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Genetic Algorithm Based on Grid Maps for
Solving Robot Path Planning Problem

Yin-Yin Bao, Yu Liu*, Jie-Sheng Wang, Jia-Xu Liu

Abstract—A genetic algorithm (GA) based on the grid map
is proposed to solve the robot path planning problem. It
divides the grid map into two categories: obstacle and
non-obstacle. It then generates a series of paths using GA that
continuously improves their fitness to find feasible paths. To
determine the efficiency of the proposed algorithm, various
factors are adjusted, such as crossover probability, variation
probability, and path smoothness weight in different maps.
The objective was to find the optimal number of generations
required to reach a relatively stable state while also ensuring
an average proximity to the optimal path. Experimental
results obtained through simulation on MATLAB software
demonstrate that the algorithm achieves a high performance
and robustness in finding feasible paths within a relatively
short period. Moreover, it exhibits good scalability and
adaptability when applied to different environments.
Consequently, the algorithm offers an effective solution to the
robot path planning problem and has substantial practical
application value. It can serve as a valuable reference tool for
robot path planning.

Index Terms—path planning, genetic algorithm, grid method

[. INTRODUCTION

he rapid development of robotics has led to the
widespread use of robots in various aspects of daily life,
industrial manufacturing, and healthcare. The primary
objective of robot path planning is to find the optimal path
within a given environment, enabling the robot to reach a
specified target point within a set time frame [1]. This
problem involves the robot's motion capabilities,
environmental complexity, motion constraints, and sensor
errors. Solving the robot path planning problem enhances
the robot's autonomy and intelligence and enables it to
adapt more flexibly to different environments and task
requirements. Its practical applications span multiple fields,
including industrial manufacturing, medical and healthcare,
and military combat.  In industrial manufacturing,
addressing the robot path planning problem enhances
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production efficiency and quality while reducing costs and
the need for human intervention. It improves surgical
accuracy and safety in healthcare, mitigating surgical risks
and patient suffering. Additionally, solving the robot path
planning problem in military combat enhances combat
efficiency and safety and minimizes casualties and losses
among soldiers [2-3]. Currently, research on robot path
planning primarily focuses on methods based on graph
theory, search algorithms, and optimization algorithms.
Among these, optimization algorithm-based methods
demonstrate strengths in global search capabilities and
self-adaptability, making them particularly effective in
solving complex problems. The robot path planning
problem is a complex optimization problem involving
considerations such as the robot's motion capabilities,
environmental complexity, motion constraints, and sensor
errors [4-6]. Therefore, addressing the robot path planning
problem has become a significant research focus.

Genetic algorithms have been widely applied to mobile
robot path-planning problems in the past decade, leveraging
the principles of evolution in nature. Genetic algorithms
offer several advantages, such as global search capability,
adaptivity, and parallelism, making them effective in
solving these complex problems [7]. Consequently, the
application of genetic algorithms in robot path planning has
emerged as a prominent research area in recent years. In
domestic research, several advancements have been made
in applying genetic algorithms to robot path planning. For
instance, Ref. [8] applied a genetic algorithm in joint space
to plan the motion path of each robot joint while
considering kinematic and dynamic constraints. This
planning approach can readily apply the results to real-time
robot control. Ming Zhou et al proposed a genetic
algorithm-based method for robot path planning in
continuous space. They employed link graph modeling in
the planning space to initially search for viable paths using
advanced algorithms in graph theory. Subsequently, they
used a genetic algorithm to optimize the path points,
gradually obtaining an improved walking route. The
chromosome encoding i this method prevents the
generation of invalid paths, and basic genetic algorithms
alone can complete the path planming. However, in
complex environments with numerous obstacles,
establishing link graphs can be challenging [9]. Chen et al.
investigated a genetic algorithm solution for path-planning
problems i complex environments. They designed
efficient genetic path operators tailored to the
characteristics of complex environments and proposed a
novel calculation method to measure the fitness of
individual paths. Through experiments, they demonstrated
the algorithm's strong robustness [10]. Lei Yamin et al
adopted the grid method to represent the robot's working
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environment model, encoding it with ordinal numbers.
They used a combination of right-angle coordinates and
ordinal numbers to generate the 1mtial path population via
genetic algorithms. The paths were then optimized to f{ind
the shortest route. Deletion and insertion operators were
added to meet the obstacle avoidance requirements in path
planning. Simulation results confirmed the efficacy and
feasibility of genetic algorithms for obstacle avoidance and
path planning [11].

