ Rk and v̄ ∈ Rm satisfy the following conditions:

v̄T g(x̄) = 0 (19)

ū ≥ 0, v̄ = 0 (20)

0 = (ūT f ′ + v̄T g′)(x̄, η(x, x̄)) (21)

Assuming that ūT ρ1+ρ2 ≥ 0, f is weakly strictly pseudo d-
ρ1-(η, θ)-quasiconvex at x̄, where a ≤ 0 implies ϕ0(a) ≤ 0
and b0 > 0 , and v̄T g is strongly quasi d-ρ2-(η, θ)-
quasiconvex at x̄, where a ≤ 0 implies ϕ1(a) ≤ 0, we can
conclude that x̄ is an efficient solution for (V P ).

Proof. Suppose the conclusion is not true. This means the
existence of some x ∈ F with f(x) ≤ f(x̄). By utilizing the
assumption that b0 > 0, and a ≤ 0 implies ϕ0(a) ≤ 0, we
can get

0 ≥ ϕ0(f(x)− f(x̄))b0(x, x̄).

Since f is weakly strictly pseudo d-ρ1-(η, θ)-quasiconvex at
x̄, it implies

0 > f ′(x̄, η(x, x̄)) + ρ1||θ(x, x̄)||2.

Using the fact that ū ≥ 0, we obtain

0 > ūT f ′(x̄, η(x, x̄)) + ūT ρ1||θ(x, x̄)||2. (22)

By the feasibility of x and the fact that v̄ = 0, we have
0 = v̄T g(x). Combining this with v̄T g(x̄) = 0, we get

0 = v̄T g(x)− v̄T g(x̄).

Using the assumption that a 5 0 implies ϕ1(a) 5 0, and
b1 = 0, we have

0 = ϕ1(v̄
T g(x)− v̄T g(x̄))b1(x, x̄).

At x̄, since v̄T g is strongly quasi d-ρ2-(η, θ)-quasiconvex,
we can get

0 = v̄T g′(x̄, η(x, x̄)) + ρ2||θ(x, x̄)||2. (23)

Adding (22) and (23), we obtain

0 > (ūT f ′ + v̄T g′)(x̄, η(x, x̄)) + (ūT ρ1 + ρ2)||θ(x, x̄)||2.

By ūT ρ1 + ρ2 ≥ 0, we can get

0 > (ūT f ′ + v̄T g′)(x̄, η(x, x̄)),

which contradicts (19), and the proof is completed.

IV. MOND-WEIR TYPE DUALITY

This section will examine the dual of Mond-Weir type
given by

(V D)


max f(y) = (f1(y), · · · , fk(y))
s.t. (uT f ′ + vT g′)(y, η(x, y)) = 0, ∀x ∈ F,

vT g(y) = 0, uT e = 1,
u ∈ Rk

+, v ∈ Rm
+ .

Here, e = (1, · · · , 1)T ∈ Rk. We denote the feasible region
of (V D) by W , and PrXW represents the projection of the
set W onto X .

Theorem 5. (Weak duality) Suppose x and (y, u, v) are
feasible points of (V P ) and (V D), respectively. Addition-
ally, assume uT ρ1 + ρ2 = 0, and one of (i)-(iii) holds: at
y

(i) f is strongly pseudo d-ρ1-(η, θ)-univex on F
∪

PrXW
under the conditions u > 0, b0 > 0, and a ≤ 0 implies
ϕ0(a) ≤ 0. Moreover, vT g is strongly quasi d-ρ2-(η, θ)-
univex under a 5 0 implies ϕ1(a) 5 0.

(ii) f is weakly pseudo d-ρ1-(η, θ)-univex on F
∪

PrXW
under the conditions u > 0, b0 > 0, and a ≤ 0 implies
ϕ0(a) < 0. Moreover, vT g is strongly quasi d-ρ2-(η, θ)-
univex under a 5 0 implies ϕ1(a) 5 0.

(iii) f is weakly strictly pseudo d-ρ1-(η, θ)-univex on
F
∪
PrXW under the condition b0 > 0 and a ≤ 0 implies

ϕ0(a) ≤ 0. Moreover, vT g is strongly quasi d-ρ2-(η, θ)-
univex under the condition a 5 0 implies ϕ1(a) 5 0.

Then, we have f(x) � f(y).
Proof. Assume the opposite holds, namely f(x) ≤ f(y).
(i) Given that a ≤ 0 implies ϕ0(a) ≤ 0 and b0 > 0, we

can derive
ϕ0(f(x)− f(y))b0(x, y) ≤ 0.

