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Abstract—In this paper, a high-order L1-2 scheme based on
the compact finite difference method for the nonlinear time-
fractional Schrödinger equation with homogeneous Dirichlet
boundary condition is derived. Firstly, a standard fully discrete
numerical scheme is constructed by adopting the L1-2 formula
to approximate the Caputo fractional derivative for the time
discretization and the compact finite difference method for
the space discretization. In addition to proving the unique
solvability of the numerical solution, we also established the
convergence analysis of the fully discrete numerical scheme
based on the discrete Grönwall inequality. Furthermore, the
global convergence order O(τ3−α+h4) in discrete L2-norm of the
numerical scheme is proved rigorously. A variety of numerical
results are carried out to confirm the theoretical analysis.

Index Terms—Nonlinear time-fractional Schrödinger equa-
tion, Caputo fractional derivative, Compact finite difference
method, Convergence.

I. Introduction

IN this paper, we aim at developing the high-order numer-
ical scheme for the following nonlinear time-fractional

Schrödinger (NTFS) equation
i C

0Dαt u = ∆u + f
(
|u|2

)
u, in Ω × (0,T ],

u(x, 0) = u0(x), in Ω × {0},
u(x, t) = 0, on ∂Ω × (0, T ],

(1)

where i =
√
−1 is the imaginary unit, u(x, t) represents the

wave function, f ∈ C2(R) is a given function, u0(x) is a given
smooth function. The opetator C

0Dαt with α ∈ (0, 1) denotes
the Caputo fractional derivative, which is defined by

C
0Dαt u(x, t) =

1
Γ(1 − α)

∫ t

0

∂u(x, s)
∂s

1
(t − s)α

ds, (2)

where Γ(·) is the standard Gamma function.
Recently, more and more scholars are interested in frac-

tional differential equations which simulate many prob-
lems in physics, biology, geology, mechanical engineer-
ing, signal processing and control theory [6], [15]. The
fractional Schrödinger equation is a general extension of
the Schrödinger equation which describes the evolution of
the position-space wave function of a particle in physics.
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And due to its extensive applications in fractional quantum
mechanics and condensed matter physics [8], [14], [18],
[19], it has attracted the attention of a large number of re-
searchers. Further, Nabel [17] constructed the time-fractional
Schrödinger equation based on the conception of fractional
Brownian motion and proposed that the model can describe
the non-Markovian evolution of free particles in quantum
mechanics. Meanwhile, we have found that in some physical
phenomena, such as the propagation of solitary waves in
optical fibers, deep water turbulence, and laser beams, the
time-fractional Schrödinger equation is also widely applied
and of great significance [11].

In recent decades, a large number of efficient numerical
methods have been proposed to solve the NTFS equation. For
example, Mohebbi et al. [16] designed a numerical scheme
for the NTFS equation by selecting the meshless method.
Chen et al. [1] investigated the spectral approximation for the
NTFS equation on graded meshes. Wang et al. [20] combined
the L2-1σ formula with the Galerkin finite element method
to discretize the NTFS equation for constructing the effective
numerical scheme. Their achievement is to construct two
effective second-order linear numerical schemes and establish
the optimal error estimates. Ding et al. [3] constructed a lin-
ear scheme for the one-dimensional NTFS equation by using
the L1 formula in time and the quintic non-polynomial spline
in space, respectively. Their theoretical achievements include
analysis of unique solvability, stability and convergence. And
a linearized L1-Galerkin finite element method was adopted
by Li et al. [10] to solve the NTFS equation. They strictly
proved the optimal error estimate with the convergence order
of O(τ2−α + hr+1) for the numerical scheme, where r was
the degree of the polynomial in space. For more numerical
methods of the NTFS equation, we could refer the literatures
to [2], [7], [13], [21].

In this paper, we improve the numerical accuracy in the
temporal direction by using the L1-2 formula [5] to ap-
proximate the Caputo fractional derivative. The fundamental
principle of this method is to use higher-order interpolation
instead of linear interpolation to achieve higher-order ac-
curacy. In order to improve the spatial convergence order,
the compact finite difference approach [4] was applied to
approximate the second-order derivatives in space. It has
been proven that the our numerical scheme has a unique
solution. Based on the discrete Grönwall inequality, the
convergence analysis for the fully discrete numerical scheme
is established. It has been theoretically proven that the nu-
merical scheme achieves (3-α) order accuracy in the temporal
direction and fourth order accuracy in the spatial direction.

