
 

  

Abstract—In foggy days, the color saturation and contrast of 

the image are reduced due to factors such as scattering and 

refraction of light. Aiming at the problems of fog residue and 

loss of detailed features after processed by the existing dehazing 

methods, a defogging model network APSA-DehazeNet 

(Adaptive Pyramid Split Attention-DehazeNet) based on split 

convolution is proposed in this paper. Firstly, the adaptive 

multi-scale feature fusion module is used to extract the features 

of the foggy image, capture the features of different scales, then 

perform weighted fusion and obtain the shallow features of the 

image. Secondly, the deep features of the image are further 

obtained by the split convolutional network (PSANet) based on 

attention mechanism, and a more thorough dehazing effect is 

obtained. Finally, to effectively solve the problem of detail loss 

caused by a single loss, a joint loss function of perceived loss and 

structural similarity loss is proposed. Compared with other 

algorithms, experimental results demonstrate that the PSNR 

and SSIM indexes on the synthetic fog map dataset are 

improved by an average of 4.7dB and 7.4%, respectively. 

 
Index Terms—image processing, image defogging, attention 

mechanism, multiscale networks, split convolution 

 

I. INTRODUCTION 

N foggy weather, numerous water molecules and 

suspended particles exist in the atmosphere. These 

elements can potentially disrupt the direct path of light, 

leading to light reflection from objects being diminished. The 

contrast and definition of images obtained by observers are 

easy to change, and a large number of details are lost [1-2]. 

These low-quality images will affect other advanced vision 

tasks, such as target detection, classification, tracking, traffic 

monitoring, and intelligent navigation [3], and bring 

obstacles and challenges to computer vision systems. 

Therefore, image defogging has important practical meaning 

[4]. 
In recent years, there have been many defogging 

algorithms for single images, which can be divided into two 

categories: traditional defogging algorithms and deep 

learning-based defogging algorithms. The traditional  
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defogging algorithm mainly utilizes the imaging principle of 

fog, the scattering, and attenuation of light [5-6], and then 

establishes a model. The atmospheric scattering model 

consists primarily of two modules: incident light attenuation 

and atmospheric light imaging. By analyzing the captured 

image light, the process of obtaining the image is modeled 

according to the scattering effect of light and atmospheric 

optical model, and then the defogged image is obtained. 

Among them, the classic image defogging algorithm based 

on dark channel prior was proposed by HE [7] in 2009. 

However, the haze in the sky cannot be dealt with in this 

algorithm. Jin [8] proposed a defogging algorithm based on 

guided filtering and adaptive tolerance, which, to some extent, 

solved the problem that the dark channel prior algorithm 

distorted the sky, and subsequent algorithms improved dark 

channel priori (DCP) according to this point [9-11]. Although 

the traditional defogging algorithms have achieved certain 

results, there are still some limitations due to over-reliance on 

prior knowledge, for example, the defogging effect on the 

image sky domain is poor. 

As deep learning advances and comprehensive defogging 

datasets emerge, researchers have started employing deep 

learning techniques for single-image defogging. At first, the 

researchers estimated the unknown parameters in the 

atmospheric scattering model by constructing a neural 

network and then used the estimated parameters to defog the 

image. The DehazeNet defogging model proposed by Cai [12] 

estimated the transmission map in the atmospheric scattering 

model with high accuracy, but only a single light source was 

considered. The defogging effect on outdoor pictures was 

poor, and the haze in the sky area was difficult to remove 

completely. Ren [13] proposed the Multi-scale Deep Fog 

Removal Network (MSCNN), utilizing a multi-scale neural 

network to estimate the transmission map progressively. It 

was not limited by the scene and had better generalization. 

