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Abstract—This article presents a definition of the pseudo-
similar picture fuzzy matrix (PicFM) along with its associ-
ated properties. Detailed exploration is undertaken concerning
both pseudo-similar and semi-similar picture fuzzy matrices.
Furthermore, we analyze relationships pertaining to pseudo-
similarity, the preservation of idempotency, and regularity
within picture fuzzy matrices. The paper delves deeper into the
characterizations of symmetric PicFMs and the group inverse
of PicFMs. Finally, we introduce 2x2 Centrosymmetric and
K-Centrosymmetric PicFMs, illustrating their attributes with
pertinent examples.

Index Terms—Picture Fuzzy Set(PicFS), Picture Fuzzy Matri-
ces(PicFMs), Pseudo-similar PicFM, Semi-similar, Symmetric.

I. INTRODUCTION

ZAdeh proposed fuzzy set theory as a way to math-
ematically represent imprecise or vague systems of

information in the real world [1]. The matrix is essential in
many fields of research and engineering. Unfortunately, we
cannot be successful with classical matrices because of the
diverse forms of uncertainties inherent in real-world issues.
The classical matrix problems can be solved using fuzzy
matrix [2]. The idea of Fuzzy Matrix was first introduced
by Hashimoto in 1983. When dealing with uncertainties,
there are some restrictions in fuzzy sets. These are overcome
by the concept of Intuitionistic Fuzzy Set(IFS) proposed by
Atanassov in 1986 [3] which is a generalization of Fuzzy
sets [4], [5], [6], [7], [8], [9], [10]. After that M.Pal, Pradhan
studied many outcomes based on Intuitionistic Fuzzy Matri-
ces (IFMs) [11] and S. Sriram and P. Murugadas examined
the Moore-Penrose inverse of IFMs [12]. Only two factors
including membership and Non membership are scrutinized
under IFM.

Two factors are insufficient to denote certain types of data
in various sectors of social and medical sciences. In such
cases, one additional element is required to fully represent
the data.

Thus, Cuong and Kreinovich introduced the concept of
PicFS in 2013 [13], [14] as a generalization of IFS. Shovan
Dogra and Madhumangal Pal then investigated the PicFMs
and its application in 2020 [15]. Regular matrices and
generalized inverse play a significant role in many fields
of sciences. Some results based on the generalized inverse
of IFMs were studied by M.Pal and Pradhan [16]. Also,
Khan S.K and A.Pal discussed the generalized inverse of
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the IFMs [17]. Furthermore, Rajkumar Pradhan and Madhu-
mangal Pal defined the generalized inverse of the Atanassovs
IFMs [18]. Murugadas.P investigated implication operations
on PicFMs(2021) [19]. Elumalai.N and Arthi.B investigated
Properties of k- Centrosymmetric and k-Skew Centrosym-
metric Matrices [20]. After that Punithavalli.G investigated
Symmetric-Centro Symmetric Fuzzy Matrices [21]. This
paper introduces a pseudo-similar PicFM along with certain
properties. It explores the notions of pseudo-similarity and
semi-similarity in PicFMs. Additionally, we showcase that
the pseudo-similarity relation maintains idempotency and
regularity for PicFMs. Furthermore, the characteristics of
symmetric PicFMs are examined and supported by relevant
examples.

II. PRELIMINARIES

Throughout the entire work Pkl denotes PicFMs of order
k × l and Pk denotes PicFMs of order k × k. For a
comprehensive introduction to PicFS and PicFM see [13,15]

In arithmetic operations, the values of the positive mem-
bership, neutral membership and negative membership are
only needed. So all elements of PicFM are the members of
< P >, where < P >= {⟨aµ, aη, aν⟩|aµ, aη, aν ∈ [0, 1] and
0 ≤ aµ + aη + aν ≤ 1}

Definition II.1. For a = ⟨a′1, a′′1 , a′′′1 ⟩ , b = ⟨b′1, b′′1 , b′′′1 ⟩ ∈
PicFS, we define Joint (∨) and meet (∧) operations as,
1) ⟨a′1, a′′1 , a′′′1 ⟩ ∨ ⟨b′1, b′′1 , b′′′1 ⟩ = ⟨max(a′1, b

′
1), max(a′′1 , b

′′
1),

min(a′′′1 , b′′′1 )⟩ = ⟨(c′1, c′′1 , c′′′1 )⟩ if c′1 + c′′1 + c′′′1 ≤ 1,
otherwise find max{c′1, c′′1 , c′′′1 } and replace max{c′1, c′′1 , c′′′1 }
by 1- ( sum of the rest of the components )
2) ⟨a′1, a′′1 , a′′′1 ⟩ ∧ ⟨b′1, b′′1 , b′′′1 ⟩ = ⟨min(a′1, b