Wang Jun et al. completed the robot's path planning in
discrete space using a genetic algorithm, vielding
satisfactory simulation results. However, it should be noted
that this planning relies on a deterministic environment
model, where the positions of obstacles in the workspace
are known and fixed [12]. In addition to genetic algorithms,
other optimization algorithms have contributed to solving
robot path-planning problems. Chumming Ren et al
focused on path planning in robot navigation and proposed
the GAA algorithm, which improves upon the ant colony
algorithm by incorporating genetic algorithm concepts. The
algorithm employs grid partitioning to describe the robot's
environment. Simulation results demonstrate that this
method effectively enhances path search, optimization, and
smoothing [13]. Rosas et al. mntroduced the memEAPF
method, which combines membrane computation with a
genetic algorithm (a membrane heuristic evolutionary
algorithm based on a layered membrane structure) and an
artificial potential field approach to finding parameters for
generating feasible and safe paths for mobile robot path
planning [14]. Yang et al. utilized a deep Q-network (DQN)
algorithm, a form of deep reinforcement learning, to
address multi-robot path planning problems. The improved
DQN algorithm combines Q-learning, empirical replay
mechanisms, and productive body-based neural network
techniques to achieve faster convergence and learn
path-planning solutions more efficiently, enhancing
multi-robot path-planning efficiency [15].

This paper proposes a genetic algorithm based on a grid
map to address the robot path planning problem. The paper
is organized as follows: Section II introduces the
fundamental principles of the grid map-based genetic
algorithm for solving robot path planning problems.
Section [T presents experimental simulations and a detailed
analysis of the results. Finally, the conclusion of the paper
is provided.

II. GENETIC ALGORITHM BASED ON GRID MAP FOR
SOLVING ROBOT PATH PLANNING PROBLEM

A. Genetic algorithm leavning algorithm
1) Principle of the algorithm

Algorithms are derived from populations consisting of a
specific number of individuals and many chromosomes. In
genetic algorithms, the reproductive process of a population
begins with the presence of genetics, including genetic
algorithms [16]. This population represents a collection of
potential solutions wherein each individual carries a unique
expression through its chromosomes. Chromosomes are the
primary carriers of genetic information materials,
consisting of multiple genes that determine the individual's
external characteristics, such as hair color (black vs. yellow)

or eyelid type (single vs. double). Binary coding is often
employed to simplify the coding of genes, where a
primitive population initially selects and gradually evolves
the desired phenomenon through generations based on the
principle of survival of the fittest. In each generation,
individuals are selected based on the desired criteria. At the
same time, genetic inheritance laws are applied to allow for
free combination, crossover, and mutation, creating a new
population with diverse sets of individuals. This iterative
process enables the population to become better adapted to
the environment. The optimal individual from the final
generation can be an approximate optimal solution to the
problem. For problems related to finding the extreme value
of a function, the process can be mathematically described
as follows:

max f (x);
{x ERReU O

where, x is the independent variable maxf(x) is the
functional equation . and x € R; R € U 1s the condition.
Where U 1s the entire set of real numbers. R 1s the subset of
U R is the set of all solutions. x is the solution of the
functional equation, so x belongs to the set.

2) Principle of the algorithm

The core concept of genetic algorithms lies in inheritance,
where genetic information is transmitted from parents to
offspring. Therefore, the crossover approach and the
probability of variation play a crucial role in this process.
The crossover approach is a method of transferring genes
from parents to offspring, significantly contributing to the
genetic algorithm's convergence. By combining genetic
material from both parents, the crossover operator promotes
the exchange of genetic information, producing diverse
offspring. On the other hand, the wvariation operator
enhances the genetic diversity of the offspring population.
It introduces small random changes or mutations to the
genetic material inherited from the parents. This
combination of crossover and variation helps improve the
offspring population's characteristics and ultimately meets
the desired objectives..

B. Flow and formulation of the algorithm

Genetic algorithms are typically employed to solve
solution optimization and search problems. They draw
inspiration from evolutionary phenomena and unique
characteristics observed in various natural species. Through
continuous study and development, genetic algorithms
simulate and utilize biological concepts such as exchange,
mutation, and natural selection. However, it 1s essential to
note that improper selection of parameters such as
population size, mutation probability, crossover probability,
and path length ratio could result in convergence to a local
optimum rather than the desired global optimum. The
primary operational procedure of a genetic algorithm can
be summarized as follows:

(1) Initialize the population: A population is randomly
generated, and several individuals are randomly generated
within the population. A fimite number of iterations 1s also
limited.