However, it did not learn the atmospheric light value, so it 

had a poor effect on night smog image processing. Li [14] 

modified the atmospheric scattering model by merging the 

atmospheric light value and transmission map into a single 

parameter. They designed a lightweight All-in-One Network 

(AOD-Net) with multi-scale integration, which reduced the 

calculation error of the two parameters. However, due to its 

simple network structure, it failed to extract the image 

features deeply, resulting in low brightness and defogging of 

the defogged image. To solve this problem, a method of 

estimating fog-free images based on deep convolution neural 

network is proposed directly or iteratively. These methods 

mainly use the general network architecture to estimate the 

transmission map directly, atmospheric light value, and 

fog-free image, and improve the defogging performance on  
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Fig. 1. The framework of the network 

the premise of ensuring robustness. Chen [15] proposed a 

Gated Context Aggregation Network (GCANet) for direct 

restoration of the clear image from fog. This network utilized 

the latest smooth dilation technique to eliminate mesh 

artifacts from dilation convolution and incorporated a gated 

sub-network to merge features from various levels. Although 

the above algorithms have improved the defogging 

performance to a certain extent, these algorithms deal with 

the channel features and pixel features of the foggy image on 

average, resulting in insufficient attention to the dense fog 

pixel areas and important channel information in the image, 

which ultimately affects the defogging performance.  

The existing defogging methods based on deep learning 

have exhibited promising results on publicly available 

datasets. However, these approaches are limited in their 

ability to consider local information while neglecting to 

establish long-range dependencies solely. The attention 

mechanism enhances the feature representation [16] by 

focusing on the important parts of the image, such as the 

foggy areas, which can effectively improve the defogging 

performance. Additionally, the networks fail to capture 

information at multiple scales, resulting in the inadequate 

enrichment of the feature space, thereby leading to issues 

such as the loss of fine details and incomplete defogging. To 

address these issues, this paper proposes an end-to-end image 

defogging network that utilizes patch convolution and 

multi-scale feature fusion. Firstly, the multi-scale network 

structure is utilized to extract features of different scales, and 

then detailed features are obtained by split convolution [17]. 

Ultimately, the attention mechanism is incorporated to assign 

weights to individual channels, facilitating the fusion of 

context information from various scales. This process 

enhances pixel-level attention, resulting in restored images 

with improved detailed features and defogging outcomes. 

II. NETWORK STRUCTURE 

In this paper, PSA-DehazeNet, an end-to-end trainable 

defogging algorithm, is designed. This method is mainly 

composed of two parts, namely, the Adaptive Multi-scale 

Feature Fusion (AMF) module and the Pyramid Split 

Attention (PSA) module, in which the PSA module includes 

the Split Convolution (SPC) module and the attention 

mechanism. Firstly, the foggy image passes through the AMF 

module to capture information from the input image at 

different scales. Then, the split convolution and attention 

mechanism are used to introduce detailed features of the 

image. The backbone network, consisting of three PSA 

modules, is trained and learns to extract foggy features from 

the image, ultimately outputting the fog-free image. Figure 1 

illustrates the framework based on split convolution and 

multi-scale feature fusion networks. 

A. Adaptive multi-scale feature fusion 

Although standard parallel multi-scale networks can 

effectively fuse different feature layers, their essence is 

simply adding different features. However, due to the 

inconsistency of fog features in different images, features 

with different resolution sizes are produced during training. If 

these features are simply added together in parallel 

multi-scale networks, features of different sizes of the same 

type will give unequal weights to the fused features. 

Large-sized features will have a greater influence on the 

network, while small-sized features will contribute less, 

significantly affecting the effectiveness of the final training 

model. To address this issue, an adaptive multi-scale feature 

fusion module is proposed, referring to the Adaptive Spatial 

Feature Fusion Network [18]. As depicted in Fig. 2, this 

module increases the weight of fused features with different 

sizes, dynamically and learnably adjusts the contribution of 

each scale, allowing the network to integrate features of 

different sizes better. At the same time, residual connections 

are added to enhance the expression ability of features, 

resulting in improved fog features. 

 
Fig. 2. Moudle of Adaptive multi-scale feature fusion 
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Fig. 3. Moudle of pyramid split attention 

The concrete implementation is as follows: Firstly, the 

input features are downsampled to obtain feature maps of 

different scales, forming feature pyramids. Convolution 

operations are then applied to extract feature information 

from each scale. Subsequently, the output of each feature 

layer is upsampled to generate feature maps containing 

different scales. Finally, weights are assigned to the feature 

maps to enable adaptive feature fusion. This allows the 

network to objectively distribute the contribution degree of 

each scale to the fog features, resulting in finer fog features. 