′
1), min(a′′1 , b

′′
1),

max(a′′′1 , b′′′1 )⟩
3) ac1 = ⟨a′′′1 , a′′1 , a

′
1⟩

Definition II.2. Suppose a n × n PicFM, I has diagonal
entries ⟨ϵ1, ϵ2, 0⟩ and non diagonal entries as ⟨0, 0, ϵ3⟩ where
ϵ1 + ϵ2 = 1, ϵ2 + ϵ3 = 1 and A = (⟨pnmµ,, pnmη, pnmν) an
n × n PicFM such that pnmµ ∈ [0, ϵ1], pnmη ∈ [0, ϵ2] and
pnmν ∈ [0, ϵ3], then IA = AI = A. Further
⟨0, 0, ϵ3⟩ ∨ ⟨pnmµ, pnmη, pnmν⟩ = ⟨pnmµ, pnmη, pnmν⟩ =
⟨pnmµ, pnmη, pnmν⟩ ∨ ⟨0, 0, ϵ3⟩ and
⟨ϵ1, ϵ2, 0⟩ ∧ ⟨pnmµ, pnmη, pnmν⟩ = ⟨pnmµ, pnmη, pnmν⟩ =
⟨pnmµ, pnmη, pnmν⟩ ∧ ⟨ϵ1, ϵ2, 0⟩ for pnmµ ∈ [0, ϵ1], pnmη ∈
[0, ϵ2] and pnmν ∈ [0, ϵ3]

Definition II.3. A restricted PicFM, P is defined as P =
(⟨pµ, pη, pν⟩) Where pµ ∈ [0, ϵ1], pη ∈ [0, ϵ2] and pν ∈
[0, ϵ3] such that ϵ1 + ϵ2 = 1, ϵ2 + ϵ3 = 1.

Definition II.4. A PicFM P ∈ Pk is said to be a Pic-
ture fuzzy Permutation Matrix if it has exactly one entry
⟨ϵ1, ϵ2, 0⟩ in each row and column, as well as all other entries
are ⟨0, 0, ϵ3⟩ such that ϵ1 + ϵ2 = 1, ϵ2 + ϵ3 = 1
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Definition II.5. Let P = (⟨pµ,, pη, pν⟩) be a PicFM, then
multiplication by Picture fuzzy element (Scalar multiplica-
tion), c = ⟨c′ , c′′ , c′′′⟩is defined as
c.P = ⟨c′ ∧ pµ, c

′′ ∧ pη, c
′′′ ∨ pν⟩.

Definition II.6. Let P = (pij) = (⟨pijµ, pijη, pijν⟩) ∈
Pk×m. Then the element ⟨pijµ, pijη, pijν⟩ is the ij-th entry
of P. Let Pi∗(P∗j) denote the i-th row ( j-th coloumn) of P.
The row space R(P ) of P is the subspace of Vm generated
by rows Pi∗ of P. The column space, denoted as C(P ),
of the PicFM P represents the subspace within Vk that is
spanned by the columns P∗j of P.

Ranking is one of the primary theme for the establishment
of PicFM theory. There are two distinct PicFM rank concepts
namely row rank and column rank, which are described as
follows.

Definition II.7. The row rank, denoted as ρr(P ), of a PicFM
P corresponds to the count of linearly independent rows
that form the row space R(P ) of P. Similarly, the column
rank, denoted as ρc(P ), of a PicFM P signifies the count
of linearly independent columns that compose the column
space C(P ) of P.

Nevertheless, within a PicFM, the row rank and column
rank may not necessarily be equal. However, there are
certain PicFMs for which they are indeed equal. This can
be illustrated through the following example.

Example II.1. Let P =

[
⟨0.3, 0.2, 0.4⟩ ⟨0.4, 0.2, 0.3⟩
⟨0.4, 0.2, 0.1⟩ ⟨0.5, 0.1, 0.3⟩

]
The row vectors are R1 = (⟨0.3, 0.2, 0.4⟩⟨0.4, 0.2, 0.3⟩) and
R2 = (⟨0.4, 0.2, 0.1⟩, ⟨0.5, 0.1, 0.3⟩) are linearly dependent
since R1 = cR2 where c = ⟨0.4, 0.3, 0.0⟩ ⇒ ρr(P ) = 1
The column vectors are C1 = (⟨0.3, 0.2, 0.4⟩, ⟨0.4, 0.2, 0.1⟩)
and C2 = (⟨0.4, 0.2, 0.3⟩, ⟨0.5, 0.1, 0.3⟩) are linearly inde-
pendent since C1 ̸= cC2 for any c . ⇒ ρc(P ) = 2
Now let us consider the PicFM,

Let Q =

[
⟨0.5, 0.3, 0.2⟩ ⟨0.4, 0.1, 0.3⟩
⟨0.3, 0.5, 0.2⟩ ⟨0.1, 0.5, 0.2⟩

]
Here set of row and column vectors of Q are linearly
independent. Hence, ρr(Q) = ρc(Q) = 2.