{2) Individual selection: Randomly select an individual
in the population and observe its ability to survive and
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reproduce.

(3) Selection operation: The selection operator is applied
to the population to select a suitable target for crossover

plied to the population. The crossover operator plays a
central role in the genetic algorithm, and its probability is
between O and 1.

(5) Variation operation: The variation operator is applied
to the population. That is, the probability of a change in the
genes on the chromosomes of the individuals in the
population is between 0 and 1.

(6) Final judgment: judge whether the result satisfies the
demand close to the optimal solution. Termination
procedure.

The application of the genetic algorithm involves several
crucial operations, including coding, fitness evaluation, and
mnitial population selection. These factors significantly
impact the outcomes of the experiments.

1) Individual coding

Coding is a genetic representation of a viable solution.
Its coding is the unique numbering of an individual or a
chromosome of a population. Thus, it is distinguished from
other individuals or chromosomes.

Binary coding, the most crucial feature of this method, is
the simplicity of programming. The principle is that the
individuals in the population are converted into a 0-1 string
and then operated on separately. For n-dimensional f(x)
;o x=0X.Xp, X)) and x; € [u,v](Ei=1.2n),
each dimensional variable of length size 1, the total length
of the encoding of x is L=3", 11, and the encoding
space 1s

L _
St ={ay, a3 az, . q} (2)
Individual bit string structure on this space:
S L . SR . . R S S
ak_gakllakaz"ak} o g s Bgets Dz Az 4 Qg iegs e
T Vi3 T T 1
iz Qpgzo s Qs Tz Az Q1) A € {01
3)

The binary bit string is S; ,The decoding function is
r:{0,1} - [u;, v;] as follows.

X, =Ti(a) = w + 5% (2“‘ a;qzii—f),i =121 (4)

21 \&j=1
Then the decoding function for the whole 5; is
Fr=rtxrexrx.m (3)
2) Initial population setting

(1) A primordial population 1s generated randomly.
Where N represents the number of individuals in the
population, define the set of chromosomes of the N
individuals in the population as T. Then say: S¥ = {X =
XX X5, Xy), Xy eS({I<N) is the population
space of T. A population is a collection of individuals or
chromosomes through which each individual can represent
an initial solution of an optimization function [17]. The
reverse learning optimization approach is a standard initial
population method [18]. In this approach, a population T(N)
is randomly generated, and another new population OT(N)
is generated based on the reverse learning strategy. The two
populations are combined to obtain a new population P(N),
where the N chromosomes of the initial population are

and mutation.
{4 Crossover operation: The crossover operator is ap

made up of the best-adapted individuals [11]. A random
method was used for binary coding. Number the

individuals as (0-1). Also in the case of X=
(X X5 0 X, o X)), generate as follows:
(1 r>05

Xf_[o r<05 ©

3) Adaptation value function

The adaptation value represents an individual's ability
within a population to adapt and survive in a given
environment and its potential to produce offspring. The
fitness function in a genetic algorithm is commonly called
the evaluation function. It serves as an indicator of the
individuals' merit within the population. It is important to
note that the optimization objective function typically
involves both positive and negative aspects, and therefore,
it is necessary to ensure a proper mapping relationship
between them. So that the fitness should be non-negative,
the selection function T: g = f 1s transformed so that for
the optimal solution x * satisfies.

maxf{x") = apt(x"). x € [u, v] (7

If the solution space a point f(x), can be converted to
correspond to the degree of adaptation F(x) to get to find
the best, if the objective sought for the maximum problem,
then the function needs to be constructed as

— f(x) + Cmin if f(x) ok Cmin
ro={5 e ®

where, Ci, 15 generally taken as a small value. f(x) is
the objective function.

(2) If the range is pre-selected with uncertainty for the
threshold value, the relative pres-election range can be
obtained from the maximum value of the objective
function:

i

F(x) = 1+r:7f(x)J

c=0,c2 f(x) 9

4) Crossover operations

Crossover manipulation 1s a crucial method for
preserving populations in genetic algorithms. It combines
desirable genes through cross-fertilization, resulting in new
individuals with novel combinations. This strategy ensures
the retention of desired genes. The crossover strategy is as
follows.:

(1) One commonly used crossover strategy 1s the
single-point crossover. This method requires a single
exchange point. By selecting a gene from each
chromosome and exchanging their positions, new
individuals are created, incorporating the exchanged genes.