B. Pyramid split attention 

In traditional defogging methods, the impact of different 

spatial feature maps on image details is often overlooked, 

leading to the loss of certain detailed features when dealing 

with images with inconsistent fog distribution. Therefore, we 

propose a PSA module based on the attention mechanism and 

split convolution for feature extraction in foggy images. As 

illustrated in Fig. 3, it is primarily implemented in four steps. 

Firstly, the proposed SPC module is employed to obtain 

multi-scale feature maps of channels. Secondly, the 

SEWeight module is employed to extract attention from 

feature maps of varying scales, leading to the acquisition of a 

channel attention vector. Thirdly, the recalibration weight of 

the multi-scale channel is computed by recalibrating the 

channel attention vector with Softmax. Finally, the element 

product operation is applied to recalibrated weights and 

corresponding feature maps. Through these four steps, the 

PSA module effectively preserves the detailed features of the 

image and produces a detailed feature map with richer 

multi-scale feature information. 

1) Channel attention mechanism 

With the introduction of attention mechanism, more 

attention is given to the fog features in the image, resulting in 

an improved defogging effect. The channel attention 

mechanism enables the network to selectively assign 

importance to each channel, resulting in more informative 

outputs. Let x ∈  r, a tensor with the size of C×H×W, 

represents the input feature graph, where H, W, and C 

represent its height, width, and the number of input channels, 

respectively. The SE attention mechanism [19] consists of 

two components: squeezing and excitation. These 

components are employed to capture global information and 

dynamically adjust the interactions among channels. 

Generally, channel statistics are derived through global 

average pooling, which integrates global spatial information 

into channel descriptors. The global average pooling operator 

for the C channel can be computed using Formula (1): 

 ( )
1 1

1
g ,

H W

c c

i j

x i j
H W = =

=


  (1) 

gc represents the global average weight, and xc denotes the 

characteristic map of the channel in which it is located. 

The attention weight of channel c in the SE block is 

represented by formula (2): 

 ( )( )( )1 0c c
w W W g =  (2) 

The symbol δ represents the Rectified Linear Unit (ReLU) 

operation, and W0 and W1 denote the fully connected layers. 

By utilizing two fully connected layers, the linear 

relationships between channels can be better integrated, 

facilitating the interaction between high-dimensional and 

low-dimensional channel information. The excitation 

function, denoted by σ, is commonly represented by the 

Sigmoid function in practical applications. Through the 

implementation of the excitation function, channel weights 

are assigned after channel interaction, enabling enhanced 

information extraction. This module is denoted as the 

SEWeight module, and its visual representation is illustrated 

in Figure 4. 

 
Fig. 4. Moudle of SEWeigh 

2) Split convolution module 

The SPC is the fundamental operator for multi-scale 

feature extraction in the PSA module. The input feature map, 

denoted as X, is divided into S parts along the channel 

dimension, represented as X1, X2, ..., XS-1. Each divided part 

has S shared channels, and the resulting feature map is 

denoted as Xi. C is divisible by S, where C represents the 

number of channels in the input feature map.  

Next, we process the input feature maps of multiple scales 

in parallel using split convolution, which enables us to obtain 

feature maps that contain individual kernel types. This 

method enables the extraction of spatial information from 

each channel feature map and generates varying spatial 

resolutions and depths using a pyramid structure with 

multi-scale convolution kernels. It learns multi-scale spatial 

information and establishes local cross-channel interaction 

independently for each segmented part. 

At the same time, we design a standard to select the group 

size. Formula (3) describes the correlation between the 

multi-scale kernel size and the group size: 

 
1

22

K

G

−

=  (3) 
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Where K represents the convolution kernel size, and G stands 

for the group size. The formula (4) for generating the 

multi-scale feature map is as follows: 

 ( ), , 0,1, 2 1
i i i i i

F Conv k k G X i S=  = −L  (4) 

Where the ki denotes kernel size, and the ith group sizes Gi 

and Fi represent feature graphs of different scales. The 

comprehensive multi-scale feature map is achieved by 

concatenating the individual feature maps. By deriving 

channel attention weights from the preprocessed multi-scale 

feature map, attention weight vectors for each scale are 

acquired. Mathematically, the vector of attention weights can 

be expressed using formula (5): 

 ( ) , 0,1, 2 1
i i

Z SEWeight F i S= = −L  (5) 

Where Zi represent the attention weight. Attention weights of 

different scales are obtained by SEWeight module from input 

feature maps. The PSA module fuses context information of 

various scales, enhancing pixel-level attention for advanced 

feature maps. Finally, the weighted weights are normalized 

by the softmax function and multiplied by the output of the 

SPC module to obtain the feature output with multi-scale 

information. 