Definition II.8. A PicFM P ∈ Pk×m is said to be regular if
there exists another PicFM, U ∈ Pm×k such that PUP =
P. In this instance, U is referred to as a generalized inverse
(g-inverse) of P and is denoted by P−.

For a regular PicFM, the row rank and column rank are
equal. The regular PicFMs are generalization of the invertible
matrices. The generalised inverse of a PicFM comes in
various forms.

Definition II.9. For a PicFM P ∈ Pk×m and H ∈ Pm×k

is said to be outer inverse of P if HPH = H and it is
denoted by P{2}.
H is claimed as {1, 2} inverse or semi inverse of P if

PHP = P and HPH = H and it is denoted by P{1, 2}.
The PicFM H is claimed as {1, 3} inverse or a least square

g-inverse of P if PHP = P and (PH)T = PH and it is
denoted by P{1, 3}.

Again, H is said to be {1, 4} inverse or a minimum norm
g-inverse of P if PHP = P and (HP )T = HP and it is
denoted by P{1, 4}.

Definition II.10. For a PicFM P ∈ Pk×m and H ∈ Pm×k

is said to be a Moore-Penrose inverse of P if PHP =
P,HPH = H, (PH)T = PH and (HP )T = HP.

The Moore-Penrose inverse of P is denoted by P+.

III. PSEUDO-SIMILAR PICTURE FUZZY MATRICES

Within this section, we establish the definition of pseudo-
similarity for PicFMs and demonstrate that the pseudo-
similarity relation preserves the idempotency and regularity
of PicFMs P and Q.

Definition III.1. The PicFMs P ∈ Pk and Q ∈ Pm are
said to be pseudo-similar and is denoted by P ∼̄Q if there
exists an idempotent PicFMs U ∈ Pk×m and V ∈ Pm×k

such that P = UQV ;Q = V PU and U = UV U.

The PicFMs P =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.4, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
and Q =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
are pseudo-similar with respect to the idempotent PicFM,

U =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
.

Definition III.2. The PicFMs P ∈ Pk and Q ∈ Pm are
said to be semi-similar and is denoted by P ≈ Q if there
exists PicFMs U ∈ Pk×m and V ∈ Pm×k such that P =
UQV and Q = V PU.
Following the definition, any pair of pseudo-similar PicFMs
are also semi-similar. Hence, the mentioned two PicFMs are
semi-similar.

Theorem III.1. Let the PicFMs P ∈ Pk and Q ∈ Pm.
Consequently, these are equivalent:
(i) P ∼̄Q
(ii) There exists an idempotent PicFMs U ∈ Pk×m

and V ∈ Pm×k such that P = UQV ;Q = V PU and
UV ∈ Pk is idempotent.
(iii) There exists an idempotent PicFMs U ∈ Pk×m

and V ∈ Pm×k such that P = UQV ;Q = V PU and
V U ∈ Pm is idempotent.

Proof: (i) ⇒ (ii)
From the definition of pseudo-similarity, P ∼̄Q implies,
P = UQV
Q = V PU and
U = UV U

From the third relation,
U = UV U
or UV = UV UV
or UV = (UV )2.
∴ UV is idempotent.

(i) ⇒ (iii)
Let U = UV U
or V U = V UV U or V U = (V U)2.
∴ V U is idempotent.

(ii) ⇒ (i)
Now, P = UQV = UV PUV = (UV U)Q(V UV ).
Similarly, Q = V PU = V UQV U = (V UV )P (UV U).
Putting U ′ = UV U and V ′ = V UV we get,
P = U ′QV ′ and Q = V ′PU ′.

Now , U ′V ′ = (UV U)(V UV ) = (UV )(UV )(UV ) = UV,
as UV is idempotent and

(U ′V ′)(U ′V ′) = (UV )(UV ) = UV.
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∴ U ′V ′ is also idempotent.
Let us consider,U ′′ = U ′V ′U ′ and V ′′ = V ′U ′V ′, then
P = U ′QV ′

= U ′V ′PU ′V ′

= (U ′V ′U ′)Q(V ′U ′V ′)
= U ′′QV ′′.

Similarly, Q = V ′ P U ′

= V ′U ′ Q V ′U ′

= V ′U ′V ′PU ′V ′U ′

= U ′V ′U ′

= U ′′ as (U ′V ′) is idempotent.
∴ P ∼̄Q

(ii) ⇒ (i)
The evidence supports the case mentioned above.