(10)

If the selected intersection is x € {1,2,..., L — 1},set x=1,
then the next generation of individuals obtained after the
intersection 1s

{51 = Qg Qg ten Gy Qg Ay

So = Qz1, 4o, "+ Aoy, Qopy, t Aoy

(1D

{511 = A1, Aqp, 0 Qqyys Ay o A

1=
Syt = Qa1, Ay, Aoy Qg Qg
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(2) Multi-point crossover. The purpose is to increase the
carrying information of individual chromosomes. The
operation 1s a random multi-point crossover of selected
individuals. Selection of location points:

X1y Xo, v Xpe e {1,2, e L = 1}, X S xk+1,
{ =120k 1 (12)
Dividing the L gene loci into K + 1 gene loci set:
{Qk = {lk, [k + 1, vy lk+1},k - 1,2, ,K + 1, (13)
[1 :1;[k+2 =L+1

The arithmetic form 1is:

0o I} = a;t = ay, ant = ay.i € Q,, evennumber
(.. ) = 1= 1= Qth
A = Ay dg- = Az, er
(14)
Generation of new individuals:
1 =
S = Qg1 Qe e gy Qe gy, a5s)
s2l = ap1. @z Az, o1yt Q2L

5) Mutation operations

The mutation operation substitutes the value of a part of
the individual gene with the value of other alleles to
combine into a new individual, which 1s also reversed for
0-1 codes [19-20]. The method is as follows:

By-position variation. The coder first codes the
individuals. 1t is known that each gene has a small
probability of mutation. The actual number is coded for
individual X = (X, %o, %3, ... X3, ..., X%, ), and the gene will
change in the restricted region. In by-site mutation,
individuals are selected to increase or shorten changes in

one of their genes x;(1 < j < n):

xl = +p

(16)

Chromosome 1 after mutation. mutation step 2 is set
according to the problem.

6) Selecting operations

The selection operation is an effective procedure aimed
at preserving and safeguarding the genetic information
encoded in the chromosomes of a population. This
operation is designed to prevent the loss of individual genes
and typically involves evaluating the fitness of individuals,
thereby enhancing the overall convergence performance.
One type of selection operation is adaptation value
proportional selection, which is based on the relative fitness
levels of individuals within the population. Through
effective means, individuals are selected in proportion to
their level of adaptation. For example, in a population of 2
individuals, their fitness level determines the probability of
selecting a particular individual.

_J@ 12 .n

ps(a) = T T

(7
where, E}T;l f(a) is the sum of all individual fitness
f(a;) in population n. Dispersion in the offspring
population 1s determined by (2-18). The expected number
of individuals in the population to survive:

Plg,)=n=*p(a)i=12..,n (18)

The combination of these points allows for the

construction of a flow chart shown in Fig. 1.

Determine the set of

« Function value to adaptation
value mapping
+  Adaptation value adjustment

parameters of the
actual problem

v

Encoding the
parameter set

4

Initializing the
population P{t)

Three basic operators:
e Sclection

o  Parameters of bit string - Generating a new generation
decoding 2 population P'(t)

¢  Calculation of function value of 3
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Fig. 1 Algorithm flow chart.
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C. Other designs

Map creation In this paper, the grid method establishes
the robot's operating space. The robot needs to build a map
before performing path planning. The smaller the number
of grids in the map, the larger the area of small grids. When
constructing the environment model, it is essential to
consider various aspects to ensure accurate representation
and address potential collision issues. The map's
complexity level increases as the grids become more
extensive and the grid area smaller, allowing for more
precise information representation. However, this also leads
to increased complexity in path searching. Therefore, the
following points are taken into account during the building
of the environment model:

{a) The height of buildings i1s not considered, and the
robot's walking space is treated as a two-dimensional plane.

{(b) The size and location of obstacles are defined, and no
movable obstacles are present.

{c) The robot is treated as a point during planning.

A grid map space is created, where a two-dimensional
rectangle represents the robot's operating space. If the
obstacle area is smaller than the area of a single square grid,
it can be considered a small square grid. If the obstacle area
1s more extensive, multiple square grids can represent it.
Map 1 illustrates a two-dimensional map, where the white
area represents the robot's motion space, and the black area
represents the obstacle space.