3) Loss function 

LP loss is the perceptual loss [20-21], which is the loss 

function of the model. It compares the features obtained 

through convolution of actual images with those obtained 

through convolution of generated images, aiming to align 

high-level information (content and global structure), thus 

achieving perceptual similarity. Recently, researchers have 

discovered that utilizing perceptual loss through feature 

comparison better aligns with human visual perception and 

preserves finer details. Compared with the mean square error 

loss, the perceptual loss changes the computational space 

from image space to feature space, and the computational 

formula is shown in formula (6): 

 ( ) ( )
2

2

1
p j j

j j j

L y y
C H W

 = −  (6) 

Where φ represents the characteristic map of VGG16, y is a 

clear image and y  is a defogged image.  

The function of image similarity loss function is to make 

the image visual effect more in line with the subjective visual 

feeling of human eyes. It can intuitively reflect the degree of 

structural similarity between the generated image and the 

standard clear image [16]. The loss function can be expressed 

as shown in the formula (7): 
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Where x, y represents defogged image and clear image, 

respectively, and μ and σ are the mean and variance of images. 

σxy is covariance, c1 and c2 are variables. 

To sum up, the overall loss function of this method is 

shown in Formula (8): 

 total P S
L L L = +  (8) 

In the formula, α and β represent the weight 

hyperparameters used to control LP and LS losses, 

respectively. We measured the magnitude and convergence 

speed of the two losses during the experiment, and set α and β 

to 0.95 and 0.05, respectively. 

III. EXPERIMENTAL ANALYSIS 

A. Dataset and experimental settings 

We utilized the RESIDE dataset as a benchmark for image 

dehazing tasks in the computer vision community. The 

training set comprised the outdoor (OTS) and indoor (ITS) 

datasets in the RESIDE dataset, containing 13,990 synthetic 

blurred images generated from 1,399 clear images under 

various atmospheric scattering conditions. These images are 

synthesized with different values of atmospheric scattering 

coefficients A ∈ [0.7,1.0] and transmission coefficients β ∈ 

[0.6,1.8] based on the atmospheric scattering model. To 

assess the effectiveness of our proposed method, we selected 

the comprehensive target dataset (STOS) as the test set, 

which comprises 200 real-world outdoor images captured 

under diverse weather and lighting conditions. We compared 

our method with several state-of-the-art dehazing algorithms 

on this test set, including DCP, DehazeNet, AOD-Net, and 

GCANet.  

In this paper, a supervised learning method is adopted, and 

the sizes of the input synthetic foggy images and the 

corresponding original foggy images are both modified to 

640×480 RGB three-channel images. The batch size is 16, the 

learning rate is set to 0.0001, and the total number of 

iterations is 1000. The Adam optimizer is used for 

optimization, and the weight decay parameter is set to 0.0001. 

The entire experiment is carried out by training on an 

NVIDIA 3070 GPU. 

Peak Signal-to-Noise Ratio (PSNR) is a widely used 

metric to assess image quality. It measures the ratio of the 

maximum possible power of a signal to the power of 

corrupting noise, and higher PSNR values indicate better 

defogging performance by indicating lower levels of noise. 

The Structural Similarity Index (SSIM) is another evaluation 

metric that combines multiple components such as brightness, 

contrast, and structure to assess the similarity between two 

images. A higher SSIM value signifies a closer level of 

similarity between the defogged image and the original 

image. Therefore, PSNR and SSIM are chosen as the 

objective evaluation criteria for assessing the defogging 

algorithm's performance. 

B. Indoor image defogging 

Fig. 5 compares the results of each algorithm on an indoor 

synthetic fog map. The DCP algorithm shows a good 

defogging effect, but also reduces contrast and darkens the 

colors. The DehazeNet algorithm over-enhances the image, 

resulting in the loss of image details. The AOD-Net 

algorithm still leaves fog residue on the entire image. Both 

GCANet and the proposed algorithm effectively defog indoor 

images, but there is still a slight color distortion observed in 

the images processed by GCANet. 