From f is strongly pseudo d-ρ1-(η, θ)-univex, we get

f
′
(y, η(x, y)) + ρ1 ∥ θ(x, y) ∥2≤ 0,

By the positivity of u, we can deduce that

uT f
′
(y, η(x, y)) + uT ρ1 ∥ θ(x, y) ∥2< 0. (24)

According to the feasibility of x and v = 0, we have
vT g(x) 5 0. Combining this with vT g(y) = 0, it is easy
to derive

vT g(x)− vT g(y) 5 0.

Given that a 5 0 implies ϕ1(a) 5 0 and b1 = 0, it implies
that

ϕ1(v
T g(x)− vT g(y))b1(x, y) 5 0.

By the strong quasi d-ρ2-(η, θ)-univexity of vT g at y, we
have

vT g
′
(y, η(x, y)) + ρ2 ∥ θ(x, y) ∥2≤ 0. (25)

By adding (24) and (25), we can derive the following
inequality:

0 > (uT f
′
+ vT g

′
)(y, η(x, y)) + (uT ρ1 + ρ2) ∥ θ(x, y) ∥2 .

Since uT ρ1 + ρ2 = 0, it implies that

0 > (uT f
′
+ vT g

′
)(y, η(x, y)),

which contradicts

(uT f
′
+ vT g

′
)(y, η(x, y)) = 0.

Therefore, the assumption that f(x) ≤ f(y) is false, and the
process is completed.

(ii) Given a ≤ 0 implies ϕ0(a) < 0, and b0 > 0, we can
derive

ϕ0(f(x)− f(y))b0(x, y) < 0.

At y, as f is weakly pseudo d-ρ1-(η, θ)-univex, it is not
difficult to get

0 ≥ f
′
(y, η(x, y)) + ρ1 ∥ θ(x, y) ∥2,

Since u > 0, we can deduce

0 > uT f
′
(y, η(x, y)) + uT ρ1 ∥ θ(x, y) ∥2 .

The remainder follows similarly to (i) and is omitted.
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(iii) Given a ≤ 0 implies ϕ0(a) ≤ 0, and b0 > 0, it is
easy to derive

ϕ0(f(x)− f(y))b0(x, y) ≤ 0.

By the weakly strictly pseudo d-ρ1-(η, θ)-univexity of f at
y, we obtain

f
′
(y, η(x, y)) + ρ1 ∥ θ(x, y) ∥2< 0,

Based on u ≥ 0 and uT e = 1, we can easily derive

uT f
′
(y, η(x, y)) + uT ρ1 ∥ θ(x, y) ∥2< 0.

The rest similars to (i).
Theorem 6. (Strong duality) For (V P ), suppose x̄ is its

a weakly efficient solution, and the generalized Slater’s con-
straint qualification is met. Let f and g be preinvex functions
on X and directionally differentiable at x̄. Additionally, for
all j ∈ J , assume that gj is continuous. Then, for (V D),
there exists a vector v̄ ∈ Rm

+ such that (x̄, 1, v̄) is its a
feasible point. Furthermore, if the weak duality between
(V P ) and (V D) holds as given in Theorem 5, then, for
(V D), (x̄, 1, v̄) is its a weakly efficient solution.

Proof. Lemma 1 confirms that x̄ meets all the necessary
conditions, allowing us to find a vector v̄ ∈ Rm

+ that satisfies
conditions (1) to (3). As a result of these conditions, (x̄, 1, v̄)
is feasible for (V D). Theorem 5 then implies that (x̄, 1, v̄)
is a weakly efficient solution for (V D).

Theorem 7. (Converse duality) Suppose (ȳ, ū, v̄) is a
weakly efficient solution for (V D), and ūT ρ1 + ρ2 = 0 and
ū > 0. Additionally, one of (i)-(iii) is met:

(i) f is strongly pseudo d-ρ1-(η, θ)-univex at ȳ, where a <
0 implies ϕ0(a) ≤ 0 and b0 > 0, and v̄T g is strongly quasi
d-ρ2-(η, θ)-univex at ȳ, where a 5 0 implies ϕ1(a) 5 0.

(ii) f is weakly pseudo d-ρ1-(η, θ)-univex at ȳ, where a <
0 implies ϕ0(a) < 0 and b0 > 0 , and v̄T g is strongly quasi
d-ρ1-(η, θ)-univex at x̄, where a 5 0 implies ϕ1(a) 5 0.

Under these conditions, ȳ is a weakly efficient solution of
(V P ).

Proof. Suppose the conclusion is incorrect. This implies
that there is some x̄ in F with f(x̄) < f(ȳ).

(i) Using the conditions a < 0 implies ϕ0(a) ≤ 0, and
b0 > 0, we can derive

0 ≥ ϕ0(f(x̄)− f(ȳ))b0(x̄, ȳ).

At ȳ, as f is strongly strictly pseudo d-ρ1-(η, θ)-univex, it
is easy to have

0 ≥ f
′
(ȳ, η(x̄, ȳ)) + ρ1 ∥ θ(x̄, ȳ) ∥2 .