We establish a two-dimensional coordinate system to
construct the map, setting the origin at the lower left corner

Initialize a path

h 4

Take the point a=1

{1, 1). Each grid position can be precisely expressed using
coordinates. We number the grids, starting from O,
beginning from the bottom left comer. A conversion
formula is used to relate the numbering and the coordinates.

X=int(N/Gszr)+1 (19)
Y = (N%Ggze) + 1 (20)
where, Ggzris the number of grids and int is an integer.
1) Code framework

The flow chart illustrating the general structure of the
algorithm 1s displayed in Fig. 2. Well-designed code often
follows a concise, step-by-step process, and the genetic
algorithm is no exception. It is predominantly utilized for
solving optimization problems as an intelligent and
efficient optimization algorithm. The main steps of the
genetic algorithm include population initialization, fitness
function calculation, selection, crossover, and mutation. For
instance, let us consider an example where the starting
position is set to 0, the target position is 399, and the
coordinates range from (1, 1) to (20, 20). The mtial
population requires the generation of multiple random
feasible paths. Generating feasible paths involves two
primary steps. Firstly, the robot generates an interrupted
path by instructing it to record the spaces and trajectory it
traverses while adhering to the constraint that at least one
grid in each row and column must be free space. This
results in an interrupted path. The next step involves
connecting these interrupted paths into a continuous path.

”
d
y

The point a and the point a+1 are continuous ornot

Take the midpoint raster

s the midpoint raster is an obstacle raste

Insert Raster

No

a=len(path)?

Take the midpoint raster on
the top, bottom, left and

right of the raster

F 3

G

Fig. 2 Algorithm flow chart.

Abandon this path

Volume 31, Issue 4: December 2023



Engineering Letters, 31:4, EL._ 31 4 33

To determine the continuity of each taken out grid, one
can employ the following method of judgment.

D = max {abs(x*"* — x%), abs(y**! — y¥)} (21

If D=1, The grid connects if not disconnected, otherwise
the opposite. If there is discontinuity, we take the midpoint
of the two points. The calculation is as follows.

Xyeyy = int (%) (22)
Y., =int (%) (23)

If the midpoint grid is not an obstacle, vou must
determine whether someone has already selected this grid.
If the selected grid is unoccupied and not part of the current
path, you should add it. However, you must select a new
adjacent grid if it 1s an obstacle. You should delete the path

if no available unoccupied grids are adjacent to the obstacle.

When selecting a new grid that meets the necessary
conditions, insert it between two disconnected grids n the
path. The process should then continue by checking if the
new grid is contiguous with the existing path. You should
take the midpoint grid and continue the evaluation if it 1s
not contiguous. This cycle should continue until someone
fills the entire path with contiguous grids.

III. ALGORITHM SIMULATION AND RESULT ANALYSIS

This paper focuses on modifying various parameters,
including crossover probability, variation probability, and
path smoothness weight, to determine the number of
generations required to reach a relatively stable state while
approaching the optimal path on average. The experimental
simulation system used for this study includes the Windows
10 flagship operating system, Intel 17-8 processor, 8GB
RAM and MATLAB 2017b software.

A. Map construction

The maps were created using MATLAB 2017b. Four
maps, represented in Fig. 3, were constructed with 400
grids ranging from coordinates (1, 1) to (20, 20). The black
grids represent obstacles, while the white grids indicate free
space.

B. Simulation experiment and result analysis

(1) Parameters were set as follows: path length weighting
(a) = 1, path smoothness weighting (b) = 7, population
number = 200, crossover probability = 0.8, variation
probability = 0.2, and iteration number = 50. The figure
below shows the simulation results in Fig. 4-7 and the table
in Table L.

(2) Parameters were set as follows: path length weighting
(a) = 1, path smoothness weighting (b) = 9, population
number = 200, crossover probability = 0.8, variation
probability = 0.2, and iteration number = 50. The figures
and results in Fig. 8-11 and Table II show the simulation
results.

(3) Parameters were set as follows: iteration number =
100, population number = 200 (constant), path length
weighting (a) = 1, crossover probability = 1, path

smoothness weighting (b) = 7, and variation probability = 0.