Table Ⅰ shows the average defogging performance of the 

five algorithms on indoor fog maps. The traditional DCP 

algorithm has low PSNR and SSIM values. DehazeNet, a  

TABLE Ⅰ 

PERFORMANCE OF DIFFERENT ALGORITHMS ON INTDOOR FOG MAPS 

 DCP DehazeNet AOD-Net GCANet Proposed 

PSNR 18.386 17.621 20.400 22.331 22.852 

SSIM 0.832 0.754 0.868 0.923 0.934 
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Fig. 5. Comparison of ITS indoor image 

deep learning-based algorithm, has the poorest defogging 

effect on indoor images, resulting in the lowest evaluation 

index. Although the evaluation indexes of AOD-Net and 

GCANet have improved, they do not take into account the 

difference in fog distribution between channels. In contrast, 

the proposed algorithm in this paper pays attention to the fog 

characteristics between different channels by using split 

convolution and attention mechanism. It assigns weights to 

different channels so that features of different scales can be 

reasonably utilized, resulting in a more thorough fog removal 

effect. As a result, the proposed algorithm achieves better 

evaluation indexes, with PSNR and SSIM values 0.521dB 

and 0.011 higher than that of GCANet, respectively. 

C. Outdoor image defogging 

Fig. 5 shows the comparison of defogging results of each 

algorithm on an outdoor fog map. It can be observed from the 

figure that the DCP algorithm causes serious color distortion 

after defogging. DehazeNet over-enhances the image, result- 

ing in residual fog in the distant areas of the image. AOD-Net 

decreases the overall contrast of the image, and the defogging 

effect is incomplete. GCANet has an obvious defogging 

effect, but there is still color distortion in the sky area and 

distant parts of the image, and the color is darker than in the 

original image. Compared with the above-mentioned 

algorithms, proposed algorithm exhibits a better visual effect. 

TABLE Ⅱ 

PERFORMANCE OF DIFFERENT ALGORITHMS ON OUTDOOR FOG MAPS 

 DCP DehazeNet AOD-Net GCANet Proposed 

PSNR 15.363 20.187 19.845 22.416 23.614 

SSIM 0.711 0.862 0.829 0.914 0.933 

Table Ⅱ presents the defogging evaluation indexes of each 

algorithm on outdoor fog map. It is evident that the proposed 

algorithm has the best evaluation index, with a PSNR value 

and SSIM value of 23.614 and 0.933, respectively. In contrast, 

the PSNR value of the GCANet algorithm is about 22

 

Fig. 5. Comparison of ITS indoor image 
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Fig. 6. Comparison of real scene 

while the values of AOD-Net and DehazeNet algorithms are 

similar. The images in the SSIM groups are uneven, and both 

GCANet and the proposed algorithm perform well. By 

utilizing the adaptive multi-scale feature fusion module, this 

paper obtains richer image details and reduces the loss of  

details. Therefore, the proposed algorithm has better 

defogging performance and a more natural visual effect 

compared to other algorithms. 

D. Real hazy image defogging 

Figure 6 displays the results of applying the proposed 

algorithm to authentic fog images in order to verify its 

dehazing effect. Observing the figure, it becomes apparent 

that the DCP algorithm leads to significant color distortion in 

the image. The DehazeNet algorithm still leaves a 

considerable amount of fog residue in the image, while the 

AOD algorithm causes a significant reduction in image 

contrast. On the other hand, GCANet produces grid artifacts 

in the central portion of the defogged image. In comparison to 

these algorithms, the proposed algorithm better preserves the 

color of the image while effectively reducing the fog. 

For the real scene, due to the lack of original clear image as 

a comparison, this paper uses two objective indicators of 

no-reference evaluation index information entropy (IE) and 

average gradient (AG) to evaluate the dehazing effect of the 

real fog map. IE can be used as an index to measure the 

amount of information in the image, the larger the IE value, 

the better the defogging effect. AG can reflect the details and 

texture information in the image, the larger the AG value, the 

more details appear in the image, the clearer the image. 