The framework of the remaining part of this paper is
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presented as follows. In Section II, we use the classical
compact finite difference method for spatial discretization
and the L1-2 scheme on uniform meshes for temporal
discretization. The unique solvability and convergence of the
proposed scheme are established in Section III. In Section IV,
numerical results are given to verify the theoretical analysis.
Finally, conclusions are drawn in Section V.

II. Derivation of the high-order L1-2 scheme based on
compact finite difference method

We consider the NTFS equation in one-dimensional case
with the computational domain Ω = (a, b). Let x j = a +
jh, tn = nτ, j = 0, ...,M, n = 0, 1, ...,N, where M and N are
two positive integers, h = b−a

M is spatial step size and τ = T
N

denotes temporal step size. Denote Ωh = {x j| j = 0, 1, ...,M}
and Ωτ = {tn|n = 0, 1, ...,N}. Let W = {ωn

j |ωn
0 = ω

n
M = 0, j =

0, 1, ...,M, n = 0, 1, ...,N} be the grid function space defined
on Ωh×Ωτ. For a grid function un ∈ W, we introduce the L1-
2 formula given in [5] to approximate the Caputo fractional
derivative, i.e.

LDαt un =
τ−α

Γ(2 − α)

c(α)
0 un −

n−1∑
k=1

(
c(α)

n−k−1 − c(α)
n−k

)
uk − c(α)

n−1u0

 ,
(3)

where c(α)
0 = a(α)

0 = 1 for n = 1; and for n ≥ 2

c(α)
k =


a(α)

0 + b(α)
0 , k = 0,

a(α)
k + b(α)

k − b(α)
k−1, k = 1, 2, ..., n − 2,

a(α)
k − b(α)

k−1, k = n − 1,
(4)

with

a(α)
k = (k + 1)1−α − k1−α, k ≥ 0, (5)

b(α)
k =

1
2 − α

[
(k + 1)2−α − k2−α

]
− 1

2

[
(k + 1)1−α + k1−α

]
, k ≥ 0.

(6)

The following lemma shows the truncation error estima-
tion of the L1-2 formula.

Lemma 2.1: [5] Suppose that u ∈ C3[0, tn]. For any α ∈
(0, 1), LDαt (υ(tn)) is the approximation of C

0Dαt (υ(tn)). Denote
R (υ(tn)) = C

0Dαt (υ(tn)) − LDαt (υ(tn)). Then we have

|R (υ(t1))| ≤ α

2Γ(3 − α)
max

t0≤t≤t1

∣∣∣υ′′(t)∣∣∣∆t2−α = O(τ2−α), (7)

|R (υ(tn))| ≤ 1
Γ(1 − α)

{
α

12
max

t0≤t≤t1

∣∣∣υ′′(t)∣∣∣ (tn − t1)−α−1∆t3

+

[
1
12
+

α

3(1 − α)(2 − α)

(
1
2
+

1
3 − α

)]
max

t0≤t≤tn

∣∣∣υ′′′(t)∣∣∣∆t3−α
}

(8)

= O(τ3−α), n ≥ 2.

For any grid functional ωn, υn ∈ W, we introduce the
following finite difference quotient operators and define
discrete inner products and discrete norms over W as:

δxω
n
j− 1

2
=

1
h

(ωn
j − ωn

j−1), δ2xω
n
j =

1
h2 (ωn

j−1 − 2ωn
j + ω

n
j+1),

(ω, υ) = h
M−1∑
j=1

ω jυ j, ∥ω∥ =
√

(ω,ω),

where the υ is the complex conjugate of υ.

The compact operator ℓx used in the compact finite differ-
ence method is defined as follows:

ℓxun
j =

 1
12 (un

j−1 + 10un
j + un

j+1), 1 ≤ j ≤ M − 1,
un

j , j = 0,M.
(9)

The following lemma will be useful for constructing the
compact finite difference scheme.