Fig. 12-15 and Table III present the simulation results.
(4) Parameters were set as follows: path smoothness

weighting (b) = 7, offspring generation number = 50, path
length weighting (a) = 1, population number = 200,
crossover probability = 0, and variation probability = 1.
The simulation results are shown in Fig. 16-19 and Table
Iv.

Based on our observations of Map 1, Map 2, Map 3 and
Map 4, we can draw some conclusions. First, when dealing
with more complex maps (e.g, Maps 3 and 4), the initial
path length and the time required for descent are also
longer. The number of iterations required to reach a steady
state is also significantly higher than for relatively simple
maps. After further adjusting the different parameters of the
maps, we find that the number of iterations required for the
optimal and average paths to reach relative stability
increases as the path smoothness weights change and the
path length changes. In addition, when the mutation
operation is re-shifted, and only the crossover probability is
retained, the curvature of the paths can be observed from
Fig. 8-11. Moreover, the mutation operation plays a vital
role in path planning. We are observing the curvature of the
paths in Fig. 8-11, which shows that the curvature increases
significantly when only the crossover probabilities are
present. This suggests that mutation operations are
necessary to find the shortest paths, and the optimal
solution cannot be achieved by relying only on crossover
probabilities.

A comparison of Tables I and 11 shows that in Fig. 4-7,
the final stabilized distances are between 25 and 35, and the
number of iterations required is between 3 and 5. However,
in Fig. 12-15, the final stabilization distances are between
60 and 100. Specifically, 60 to 63 in Fig. 12, 70 in Fig. 13,
100 in Fig. 14, and 80 in Fig. 15. As the complexity of the
maps increases, the mitial path lengths, the descent times,
and the number of iterations required to reach the stabilized
state during processing also increase. Adjusting the path
smoothness weights affects the stability of the optimal and
average paths, while removing the mutation operation to
retain only the crossover probability increases path
curvature and failure to reach the shortest path. The final
stabilization distance and the number of iterations required
will also vary from map to map.

The efficiency and accuracy of path planning can be
optimized by combining the crossover and variance
probabilities and adjusting the operating parameters
appropriately. Experimental results show that on relatively
simple maps, the optimal path can be obtained in about five
generations, while in complex cases, 15 to 25 generations
may be required. These conclusions are important guiding
significance for optimal path planning and prove that
genetic algorithms have specific efficiency and stability in
this field. Through this experiment, we investigated the
combination of crossover and variance probability and
explored the effect of parameter tuning on path planning.
The experimental results highlight the mmportance of
considering the crossover probability and the wvariance
probability to achieve the objectives. The experimental
results show that by removing the crossover probability and
retaining only the variance probability, a smooth distance
state can be achieved within a few generations, which
aligns with the desired goal. Compared to retaiming only the
crossover probability, we can infer that the variance

Volume 31, Issue 4: December 2023



Engineering Letters, 31:4, EL._ 31 4 33

probability contributes sigmificantly to the effectiveness of
path planning. The effect of parameter tuning on path
planning has also been investigated. When dealing with
relatively simple maps, proper tuning of the running
parameters usually requires about five generations to obtain
optimal paths. However, 15 to 25 generations may be

20
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Fig. 3 Grid maps.
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required n complex cases to obtain the optimal path.
Therefore, on relatively simple maps, combining the
crossover and variance probabilities and adequately tuning
the operating parameters requires about five generations to
obtain the optimal path. For complex cases, more iterations
may be required.
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a =1, b = 7 genetic algorithm robot mation trajectory
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Fig. 6 Path length and route 3.
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Fig. 7 Path length and route 4.
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TABLE I. PATH LENGTH UNDER DIFFERENT PARAMETERS

Map 1 Map 2 Map 3 Map 4
Optimal Average Optimal Average Optimal Average Optimal Average
Ist 64.63 142.40 70.73 141.43 83.11 139.36 106.77 132.12
2nd 47.90 133.06 37.07 127.79 83.11 128.19 107.11 129.67
3rd 47.90 125.10 30.97 117.13 82.87 111.79 107.11 129.60
4th 62.87 113.27 28.63 91.85 77.70 101.06 122.53 132.68
Sth 62.87 98.79 28.63 63.22 78.53 101.62 122.18 132.54
6th 33.56 80.03 28.04 38.95 70.28 99.66 99.94 117.74
7th 33.56 60.92 28.04 32.53 52.63 93.80 37.66 105.28
8th 33.56 45.97 28.04 30.30 35.56 79.12 37.66 71.47
9th 32.97 39.66 28.04 28.59 35.56 66.68 37.66 37.66
10th 3297 35.80 28.04 28.57 35.56 47.02 37.66 37.66
11th-15th 3297 34.90 28.04 28.50 3238 44.88 37.66 37.66
16th-20th 32.97 35.07 27.46 28.40 32.38 41.42 37.66 37.66
21th-30th 32.97 33.50 27.46 28.29 32.38 37.10 37.66 37.66
31th-40th 32.97 33.45 27.46 28.13 32.38 35.45 37.66 37.99
41th-50th 32.97 33.47 27.46 28.04 32.38 34.65 37.66 37.99
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Fig. 8 Path length and route 5.
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Fig. 9 Path length and route 6.
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Fig. 10 Path length and route 7.
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Fig. 11 Path length and route 8.