Example III.1. Let us consider the PicFMs,

Let P =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.4, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
and

Q =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
with repsect to

U =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
and

V =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
∈ U{1},

UQV =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
= P and

V PU =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.4, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
= Q

So P ∈ P2 and Q ∈ P2 are pseudo-similar, that is P ∼̄Q

Again, UV =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
=
[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
.

Now, (UV )2=
[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
= UV and

V U =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
=
[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
.

Then, (V U)2=
[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
= V U .

Theorem III.2. Let P ∈ Pk and Q ∈ Pm be two PicFMs

such that P ∼̄Q. Then, P is idempotent ⇔ Q is idempotent.

Proof: Since P ∼̄Q then according to definition, there
exists idempotent PicFMs
U ∈ Pk×m and V ∈ Pm×k such that
Q = V PU ;P = UQV and UV U = U.
That is, UV P = UV UQV = UQV = P.
Suppose P is idempotent, then P 2 = P.
Now, Q2 = (V PU)(V PU) = V P (UV P )U = V P 2U =
V PU = Q.
That is, Q is idempotent.
The converse can be demonstrated using a similar approach.

Theorem III.3. Let P ∈ Pk and Q ∈ Pm be two
PicFMs such that P ∼̄Q. Then, for the idempotent PicFMs
U ∈ Pk×m and V ∈ Pm×k , P is regular ⇔ Q is regular.

Proof: Since P ∼̄Q, then from the definition there
exists idempotent PicFMs
U ∈ Pk×m and V ∈ Pm×k such that
Q = V PU ;P = UQV and U = UV U.
Now V is idempotent, that is V 2 = V and P is regular,then
there exists G ∈ Pk such that PGP = P.

Let us define, W = V U, clearly W ∈ Pm.Then
QWQ = (V PU)V U(V PU)

= V P (UV U)V PU
= V P (UV P )U
= V (PGP )(UV P )U ( Since PGP = P )
= V PGPPU (Since UV P = P )
= V PGPU
= V PU
= Q.

Hence, Q is regular.
The converse can be demonstrated using a similar approach.

Example III.2. Let us consider the PicFMs,

Let P =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.4, 0.4, 0.0⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
and

Q =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.4, 0.4, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
with repsect to

U =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.0, 0.0, 0.5⟩

]
and

V =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
P and Q are pseudo-similar, that is P ∼̄Q.
Again, P 2 = P and Q2 = Q
Hence P and Q are idempotent.
Now, P is regular as,

G =

[
⟨0.6, 0.4, 0.0⟩ ⟨0.5, 0.4, 0.1⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.6, 0.3, 0.1⟩

]
∈ P{1}. For,

W = V U =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
and QWQ = Q.
⇒ Q is also regular.

IV. CHARACTERIZATION OF SYMMETRIC PICFMS

Theorem IV.1. Let P ∈ Pk, then the following claims are
identical to one another:
(i) P is symmetric and ρ(P ) = r1.
(ii) C(P ) = C(PT )
(iii) PT = PM = NP for some PicFMs M and N.
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(iv) SPST is symmetric PicFM of rank r1 for some Picture
fuzzy permutation matrix S.

Proof: (i) ⇒ (ii)
P is symmetric, ∴ PT = P , So R(P ) = R(PT ).
Again, for any symmetric PicFm, C(A) = R(PT ) and
C(PT ) = R(P ).
∴ C(P ) = C(PT )
(ii) ⇒ (iii)
We know that, R(P ) = R(PT ) then each row of PT is a
linear combination of the rows of P.
Hence, PT

i =
∑
j

xijPj and from which it follows that

PT = NP for some N ∈ Pk.
Similarly, using (P ) = C(PT ) and (NP )T = PTNT ,

we can show that PT = PM for some M ∈ Pk.
(i) ⇒ (iv)
(SPST )T = (ST )TPTST = SPTST = SPST .

So, SPST is symmetric for some PicFM S.
As the rank of P is r1, so there exists r1 independent rows
of P.
Again SPST is the matrix whose columns and rows are
rearrangements of matrix P.
So the rank of SPST will remain the same, (i.e)
ρ(SPST ) = r1.

Example IV.1. Let us consider the PicFMs,

Let P =

[
⟨0.5, 0.3, 0.1⟩ ⟨0.6, 0.3, 0.1⟩
⟨0.6, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
. Here PT = P ,

(i.e) P is symmetric.
Here, ρ(P ) = 2 and also C(P ) = C(PT ).