Given that ū > 0 and v̄ = 0, we can conclude

0 > ūT f
′
(ȳ, η(x̄, ȳ)) + ūT ρ1 ∥ θ(x̄, ȳ) ∥2 . (26)

Furthermore, using the feasibility of x̄ and v̄ = 0, we obtain
v̄T g(x̄) 5 0. This, combined with v̄T g(ȳ) = 0, implies that

0 = v̄T g(x̄)− v̄T g(ȳ).

Since a 5 0 implies ϕ1(a) 5 0, and b1 = 0, we can deduce
that

0 = ϕ1(v̄
T g(x̄)− v̄T g(ȳ))b1(x̄, ȳ).

Given that v̄T g is strongly quasi d-ρ2-(η, θ)-univex, we
obtain

0 ≥ v̄T g
′
(ȳ, η(x̄, ȳ)) + ρ2 ∥ θ(x̄, ȳ) ∥2 . (27)

By equations (26) and (27), we arrive at

0 > (ūT f
′
+ v̄T g

′
)(ȳ, η(x̄, ȳ)) + (ūT ρ1 + ρ2) ∥ θ(x̄, ȳ) ∥2 .

Since ūT ρ1 + ρ2 = 0, this implies that

0 > (ūT f
′
+ v̄T g

′
)(ȳ, η(x̄, ȳ)),

which inconsistency in the equation below

0 = (ūT f
′
+ v̄T g

′
)(ȳ, η(x̄, ȳ)).

Thus, the process is completed.
(ii) Using the condition a < 0 implies ϕ0(a) < 0, and

b0 > 0, we can derive the inequality

0 > b0(x̄, ȳ)ϕ0(f(x̄)− f(ȳ)).

Given that f is weakly pseudo d-ρ1-(η, θ)-univex at ȳ, we
obtain

0 ≥ f
′
(ȳ, η(x̄, ȳ)) + ρ1 ∥ θ(x̄, ȳ) ∥2 .

Since ū > 0, we can conclude:

0 > ūT f
′
(ȳ, η(x̄, ȳ)) + ūT ρ1 ∥ θ(x̄, ȳ) ∥2 .

The remaining part proceeds in a similar manner as in (i),
and the details are omitted here for brevity.

Theorem 8. (Converse duality) For (V D), given that
(ȳ, ū, v̄) is its a weak efficient solution, and f is weakly
strictly pseudo d-ρ1-(η, θ)-univex at ȳ, where a < 0 implies
0 ≥ ϕ0(a). Additionally, assuming that v̄T g is strongly quasi
d-ρ2-(η, θ)-univex at ȳ, where a ≤ 0 implies ϕ1(a) ≤ 0, and
satisfying the constraint ūT ρ1 + ρ2 ≥ 0, we can conclude
that: for (V P ), ȳ is its a weak efficient solution.

Proof. Suppose the opposite is correct, which indicates
that there is some x̄ in F such that f(x̄) < f(ȳ). Using the
condition a < 0 implies ϕ0(a) ≤ 0, and b0 > 0, we can
derive the inequality

ϕ0(f(x̄)− f(ȳ))b0(x̄, ȳ) ≤ 0.

At ȳ, since f is weakly strictly pseudo d-ρ1-(η, θ)-univex,
we have the following inequalities:

0 > f ′(ȳ, η(x̄, ȳ)) + ρ1 ∥ θ(x̄, ȳ) ∥2 .

Using the fact that ū ≥ 0, we can derive the inequality

0 > ūT f ′(ȳ, η(x̄, ȳ)) + ūT ρ1 ∥ θ(x̄, ȳ) ∥2 . (28)

Based on the feasibility of x̄ and the condition v̄ = 0, we
can get v̄T g(x̄) 5 0. Combining this with v̄T g(ȳ) = 0, the
inequality below is easy to be got:

0 = v̄T g(x̄)− v̄T g(ȳ).

Using the assumption a = 0 ⇒ ϕ1(a) 5 0, and b1 = 0, we
can derive the inequality

0 = ϕ1(v̄
T g(x̄)− v̄T g(ȳ))b1(x̄, ȳ).

At ȳ, Since v̄T g is strongly quasi d-ρ2-(η, θ)-univex, we have
the inequality

0 ≥ v̄T g′(ȳ, η(x̄, ȳ)) + ρ2 ∥ θ(x̄, ȳ) ∥2 . (29)

By adding equations (28) and (29), we obtain the following
inequality:

0 > (ūT f ′ + v̄T g′)(ȳ, η(x̄, ȳ)) + (ūT ρ1 + ρ2) ∥ θ(x̄, ȳ) ∥2 .
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Since ūT ρ1 + ρ2 ≥ 0, we get

0 > (ūT f ′ + v̄T g′)(ȳ, η(x̄, ȳ)).