Lemma 2.2: [12] Denote ξ(s) = (1− s)3
[
5 − 3(1 − s)2

]
. If

f (x) ∈ C6[x j−1, x j+1], 1 ≤ j ≤ M − 1, then it holds that

1
12

[
f ′′(x j−1) + 10 f ′′(x j) + f ′′(x j+1)

]
=

f (x j−1) − 2 f (x j) + f (x j+1)
h2 (10)

+
h4

360

∫ 1

0

[
f (6)(x j − sh) + f (6)(x j + sh)

]
ξ(s)ds.

We denote by Un
j and un

j as the exact value and the nu-
merical approximation of u(x j, tn), respectively. Considering
the problem (1) at the point (x j, tn), we have

i C
0Dαt Un

j =
∂2Un

j

∂x2 + f
(∣∣∣Un

j

∣∣∣2) Un
j . (11)

After using the L1-2 operator LDαt to approximate the
Caputo fractional derivative C

0Dαt , we get the time semi-
discrete numerical scheme:

i LDαt Un
j =
∂2Un

j

∂x2 + f
(∣∣∣Un

j

∣∣∣2) Un
j − iRn

1 j, (12)

where Rn
1 j is the truncation error of the temporal discretiza-

tion.
After applying the compact operator ℓx on both sides of

the above equation, we obtain

iℓxLDαt Un
j = ℓx

∂2Un
j

∂x2 + ℓx f
(∣∣∣Un

j

∣∣∣2) Un
j − iℓxRn

1 j. (13)

For 1 ≤ j ≤ M − 1, using Lemma 2.2, we have

iℓxLDαt Un
j = δ

2
xUn

j + ℓx f
(∣∣∣Un−1

j

∣∣∣2) Un−1
j + Rn

2 j, (14)

where

Rn
2 j = − iℓxRn

1 j + ℓx f
(∣∣∣Un

j

∣∣∣2) Un
j − ℓx f

(∣∣∣Un−1
j

∣∣∣2) Un−1
j

+
h4

360

∫ 1

0

[
∂6u
∂x6

(
x j − sh, tn

)
+
∂6u
∂x6

(
x j + sh, tn

)]
ξ(s)ds.

(15)

By Lemma 2.1, Taylor expansion and the fact that ℓxRn
1 j =

O(τ3−α), we obtain ∣∣∣Rn
2 j

∣∣∣ = O(τ3−α + h4). (16)

Omitting the truncation error Rn
2 j in (14) and replacing Un

j
with un

j , we obtain the following high-order L1-2 scheme:

iℓxLDαt un
j = δ

2
xun

j + ℓx f
(∣∣∣un−1

j

∣∣∣2) un−1
j , 1 ≤ j ≤ M − 1, 1 ≤ n ≤ N,

(17)

u0
j = u0(x j), 0 ≤ j ≤ M, (18)

un
0 = un

M = 0, 1 ≤ n ≤ N. (19)
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By integrating the terms of the scheme (17), we can obtain
the equivalent form, i.e.(

i c(α)
0 − 12w

)
un

j−1 +
(
i 10c(α)

0 + 24w
)

un
j +

(
i c(α)

0 − 12w
)

un
j+1

=i
n−1∑
k=1

(
c(α)

n−k−1 − c(α)
n−k

) (
uk

j−1 + 10uk
j + uk

j+1

)
+ i c(α)

n−1

(
u0

j−1 + 10u0
j + u0

j+1

)
(20)

+ µ
[

f
(∣∣∣un−1

j−1

∣∣∣2) un−1
j−1 + 10 f

(∣∣∣un−1
j

∣∣∣2) un−1
j + f

(∣∣∣un−1
j+1

∣∣∣2) un−1
j+1

]
,

where µ = ταΓ(2 − α), w = µ
h2 .

III. Theoretical analysis of the numerical scheme

In this section, we will be dedicated to studying the unique
solvability and convergence of the numerical scheme (17)-
(19). To begin with, we introduce some lemmas, which play
a great role in theoretical analysis.