For, H =

[
⟨0.6, 0.3, 0.1⟩ ⟨0.4, 0.1, 0.4⟩
⟨0.6, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
PH =

[
⟨0.5, 0.3, 0.1⟩ ⟨0.6, 0.3, 0.1⟩
⟨0.6, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
[
⟨0.6, 0.3, 0.1⟩ ⟨0.4, 0.1, 0.4⟩
⟨0.6, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
= P

and for K =

[
⟨0.6, 0.3, 0.1⟩ ⟨0.5, 0.2, 0.2⟩
⟨0.4, 0.2, 0.3⟩ ⟨0.6, 0.3, 0.1⟩

]
KP =

[
⟨0.6, 0.3, 0.1⟩ ⟨0.5, 0.2, 0.2⟩
⟨0.4, 0.2, 0.3⟩ ⟨0.6, 0.3, 0.1⟩

]
[
⟨0.5, 0.3, 0.1⟩ ⟨0.6, 0.3, 0.1⟩
⟨0.6, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩

]
= P.

For S =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
SPST =

[
⟨0.4, 0.3, 0.2⟩ ⟨0.5, 0.3, 0.1⟩
⟨0.5, 0.3, 0.1⟩ ⟨0.5, 0.3, 0.1⟩

]
is also symmetric.

(i.e) (SPS)T = (SPS) and ρ(SPS) = 2.

Theorem IV.2. If P ∈ Pk is symmetricand idempotent
PicFM, then
(i) P+ exists and symmetric.
(ii) There is a PicFM that is symmetric as well as
idempotent, D such that PD = DP and R(P ) = R(D).

Proof: (i) Since P is symmetric so,
R(P ) = R(PT ) = C(P ).
We have pijPi = pjiPj and pij ≤ Pi.So pijPi ≤ PiPj .
Consider some k, pikpjk > pijpik,
then pikpjk > pij .Yet pij ≤ pikpkj = pikpjk.
This contradiction proves pijPi = PiPj .
So for the basis {v1, v2, ..., vr1}of R(P ), for any two

basis vectors vi, vj there is an element x ∈ P satisfying
vivj = xvi = xvj , This indicates that P has a {1, 3}
inverse.
Similarly, for any two column basis vectors in the column
space C(P ), P∗iP∗j = xP∗i = xP∗j for x ∈ P , which
shows that P has a {1, 4} inverse.

Putting these two together, we can conclude that P
possesses a Moore-Penrose inverse P+ and as P is
symmetric so P+ = PT .
(ii) Since P+ = PT and D = P+P is symmetric
idempotent PicFM.
Now, PD = PP+P = P = PP = PTP = P+PP = DP.
Again PD = PP+P = P imply, R(D) ⊇ R((P ) and
P+P = D imply, R(D) ⊆ R(P ).
Hence, R(P ) = R(D).

Remark: There might be an idempotent PicFM D that
satisfies the relation for PicFMs, PD = DP but R(P ) ̸=
R(D).

Example IV.2. Let us consider the PicFMs,

P =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.4, 0.4, 0.2⟩

]
be an idempotent and

symmetric PicFM,
(i.e) P 2 = P and PT = P .
Here P+ = PT = P itself.
Now for the symmetric idempotent PicFM,

D =

[
⟨0.4, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
PD =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.4, 0.4, 0.2⟩

]
[
⟨0.4, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
PD =

[
⟨0.4, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
and DP =

[
⟨0.4, 0.3, 0.1⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.4, 0.3, 0.2⟩

]
But R(P ) ̸= R(D).

Theorem IV.3. Let P ∈ Pk be a PicFM and U ∈ P{1, 2}P
is symmetric if and only if U is symmetric, such that
PU,UP are symmetric.

Proof: Since U ∈ P{1, 2},
we have PUP = P,UPU = U.
also PU and UP are symmetric.
So R(PU) = R((PU)T ) and R(UP ) = R((UP )T ).
Now,
R(U) = R(UP ) (Since U ∈ P{1})
= R((UP )T ) (Since UP is symmetric)
= R(PTUT )
= R(UT )

R(PT ) = R(UTPT ) (Since UT ∈ P{1})
= R((PU)T )
= R(PU) (Since PU is symmetric)
= R(P )

and P is symmetric ⇒ R(P ) = R(PT )
(i.e)R(U) = R(UT ).
Hence, U is symmetric.
U is symmetric, on the other hand ⇒ R(U) = R(UT )
(i.e)R(P ) = R(PT ).
Hence P is symmetric.
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V. GROUP INVERSE

Let B ∈ Pk be a PicFM, then B# denote the group
inverse of B if BB#B = B, B#BB# = B# and BB# =
B#B

Theorem V.1. For an idempotent PicFM B ∈ Pk, the
subsequent claims are identical:
(i) B# exists.
(ii) pair of equations BX = B and Y B = B is solvable for
X and Y.