However, this contradicts the inequality

0 5 (ūT f ′ + v̄T g′)(ȳ, η(x̄, ȳ)),

and therefore the process is finished.

V. WOLF TYPE DUALITY

Consider the Wolf type dual problem given by

(V D)

 max ϕ(y, u, v) = f(y) + vT g(y)e
s.t. (uT f ′ + vT g′)(y, η(x, y)) = 0, ∀x ∈ F,

uT e = 1, u ∈ Rk
+, v ∈ Rm

+ .

We denote the set of all feasible points of (V D) by W , and
the projection of the set W on X by PrXW .

Theorem 9. (Weak duality) Suppose that x and (y, u, v)
are feasible points for (V P ) and (V D), respectively. Addi-
tionally, assume that uT f + vT g is weakly strictly pseudo
d-ρ2-(η, θ)-univex at y on F ∪PrXW , where a < 0 implies
ϕ(a) ≤ 0, and ρ2 = 0, b > 0. Then, f(x) ≮ ϕ(y, u, v).

Proof. Suppose the opposite holds, i.e. f(x) < ϕ(y, u, v).
By the feasibility of x, u ∈ Rk

+, uT e = 1, and v ∈ Rm
+ , we

can derive the inequality

uT f(x) + vT g(x) < uT f(y) + vT g(y). (30)

Using the conditions a < 0 implies ϕ(a) ≤ 0 and b > 0, we
obtain:

0 ≥ ϕ(uT f(x) + vT g(x)− (uT f(y) + vT g(y)))b(x, y).

By assumption, uT f + vT g is weakly strictly pseudo d-ρ2-
(η, θ)-univex at y on F ∪PrXW , and therefore we have the
inequality

0 > (uT f ′ + vT g′)(y, η(x, y)) + ρ2 ∥ θ(x, y) ∥2 .

Since ρ2 ≥ 0, it follows that

(uT f ′ + vT g′)(y, η(x, y)) < 0,

which inconsistency in:

0 5 (uT f ′ + vT g′)(y, η(x, y)).

This implies that f(x) ≮ ϕ(y, u, v).
Theorem 10. (Strong duality) For (V P ), assume that x̄

is its a weak efficient solution, and the generalized Slater’s
constraint qualification is met. Moreover, at x̄, g and f are
directionally differentiable, f

′
(x̄, η(x, x̄)) and g

′
(x̄, η(x, x̄))

are preinvex functions on X , and gj(j ∈ J) is continuous.
Under these conditions, there is a vector v̄ ∈ Rm

+ such that
(x̄, 1, v̄) is a feasible solution for (V D). Additionally, if the
weak duality between (V P ) and (V D) holds as stated in
Theorem 9, then (x̄, 1, v̄) is a weak efficient solution for
(V D).

Proof. The proof follows a similar approach as in Theorem
6.

Theorem 11. (Converse duality) For (V D), assume
that (ȳ, ū, v̄) is its a weak efficient solution, and ūT f +
v̄T g is weak strictly pseudo d-ρ2-(η, θ)-uninvex at ȳ on
F
∪
PrXW , and a < 0 implies ϕ(a) ≤ 0, b > 0, ρ2 = 0,

then it follows that ȳ is a weak efficient solution of (V P ).

Proof. Suppose the statement is false, that means there is
x̄ in F with f(x̄) < f(ȳ). Since ū ∈ Rk

+ and ūT e = 1, we
may have

ūT f(x̄) < ūT f(ȳ). (31)

Since (ȳ, λ̄, µ̄) ∈ W , x̄ ∈ D and v̄ ∈ Rm
+ , it is easy to derive

v̄T g(x̄) 5 0 5 v̄T g(ȳ). (32)

Adding (31) and (32), we have the following inequality

ūT f(x̄) + v̄T g(x̄) < ūT f(ȳ) + v̄T g(ȳ). (33)

By (33), and a < 0 implies 0 ≥ ϕ(a), and b > 0, we may
derive

b(x, y)ϕ(ūT f(x̄) + v̄T g(x̄)− (ūT f(ȳ) + v̄T g(ȳ))) ≤ 0.

On F
∪
PrXW , since ūT f + v̄T g is weak strictly pseudo

d-ρ2-(η, θ)-uninvex at y, we have

(ūT f
′
+ v̄T g

′
)(ȳ, η(x̄, ȳ)) + ρ2 ∥ θ(x̄, ȳ) ∥2< 0.

Since ρ2 = 0, it implies that

0 > (ūT f
′
+ v̄T g

′
)(ȳ, η(x̄, ȳ)).

However, this contradicts the inequality below:

0 5 (uT f
′
+ vT g

′
)(ȳ, η(x̄, ȳ)).

Therefore, the conclusion can be gotten.
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