Lemma 3.1: [22] For any grid function ω ∈ W, it holds
that 4

9∥ω∥ ≤ ∥ℓxω∥ ≤ ∥ω∥.
Lemma 3.2: [9] Suppose that the nonnegative sequences
{ωn, gn|n = 0, 1, 2...} satisfy

LDαt ω
n ≤ λ1ω

n + λ2ω
n−1 + gn, n ≥ 1,

where λ1 ≥ 0 and λ2 ≥ 0 are given constant independent of
τ. Then there exists a positive constant τ∗ such that, when
τ ≤ τ∗,

ωn ≤
(
6ω0 +

12tαn
Γ(1 + α)

max
0≤l≤n

gl
)

Eα(2λtαn ), 1 ≤ n ≤ N,

where Eα(z) =
∞∑

k=0

zk

Γ(1+kα) is the Mittag-Leffler function and

λ = 6λ1 +
c(α)

0

c(α)
0 −c(α)

1
λ2.

Now, we present the unique solvability and the conver-
gence results in the following theorems.

Theorem 3.1: The high-order L1-2 scheme (17)-(19) is
uniquely solvable.
Proof. It is not difficult to find that the numerical scheme
(17) is a linear tridiagonal system at each time level, and its
coefficient matrix is strictly diagonally dominant. Therefore,
the numerical solution exists and is unique.

Theorem 3.2: Suppose that τ
3−α
√

h
is sufficiently small. Let

Un = u(tn) be the solution of the problem (1), un be the
solution of fully discrete numerical scheme (17)-(19). Then
there exists a constant C independent on τ and h such that

∥ Un − un ∥≤ C(τ3−α + h4), n ≥ 1. (21)

Proof. Let En = Un − un. Subtracting (17) from (14), we
have

iℓxLDαt En =δ2xEn + ℓx
[
f (|Un−1

j |2)Un−1
j − f (|un−1

j |2)un−1
j

]
+ Rn

2 j.

(22)

Taking the inner product with respect to ℓxEn and consid-
ering the imaginary part of the resulting equation, we obtain

Im
(
iℓxLDαt En, ℓxEn

)
= Im

(
δ2xEn, ℓxEn

)
+ Im

(
ℓx

[
f
(
|Un−1

j |2
)

Un−1
j − f

(
|un−1

j |2
)

un−1
j

]
, ℓxEn

)
+ Im

(
Rn

2 j, ℓxEn
)
.

(23)

By the definition of LDαt and the Cauchy-Schwarz in-
equality, we have

Im
(
iℓxLDαt En, ℓxEn

)
=
τ−α

Γ(2 − α)
Re

ℓx
c(α)

0 En −
n−1∑
s=1

(
c(α)

n−s−1 − c(α)
n−s

)
E s

− c(α)
n−1E0

]
, ℓxEn

)
=
τ−α

Γ(2 − α)
c(α)

0 ∥ℓxEn∥2

− τ−α

Γ(2 − α)
Re

ℓx
n−1∑

s=1

(
c(α)

n−s−1 − c(α)
n−s

)
E s + c(α)

n−1E0

 , ℓxEn


≥ τ−α

Γ(2 − α)
c(α)

0 ∥ℓxEn∥2

− τ−α

Γ(2 − α)

n−1∑
s=1

(
c(α)

n−s−1 − c(α)
n−s

) ∥ℓxE s∥2 + ∥ℓxEn∥2
2

− τ−α

Γ(2 − α)
c(α)

n−1

∥∥∥ℓxE0
∥∥∥2
+ ∥ℓxEn∥2

2

=
τ−α

Γ(2 − α)

c(α)
0 −

1
2

n−1∑
s=1

(
c(α)

n−s−1 − c(α)
n−s

)
− 1

2
c(α)

n−1

 ∥ℓxEn∥2

− τ−α

2Γ(2 − α)

n−1∑
s=1

(
c(α)

n−s−1 − c(α)
n−s

)
∥ℓxE s∥2

− τ−α

2Γ(2 − α)
c(α)

n−1

∥∥∥ℓxE0
∥∥∥2

=
τ−α

2Γ(2 − α)

c(α)
0 ∥ℓxEn∥2 −

n−1∑
s=1

(
c(α)

n−s−1 − c(α)
n−s

)
∥ℓxE s∥2

− c(α)
n−1

∥∥∥ℓxE0
∥∥∥2

]
=

1
2

LDαt ∥ℓxEn∥2. (24)