Proof: (i) ⇒ (ii)
B is idempotent ⇒ B2 = B.
If B# exists, then B = BB#B = B#B2 = B#B and
B = BB#B = B2B# = BB#

Now, BB#B = B ⇒ BB# is a solution to the matrix
equation Y B = B and similarly, B#B is a solution to the
matrix equation BX = B.
(ii) ⇒ (i)
Let M and N be the solutions to the equations BX = B
and Y B = B respectively.
For U = NBM , we see that
BMB = (NB)MB = N(BM)B = NBB = NB = B
and
BNB = BN(BM) = B(NB)M = BBM = BM = B.
Now,
BU = B(NBM) = (BNB)M = BM = NBM = NB
= N(BMB) = (NBM)B = UB,
UBU = (NBM)B(NBM) = N(BMB)NBM
= N(BNB)M = NBM = U.
and
BUB = B(NBM)B = (BNB)MB = BMB = B.
Hence, U = B# is the group inverse of B.

Example V.1. Let us consider the PicFM,

B =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.5, 0.4, 0.1⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.6, 0.3, 0.1⟩

]
such that B2 = B.

Let M =

[
⟨0.6, 0.4, 0.0⟩ ⟨0.5, 0.4, 0.1⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.6, 0.3, 0.1⟩

]
be a solution of

the relation BX = B and
N =

[
⟨0.5, 0.4, 0.0⟩ ⟨0.5, 0.3, 0.2⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.6, 0.4, 0.0⟩

]
be a solution of the

relation YB=B.
Then
U = NBM =

[
⟨0.4, 0.4, 0.0⟩ ⟨0.5, 0.4, 0.1⟩
⟨0.0, 0.0, 0.5⟩ ⟨0.6, 0.3, 0.1⟩

]
= B.

Again, BU = UB,BUB = B and UBU = U all holds.
Thus, B itself a group inverse.

Theorem V.2. If the PicFM B ∈ Pk is symmetric and B+

exists ⇔ B# exists and B# = B+.

Proof: B is symmetric implies, R(B) = R(BT ). B+

exists means, BB+B = B and B+BB+ = B+.
Now, BB+ = BBT = BTB = B+B (as B+ = BT and
BT = B).
Thus B+ ∈ B{1, 2} and BB+ = B+B ⇒BT = B+ = B#.
Conversely, if B#, then B#BB# = B# or B#B#B = B#

or (B#)2B = B#

Therefore, R(B#) = R((B#)2B) ⊆ R(B) ........(1)
Also, B = BB#B = BBB# = B2B#.
⇒ R(B) = R(B2B#) ⊆ R(B#) ........(2)
Again B# = BT ⇒ R(B#) = R(BT ) .......(3)
From (1), (2) and (3), R(B) = R(B#) = R(BT ),

Which shows that B = BT that is, B is symmetric.
Now, B# ∈ B{1, 2} and B# = BT ⇒ B+ = B#.
Thus B+ exists.

Theorem V.3. For any PicFM B if (PBPT )# exists ⇒
B# exists for any PicFPM P.
⇒ (PT (PBPT )P )# exists.
⇒ ((PTP )B(PTP ))# exists.
⇒ B# exists.

Example V.2. Let us consider the PicFM,

B =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.4, 0.4, 0.2⟩

]
and a Picture Fuzzy

Permutation Matrix P =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
,

then PBPT =

[
⟨0.4, 0.4, 0.2⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.4, 0.4, 0.1⟩

]
.

PBPT itself a commutating semi-inverse of it, that is,
(PBPT )# exists and (PBPT )# = (PBPT ). Then B#

exists and it is verified that B# = B also.

Theorem V.4. For any PicFMs B,D ∈ P#
k if BD = DB,

then (BD)# exists and (BD)#=B#D#=D#B#.

Proof: We first prove B,D,B#, D# are mutully commute.
If B# exists then,
B2B# = B = B#B2;B(B#)2 = B# = (B#)2B.
Similarly, if B# exists then,
D2D# = D = D#D2;D(D#)2 = D# = (D#)2D.
BD = DB ⇒ B2D = BBD = BDB = DBB = DB2

and BD2 = BDD = DBD = DDB = D2B.
Now, B#BD = B#DB = B#D(B2B#)
= B#(B2D)B# = BDB#.B#BD = BDB#.
⇒ (B#)2BD = B#(B#BD) = B#(BDB#)
= BD(B#)2).
So B#D = (B#)2BD = BD(B#)2 = DB(B#)2

= DB#. Thus B# and D commutes.
Similarly, we can prove D#B = BD# and
B#D# = D#B#.
Now let B#D# be a group inverse of BD, then
BD(B#D#)BD = B(DB#)D#BD = BB#DD#BD
= BB#DBB#D = (BB#B)(DD#D) = BD
and B#D#(BD)B#D# = B#B(D#DD#)B#

= BB#D#B# = B#D#.
Finally, BD(B#D#) = BB#DD# = B#BD#D
= (B#D#BD. Hence, B#D# is the group inverse of BD.
Since B# and D# commutes, D#B# is also the group
inverse of BD.
Thus, (BD)# = B#D# = D#B#.