In Table Ⅲ, the objective indicators of each algorithm on 

the real fog map are presented. The proposed method shows 

the best performance in terms of information entropy, indica- 

TABLE Ⅲ 

PERFORMANCE OF DIFFERENT ALGORITHMS ON REAL SCENE 

 DCP DehazeNet AOD-Net GCANet Proposed 

IE 7.210 7.110 6.636 7.512 7.781 

AG 7.422 6.768 8.125 7.941 7.535 

ting that it effectively reduces the amount of fog and 

enhances the clarity of the image. However, when it comes to 

the average gradient index, which measures edge details and 

texture information, the proposed algorithm performs 

relatively poorly. To preserve the original color of the image, 

this algorithm results in a slight compromise in the definition 

and detail of the edge. 

E. Ablation experiment 

To evaluate the effectiveness of the proposed loss function 

for image defogging, the model is trained using different 

weightings of the loss function, and the resulting defogging 

effects are analyzed.  

TABLE Ⅳ 

EXPERIMENTAL COMPARISON OF DIFFERENT LOSS FUNCTION WEIGHTS 

Weight Loss function PSNR SSIM 

α=1, β=0 LP 19.289 0.884 
α=0.85, β=0.05 0.85 * LP + 0.05 * LS 20.664 0.907 

α=0.90, β=0.05 0.90 * LP + 0.05 * LS 21.463 0.913 

α=0.95, β=0.05 0.95 * LP + 0.05 * LS 22.524 0.928 

α=0.95, β=0.10 0.95 * LP + 0.10 * LS     22.011 0.916 

In Table Ⅳ, the dehazing effects of various loss function 

weights are compared. It is observed that when using only the 

perceptual loss function, the objective evaluation index of the 

defogged image is low. This is because the perceptual loss 

function may not fully capture the spatial similarity of the 

image. However, incorporating the structural similarity loss 

function into the model led to a significant improvement in 

the performance index of the defogged image. Specifically, 

the experimental results indicated that the best objective 

evaluation index of the image is obtained when the loss 

function is weighted with α=0.95 and β=0.05. 

TABLE Ⅴ 

ABLATION EXPERIMENTS OF EACH MODULE 

 AFM  PSA  PSNR/dB SSIM 

Model 1 × × 20.387 0.892 

Model 2 √ × 21.473 0.908 

Model 3 × √ 21.722 0.917 
Model 4 √ √ 22.542 0.928 
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In order to verify the effectiveness of the module proposed 

in this paper, experiments are conducted on the SOTS dataset. 

The results of four experimental indexes are shown in Table 

Ⅴ. It can be observed that the PSNR and SSIM of Model 2 

and Model 3 improved significantly compared to those of the 

basic defogging network. This indicates that the AFM 

module and PSA module can improve the ability to extract 

and reconstruct fog feature information, thus retaining more 

details and making the restored image more complete, 

resulting in a better defogging effect. 

IV. CONCLUSION 

In this paper, we propose an image defogging network 

based on split convolution and multi-scale feature fusion. The 

proposed network is evaluated on indoor and outdoor scenes, 

demonstrating its effectiveness for subsequent vision tasks. 

The network utilizes an adaptive multi-scale feature fusion 

structure to extract foggy image features, resulting in better 

feature extraction and utilization. Furthermore, we introduce 

a PSA module that leverages split convolution to extract fog 

features in-depth, capturing and fusing information between 

channels using an attention mechanism. This results in a 

more thorough fog removal effect. Experimental results 

demonstrate that the proposed algorithm outperforms 

common defogging algorithms, effectively removing fog 

while preserving detailed information and achieving a natural 

visual effect. 

While the proposed network has shown promising results, 

there are several limitations that need to be addressed in 

future research. The effectiveness of the proposed network is 

contingent upon supervised learning and a substantial volume 

of training data. The network's performance could be 

constrained by the adequacy and quality of available training 

data. Therefore, it will be necessary to explore unsupervised 

or weakly supervised learning methods to reduce the reliance 

on annotated data. Moreover, the proposed network focuses 

on removing uniform fog but may need to perform better for 

non-uniform fog or haze. Developing a network capable of 

handling various types of haze is another important direction 

for future work. 
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