Using integration by part formula, we obtain

Im
(
δ2xEn, ℓxEn

)
= 0. (25)

Together with (23), (24) and (25), we have

1
2

LDαt ∥ℓxEn∥2 ≤Im
(
ℓx

[
f (|Un−1

j |2)Un−1
j − f (|un−1

j |2)un−1
j

]
, ℓxEn

)
+ Im

(
Rn

2 j, ℓxEn
)
. (26)

Next, we will use the mathematical induction to prove
inequality (21) holds. Firstly, it is not difficult to see that
(21) holds when n ≡ 0. Secondly, assuming that (21) holds
for 0 ≤ n ≤ l − 1, we will then prove that it holds for n = l.

According to the inequality
∥∥∥El−1

∥∥∥∞ ≤ 1√
h

∥∥∥El−1
∥∥∥, we have

∥∥∥ul−1
∥∥∥∞ ≤ ∥∥∥U l−1

∥∥∥∞ + ∥∥∥El−1
∥∥∥∞ ≤ ∥∥∥U l−1

∥∥∥∞ + C
√

h
(τ3−α + h4)

≤
∥∥∥U l−1

∥∥∥∞ + 1, (27)

whenever τ
3−α
√

h
is sufficiently small.
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Since f ∈ C2 and ul−1 is bounded, we have∥∥∥∥ f
(
|U l−1|2

)
U l−1 − f

(
|ul−1|2

)
ul−1

∥∥∥∥
=

∥∥∥∥ f (|U l−1|2)El−1 +
(

f (|U l−1|2) − f (|ul−1|2)
)

ul−1
∥∥∥∥

≤
∥∥∥ f (|U l−1|2)

∥∥∥∞ ∥∥∥El−1
∥∥∥

+
∥∥∥ f ′(ξ)

∥∥∥∞ (∥∥∥U l−1
∥∥∥∞ + ∥∥∥ul−1

∥∥∥∞) ∥∥∥ul−1
∥∥∥∞ ∥∥∥El−1

∥∥∥
≤

∥∥∥ f (|U l−1|2)
∥∥∥∞ ∥∥∥El−1

∥∥∥
+

∥∥∥ f ′(ξ)
∥∥∥∞ (

2
∥∥∥U l−1

∥∥∥∞ + 1
) (∥∥∥U l−1

∥∥∥∞ + 1
) ∥∥∥El−1

∥∥∥
=

√
C1

∥∥∥El−1
∥∥∥ , (28)

where the symbol C1 can be express as C1 =
(∥∥∥ f (|U l−1|2)

∥∥∥∞
+ ∥ f ′(ξ)∥∞

(
2
∥∥∥U l−1

∥∥∥∞ + 1
) (∥∥∥U l−1

∥∥∥∞ + 1
))2

.
Applying the Cauchy-Schwarz inequality, (16) and Lemma

3.1, we obtain

Im
((
ℓx[ f (|U l−1|2)U l−1 − f (|ul−1|2)ul−1], ℓxEl

)
+

(
Rl, ℓxEl

))
≤C1

2

∥∥∥El−1
∥∥∥2
+

1
2

∥∥∥ℓxEl
∥∥∥2
+

1
2

∥∥∥Rl
∥∥∥2
+

1
2

∥∥∥ℓxEl
∥∥∥2

=
C1

2

∥∥∥El−1
∥∥∥2
+

∥∥∥ℓxEl
∥∥∥2
+

1
2

∥∥∥Rl
∥∥∥2

≤81C1

32

∥∥∥ℓxEl−1
∥∥∥2
+

∥∥∥ℓxEl
∥∥∥2
+C2(τ3−α + h4)2, (29)

where C2 is a constant independent of the induction variable
l.

Inserting (29) into (26) gives

LDαt
∥∥∥ℓxEl

∥∥∥2 ≤ 81C1

16

∥∥∥ℓxEl−1
∥∥∥2
+ 2

∥∥∥ℓxEl
∥∥∥2
+ 2C2(τ3−α + h4)2.