TABLE II. PATH LENGTH UNDER DIFFERENT PARAMETERS

Map 1 Map 2 Map 3 Map 4
Optimal Average Optimal Average Optimal Average Optimal Average
1st 61.46 140.39 4356 136.51 98.53 139.44 132.08 157.96
2nd 58.14 135.85 31.80 113.41 40.14 132.38 147.25 157.46
3rd 47.56 L2777 2921 91.34 40.14 103.69 114.77 147.22
4th 33.56 116.30 28.63 68.57 40.14 84.67 106.77 134.10
sth 33.56 96.16 2746 40.03 36.73 7042 106.77 119.89
6th 33.56 78.03 2746 32.97 36.73 56.64 99.94 105.77
7th 33.56 60.67 2746 28.96 36.38 4443 103.60 105.98
8th 33.56 44.00 2746 27.89 39.21 43.05 103.60 105.98
9th 3297 3536 2746 27.63 3521 3874 9536 103.12
10th 33.56 34.14 2746 27.51 35.21 38.68 95.36 102.33
11th-15th 34.63 36.71 2746 27.51 35.21 38.65 66.63 87.55
16th-20th 34.87 35.33 2746 27.55 32.38 3544 5580 61.48
21th-30th 32.97 34.47 2746 27.53 32.38 3443 34.97 52.36
31th-40th 32.97 34.19 2746 27.54 31.80 33.93 33.56 34.60
41th-50th 3297 33.97 2746 27.56 31.80 3327 3356 .16

VYolume 31, Issue 4: December 2023



Engineering Letters, 31:4, EL._31 4 33

Optimization graph fora=1,b =17 a =1, b =7 genetic algorithm robot motion trajectory
b
140 T T T T T T T T T 20
Average path length 19
—— Optimal path length 18
130 | b
17
16
120 F k 15 I N N I
Average path length 14
< 110 . 3
8 12
b= 11
o
= 100 > 10
go 9
= 90 4 8
Optimal path length 7
80 F 6
5
4
70 F 3
2
60 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 12 3 456 7 8 9 10111213 14 1516 17 18 19 20

Number of iterations x

Fig. 12 Path length and route 9.
a =1, b =7 genetic algorithm robot motion trajectory

20
- Optimization graph fora=1,b=7 19
Average path length 18 /-
140 ——— Optimal path length || 17 ]
16
130 15
° 14
13
20 k Average path length Jd 1
120 12 H
-~
.
= 110 | ‘ 1 10
Optimal path length
TED 9
100 [ 1
g 8
= 7
90 6
5
80 | 4
3
70 F 2
60 L 1 1 L 1 1 1 1 1 1
0 10 20 30 40 50 60 70 30 9 100 1 2 3 456 7 8 9 101112 13 14 15 16 17 18 19 20
Number of iterations X
Fig. 13 Path length and route 10.
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Fig. 14 Path length and route 11.

Volume 31, Issue 4: December 2023



Engineering Letters, 31:4, EL._31 4 33

a =1, b =7 genetic algorithm robot motion trajectory

20
Optimization graph fora=1,b =17 19
140 T T T T T T T T 18
Average path length 17
—— Optimal path length
2 i 16
130
15
14
120 E 13
Average path length 12
= 11
g 110F / . >
] 10
< 9
go 100 F Optimal path length 8
: : u
90 6
5 [
4
80 F 3
2
1
70 L 1 1 1 L L L L L
0 10 20 30 40 50 60 70 80 90 100 1

Number of iterations

Fig. 15 Path length and route 12.