Example V.3. Let us consider the PicFMs,

B =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.4, 0.4, 0.2⟩

]
and

D =

[
⟨0.5, 0.5, 0.0⟩ ⟨0.4, 0.3, 0.2⟩
⟨0.4, 0.3, 0.2⟩ ⟨0.5, 0.4, 0.1⟩

]
Here both are symmetric and idempotent, so it can be
verifed that B# = B and D# = D.
Now,

BD =

[
⟨0.4, 0.4, 0.1⟩ ⟨0.4, 0.4, 0.2⟩
⟨0.4, 0.4, 0.2⟩ ⟨0.4, 0.4, 0.2⟩

]
= DB.
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Again, BD is also symmetric and idempotent, so
(BD)# = BD.
Thus, (BD)# = BD = B#D#.

VI. CENTROSYMMETRIC AND K-CENTROSYMMETRIC OF
2 X 2 PICFM’S

Definition VI.1. A Square PicFM, B ∈ Pn which is
symmetric about the centre of its array of elements is
called Centrosymmetric, (i.e) B = [bij ] Centrosymmetric if
bij = bn−i+1,n−j+1. Equivalently, if K ∈ Pn be a Picture
fuzzy Permutation Matrix, then B is Centrosymmetric PicFM
iff BK = KB.

Example VI.1. Let us consider the PicFMs,

B =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
and

K =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
, then

BK = KB =

[
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩

]
Definition VI.2. A Centrosymmetric PicFM, B ∈ Pn is
called K-Centrosymmertric PicFM if B = KBTK.

Lemma VI.1. If B,C ∈ Pn are Centrosymmetric PicFMs,
then B + C,BC, cB (Scalar multiplication) are also Cen-
trosymmetric PicFMs.

Proof: By Using definition VI.1

Example VI.2. Let us consider the Centrosymmetric
PicFMs,

B =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
and

C =

[
⟨0.4, 0.3, 0.2⟩ ⟨0.3, 0.2, 0.4⟩
⟨0.3, 0.2, 0.4⟩ ⟨0.4, 0.3, 0.2⟩

]
, then

B + C = B ∨ C =

[
⟨0.4, 0.4, 0.2⟩ ⟨0.3, 0.3, 0.4⟩
⟨0.3, 0.3, 0.4⟩ ⟨0.4, 0.4, 0.2⟩

]
Therefore, B + C is Centrosymmetric PicFM.

BC = B ∧ C =

[
⟨0.3, 0.3, 0.2⟩ ⟨0.3, 0.3, 0.4⟩
⟨0.3, 0.3, 0.4⟩ ⟨0.3, 0.3, 0.2⟩

]
Therefore, BC is Centrosymmetric PicFM.
Let us consider, c = ⟨0.3, 0.1, 0.1⟩ then,

cB =

[
⟨0.3, 0.1, 0.2⟩ ⟨0.3, 0.1, 0.4⟩
⟨0.3, 0.1, 0.4⟩ ⟨0.3, 0.1, 0.2⟩

]
and cC =

[
⟨0.3, 0.2, 0.2⟩ ⟨0.1, 0.2, 0.4⟩
⟨0.1, 0.2, 0.4⟩ ⟨0.3, 0.2, 0.2⟩

]
Hence, cB and cC are Centrosymmetric PicFMs.

Theorem VI.1. If B ∈ P2 is K-Centrosymmetric PicFM
then BT = KBK.
Proof: Let B ∈ P2 is K-Centrosymmetric PicFM
KBK = KBTK
= BTKK
= BTK2

= BT .

Example VI.3. Let us consider the PicFMs,

B =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
and

K =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
, then

KBK =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
= BT .