(30)

Applying Lemma 3.2, we have∥∥∥ℓxEl
∥∥∥ ≤ C3(τ3−α + h4), (31)

where C3 is a positive constant independent on τ and h.
Using Lemma 3.1 and letting C = 9

4C3, we obtain∥∥∥El
∥∥∥ ≤ 9

4

∥∥∥ℓxEl
∥∥∥ = 9

4
C3(τ3−α + h4) = C(τ3−α + h4). (32)

Therefore, (21) holds for n = l. �

IV. Numerical experiments
In this section, we validate our theoretical results through

several numerical experiments and demonstrate the accuracy
and effectiveness of the proposed numerical format.

A. Example 1
Considering the time-fractional Schrödinger equation with

the exact solution

u(x, t) = (1 + i)t2sin(πx), x ∈ [0, 2], t ∈ [0, 1]. (33)

Firstly, in order to test the temporal errors and convergence
orders, we fix a sufficiently small spatial step h = 1

1000 , so that
the spatial error is negligible compared to the temporal error
and does not affect the estimation in time. The corresponding
numerical experimental results at time T = 1 for difference
α = 0.25, 0.5 and 0.75 are presented in Table I. Secondly,
the spatial errors at time T = 1 and convergence orders are
listed in Table II for the same α in temporal direction, where
the time step size is sufficiently small. From these numerical
results, it is not difficult to find that our numerical scheme
is (3 − α) order in time and fourth order in space.

B. Example 2

Considering the following nonlinear time-fractional
Schrödinger equation

i C
0Dαt u + ∆u + |u|2u = 0, x ∈ [−10, 10], t ∈ (0, 1], (34)

with initial condition

u(x, 0) = e−x2
, x ∈ [−10, 10], (35)

and boundary condition

u(−10, t) = u(10, t) = 0, t ∈ (0, 1]. (36)

By solving the above NTFS equation, we tested the
temporal and spatial errors and convergence orders of our
numerical scheme, respectively. The temporal and spatial L2-
errors at time T = 1 and convergence orders with different
α = 0.25, 0.5 and 0.75 are listed in Tables III and IV,
respectively. To test whether changes in the value of α have
an impact on the evolution of the wave function, we draw
the approximation of |u| with different α = 0.1, 0.5 and 0.9
in Fig. 1. From Fig. 1, It is not difficult to observe that as
the value of α increases, the wave disperse faster.

V. Conclusions
In this paper, an effective high-order L1-2 scheme based

on compact finite difference method is constructed for solv-
ing the nonlinear time-fractional Schrödinger equation with
homogeneous Dirichlet boundary condition. We combine L1-
2 approximation for discretizing the temporal variable with
fourth order compact finite difference scheme for discretizing
the spatial variable to solve the problem. The numerical
scheme achieves (3-α) order and fourth order accuracy in
temporal and spatial directions, respectively. Based on anal-
ysis of the fully discrete scheme and the discrete Grönwall in-
equality, the unique solvability and the global convergence in
discrete L2-norm with the convergence order of O(τ3−α +h4)
are proved rigorously. Finally, a number of numerical results
are carried out to verify the accuracy and effectiveness of the
proposed scheme.
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Fig. 1: Evolution of |u| with different α: (a) α=0.1; (b) α=0.5;
(c) α=0.9.

Yu-ting Zhang was born in Chongqing municipality, china, in 1998. The
author is a graduate student in computational mathematics at Guangxi
Normal University, Guilin, Guangxi Zhuang Autonomous Region, China,
starting in 2021.

The author current research interests include numerical solution of
fractional partial differential equations and computing science.

Ling-zhi Qian was born in Lingbi, Anhui Province, china, in 1980. The
author received his Ph. D. in computational mathematics at Nanjing Normal
University, Nanjing, Jiangsu Province, China, in June 2016.

The author current research interests include numerical solution of
partial differential equations and computing sciences, fluids and fluid-fluid
interaction problems, two-phase fluids.

Engineering Letters, 31:4, EL_31_4_30

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 