TABLE [Il. PATH LENGTH UNDER DIFFERENT PARAMETERS

X

2 3 456 7 8 91011121314 1516 17 18 19 20

Map 1 Map 2 Map 3 Map 4
Optimal Average Optimal Average Optimal Average Optimal Average
1st 84.04 137.86 73.46 140.34 117.94 143.41 103.01 121.68
2nd 84.04 130.27 77.46 136.62 115.25 145.50 103.01 117.63
3rd 84.04 125.14 71.46 129.40 117.94 142.69 103.01 114.78
4th 85.46 123.75 71.46 126.44 116.53 140.65 103.01 124.57
Sth 85.46 120.33 82.28 125.19 114.53 141.50 103.01 135.16
6th 88.63 117.40 82.28 120.55 125.94 141.00 103.01 125.15
7th 84.04 118.72 82.28 117.41 117.11 139.91 103.01 125.05
8th 84.04 113.75 82.28 115.00 117.11 138.53 103.01 130.06
9th 80.87 111.09 75.46 107.07 115.11 140.70 103.01 135.36
10th 80.87 108.39 82.28 104.86 115.11 137.06 103.01 139.29
11th-20th 76.63 102.47 75.46 101.15 125.94 130.75 88.77 115.00
21th-30th 74.63 84.97 75.46 81.85 109.70 127.53 116.43 117.09
31th-40th 70.63 77.37 75.46 81.20 104.28 123.06 109.60 95.44
41th-50th 62.63 75.16 67.21 80.54 100.28 107.84 92.77 91.07
51th-60th 62.63 74.96 69.21 80.07 98.28 104.07 81.94 86.88
61th-70th 62.63 65.10 69.21 79.68 100.28 101.34 81.94 80.72
71th-100th 62.63 65.10 69.21 70.56 98.28 100.71 79.11 79.11
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Fig. 16 Path length and route 13.
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TABLE IV. PATH LENGTH UNDER DIFFERENT PARAMETERS

Map 1 Map 2 Map 3 Map 4
Optimal Average Optimal Average Optimal Average Optimal Average
1st 36.73 122.54 33.56 103.51 52.87 99.84 78.28 83.11
2nd 3321 97.90 30.38 72.32 4238 76.06 38.38 74.25
3rd 3321 70.94 29.21 49.69 35.56 51.66 37.80 48.16
4th 3238 50.57 28.04 3926 34.97 42.35 36.97 3744
sth 32.38 39.87 27.46 32.38 32.97 38.73 36.97 37.72
6th 32.38 35.17 27.46 29.48 32.38 37.12 37.80 37.99
7th 3238 33.83 2746 28.28 3238 3585 36.97 3772
8th 32.38 32.96 27.46 27.84 32.38 34.69 36.97 37.99
9th 3238 3274 2746 27.67 3238 34.30 37.80 38.27
10th 32.38 32.63 27.46 27.65 32.38 34.50 37.80 39.13
11th-15th 32.38 32.56 27.46 27.60 32.38 34.43 33.56 35.72
16th-20th 3238 32.50 2746 27.57 31.80 34.60 34.38 3647
21th-30th 32.38 32.50 27.46 27.55 32.63 34.23 33.56 35.33
31th-40th 3238 3248 2746 27.61 31.80 34.02 33.56 34.78
41th-50th 32.38 32.35 27.46 27.63 32.63 33.38 30.38 30.86

In summary, the results of this study are of great
mnstructive significance for optimizing the efficiency and
accuracy of path planning. Genetic algorithms have shown
some efficiency and stability in this field However, it is
better to consider using methods other than genetic
algorithms to solve the problem in unusually complex
cases.

IV. CONCLUSION

This paper uses a genetic algorithm to solve the robot
path planning problem under grid maps. The algorithm
aims to find a feasible path with a high success rate and
robustness quickly by continuously optimizing the path
adaptation through genetic operation. The strong
adaptability and scalability of the algorithm in various
environments are verified through experiments. In this
paper, the genetic algorithm based on a gnd graph
effectively solves the robot path planning problem, and the
algorithm performs well in the experiments, efficiently
searching the optimal path in a short time while
maintaining a certain degree of robustness and success rate.
The algorithm is adaptable and scalable and applies to
various environments to solve the robot path planning
problem. According to the experimental results, the
algorithm performs well regarding running time, search
efficiency, and success rate. Therefore, the algorithm has
theoretical and practical value and is worth a valuable
reference.
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