Theorem VI.2. If B and C are K-Centrosymmetric PicFMs
then B + C is also K-Centrosymmetric PicFM.
Proof: If both B and C are K-Centrosymmetric PicFMs
then, B = KBTK and C = KCTK.
To Prove: B + C is also K-Centrosymmetric.
(i.e) To prove: B + C = K(B + C)TK.
Now, K(B + C)TK = K(BT + CT )K
= KBTK+KCTK
= B + C

Example VI.4. Let us consider the PicFMs,

B =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
,

C =

[
⟨0.4, 0.3, 0.2⟩ ⟨0.3, 0.2, 0.4⟩
⟨0.3, 0.2, 0.4⟩ ⟨0.4, 0.3, 0.2⟩

]
and

K =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
, then

B + C =

[
⟨0.4, 0.4, 0.2⟩ ⟨0.3, 0.3, 0.4⟩
⟨0.3, 0.3, 0.4⟩ ⟨0.4, 0.4, 0.2⟩

]
K(B + C)T =

[
⟨0.3, 0.3, 0.4⟩ ⟨0.4, 0.4, 0.2⟩
⟨0.4, 0.4, 0.2⟩ ⟨0.3, 0.3, 0.4⟩

]
K(B+C)TK =

[
⟨0.4, 0.4, 0.2⟩ ⟨0.3, 0.3, 0.4⟩
⟨0.3, 0.3, 0.4⟩ ⟨0.4, 0.4, 0.2⟩

]
= B+C.

Theorem VI.3. If B and C are K-Centrosymmetric PicFMs
then BC is also K-Centrosymmetric PicFM.
Proof: If both B and C are K-Centrosymmetric PicFMs
then, B = KBTK and C = KCTK.
To Prove: BC is also K-Centrosymmetric.
(i.e) To prove: BC = K(BC)TK.
Now, K(BC)TK = KCTBTK
= K[(KCK)(KBK)]K
= K2CK2BK2

= CB Where K2 = I
= BC

Example VI.5. Let us consider the PicFMs,

B =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
and

K =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
, then

BC =

[
⟨0.3, 0.3, 0.2⟩ ⟨0.3, 0.3, 0.4⟩
⟨0.3, 0.3, 0.4⟩ ⟨0.3, 0.3, 0.2⟩

]
K(BC)T =

[
⟨0.3, 0.3, 0.4⟩ ⟨0.3, 0.3, 0.2⟩
⟨0.3, 0.3, 0.2⟩ ⟨0.3, 0.3, 0.4⟩

]
K(BC)TK =

[
⟨0.3, 0.3, 0.2⟩ ⟨0.3, 0.3, 0.4⟩
⟨0.3, 0.3, 0.4⟩ ⟨0.3, 0.3, 0.2⟩

]
= BC.

Theorem VI.4. If B ∈ P2 be a K-Centrosymmetric PicFM
then BBT is also K-Centrosymmetric PicFM.
Proof: Let B be a K-Centrosymmetric PicFM then,
B = KBTK.
To Prove: BBT is also K-Centrosymmetric.
(i.e) To prove: BBT = K(BBT )TK.
Now, K(BBT )TK = K(BT )TBTK
= K[BBT ]K
= BBTK.K
= BBTK2

= BBT Where K2 = I
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Example VI.6. Let us consider the PicFMs,

B =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
and

K =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
, then

BBT =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
(BBT )TK =

[
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩

]
K(BBT )TK =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
= BBT .

Theorem VI.5. If B ∈ P2 be a K-Centrosymmetric PicFM
then B +BT is also K-Centrosymmetric PicFM.
Proof: Let B be a K-Centrosymmetric PicFM then,
B = KBTK.
To Prove: B +BT is also K-Centrosymmetric.
(i.e) To prove: B +BT = K(B +BT )TK.
Now, K(B +BT )TK = K(BT + (BT )T )K
= K[BT +B]K
= [BT +B]K.K
= [BT +B]K2

= [BT +B] Where K2 = I
= [B +BT ]

Example VI.7. Let us consider the PicFMs,

B =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
and

K =

[
⟨0.0, 0.0, 0.5⟩ ⟨0.5, 0.5, 0.0⟩
⟨0.5, 0.5, 0.0⟩ ⟨0.0, 0.0, 0.5⟩

]
, then

B +BT =

[
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
K(B +BT )T =

[
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩
⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩

]
K(B +BT )TK =[

⟨0.3, 0.4, 0.2⟩ ⟨0.1, 0.3, 0.4⟩
⟨0.1, 0.3, 0.4⟩ ⟨0.3, 0.4, 0.2⟩

]
= B +BT .

VII. CONCLUSION

This paper has elucidated a sequence of theorems
grounded in the characteristics of symmetric, pseudo-similar
and semi-similar PicFMs. The scrutiny of the pseudo-similar
relationship has proven especially insightful in its ability
to maintain the idempotency and regularity within PicFMs.
The characterization of symmetric PicFMs and their group
inverse has also been exhaustively discussed. Finally, the in-
troduction of 2x2 Centrosymmetric and K-Centrosymmetric
PicFMs, along with their properties and relevant examples,
has been incorporated.
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