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Abstract—Point cloud data’s ability to preserve precise geo-
metric details makes point cloud semantic segmentation crucial
for 3D visual perception. Within a perception system, the real-
time performance of the model holds pivotal significance, partic-
ularly concerning its ability to conduct semantic segmentation
on large-scale point cloud data. RanSeNet, a lightweight neural
architecture based on attention mechanisms, directly operates
on each individual point in the point cloud data, eliminating
the need for preliminary processing steps. The experiment
shows that RanSeNet achieves fast processing, high segmen-
tation efficiency, and handles millions of points simultaneously.
Compared to existing results, the proposed method achieves
88.6% Overall Accuracy (OA) and 64.27% Mean Intersection
over Union (MIoU) in area 5 of the S3DIS dataset, which is a
challenging large-scale semantic scene segmentation task.

Index Terms—3D point cloud, semantic segmentation, ran-
dom sampling, Attention mechanism

I. INTRODUCTION

EFFICIENT semantic segmentation method of large-
scale 3D point cloud is a fundamental and indispensable

attribute of real-time intelligent systems, such as indoor AI
robots and augmented reality. The employment of general-
ized point clouds facilitates the achievement of autonomous
robot navigation and environmental perception, consequently
elevating the overall cognitive prowess of robotic systems.
However, as the complexity of network structures escalates,
computational efficiency diminishes, thereby impinging upon
the practical applicability of these methods. Compared with
the 2D image segmentation task, the 3D point cloud data
acquired through depth sensors exhibits inherent traits of
irregularity, with dense clustering in close proximity jux-
taposed with sparse dispersion in distant regions, resulting
in an unstructured nature. While deep convolutional neural
networks have showcased remarkable prowess in the realm of
two-dimensional computer vision tasks, their direct transpo-
sition to the domain of unstructured point cloud data presents
inherent challenges.
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At the same time, several methods exist for semantic
segmentation of point clouds, such as the random sampling
consensus method (RANSAC), which exhibits higher ro-
bustness and efficiency for plane, sphere, cylinder, etc.; the
Euclidean segmentation algorithm based on clustering; the
Region growth segmentation algorithm; segmentation based
on normal differentiation; and Supervoxel-based segmenta-
tion, among others [1]. However, due to the inherent charac-
teristics of the aforementioned methods, when dealing with
increasing amounts of point cloud data, there are challenges
such as high computing power requirements, long processing
times, lower precision, vulnerability to noise interference,
and difficulties in handling large-scale indoor and outdoor
data. As a result, point cloud semantic segmentation based
on deep learning has emerged as a fervently discussed subject
in contemporary research, given its remarkable high-level
semantic comprehension capabilities.

The projection-based deep learning segmentation method
involves projecting point clouds onto 2D images and using
traditional 2D CNN for segmentation. However, this ap-
proach requires extensive preprocessing steps and may lead
to the loss of crucial spatial information [2]. Similarly, voxel-
based deep learning segmentation method uses 3D convolu-
tion, which is not only slow in calculation, but also produces
a large number of invalid calculations [3]. To address these
issues, a direct point-to-point processing method is needed,
which can bypass the need for pre-processing steps [4].

PointNet, proposed by Charles [5-6] et al., is a deep
learning-based model that directly processes point clouds for
point cloud segmentation. This method utilizes shared multi-
layer perceptrons (MLPs) to learn the features of individual
points, making it computationally efficient. However, it has
limitations in capturing broader context information for each
point. To address this limitation, the authors then proposed
PointNet++, which enhances the model’s ability to capture
local context information at different scales. In order to
learn richer local structures, many specialized neural modules
have been introduced by relevant scholars [7-8]. While these
methods have achieved favorable semantic segmentation
results, most of them are limited to tiny scale 3D point
clouds (e.g., 4000 points or 1×1 meter blocks for indoor
scenes) and cannot be directly extended to larger point
clouds (e.g., millions of points and 200×200 meter blocks for
larger scale scenario) [9]. There are three reasons for these
limitation. (1) Point sampling methods commonly used in
these networks are computationally expensive and have low
memory efficiency. (2) Most existing local feature learning
methods rely on computationally expensive neighborhood
search or graph construction, making it challenging to handle
a large number of points. (3) For large-scale point clouds,
which are usually composed of hundreds of objects, existing
local feature learners may struggle to capture the complex
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Fig. 1: Semantic segmentation results of RanSeNet on S3DIS

structure efficiently, or their capture efficiency is low due to
the limited size of their receptive field.

In recent years, some methods based on projection and
voxel techniques have achieved good segmentation accuracy
for large-scale scenic point clouds. However, the heavy com-
putation involved in pre-processing and voxelization steps
makes these methods unsuitable for real-time applications.
On the other hand, some methods based on deep learning
have shown promising results, but they are more effective
when dealing with small data sets. To address the mentioned
issues, Qingyong Hu [10] proposed the RandLA-Net method,
which is suitable for semantic segmentation of large-scale
point cloud data. The fundamental concept underpinning this
approach revolves around the utilization of random point
sampling, thereby augmenting data processing velocity and
mitigating the loss of information. Nevertheless, the core em-
phasis of the RandLA-Net architecture predominantly cen-
ters upon the refinement of spatial encodings, inadvertently
overlooking the interplay amongst channels. This particular
constraint gives rise to inadequate feature assimilation within
point clouds, consequently exerting a potential dampening
effect on the precision of classification and segmentation
outcomes.

This paper introduces an enhanced point cloud semantic
segmentation model called RanSeNet, which is evaluated on
the S3DIS [11], a large indoor scenic point cloud dataset. The
objective of this study is to develop robots capable of han-
dling complex tasks similar to humans. The proposed model
incorporates an improved Transformer structure, employing
a channelwise statistical attention mechanism along with the
Gaussian Error Linear Unit (GELU) activation function. The
experimental results demonstrate that our model achieves
superior segmentation accuracy and faster processing speed
compared to other existing methods. For more detailed

Fig. 2: Grid before and after sampling

segmentation results, please refer to Fig. 1.

II. SEMANTIC SEGMENTATION MODULE OVERVIEW

A. Problem Definition

1) Sampling Procedure: Dealing with a large number of
point clouds at once is unrealistic, given that millions of
points cannot be directly fed into the model. To address this,
RanSeNet employs raster downsampling of point clouds to
reduce the number of points while preserving the spatial
structure of the point clouds, as depicted in Fig. 2. This
approach enables the model to handle large-scale point cloud
data effectively [12].

While raster downsampling ensures the preservation of the
geometric structure of point clouds to some extent, it cannot
guarantee the consistency of output points. Additionally, even
after raster downsampling, the number of points may still be
too large for neural networks to handle efficiently. To address
this, the RanSeNet model employs random sampling (RS)
and continues to downsample points further, reducing the
point cloud size to a manageable level for the neural network.
This combination of techniques helps optimize the model’s
performance on large-scale point cloud data. As shown in
Fig. 3, a random value P was generated for each point in
the subpoint cloud Pj , the smallest point PJ was selected,
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TABLE I: Efficiency comparison of sampling methods

Index

Method
FPS IDIS RS GS CRS PGS

efficiency(106) 200s 10s 0.004s 12000s

effect Applies only to small
scale point clouds

Sensitive to
outliers

Generate additional
calculations

3000GB
memory usage Survey space C105

106

complexity O(N2) O(N) O(1)
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Fig. 3: Random sampling detail schematic

and the smallest point PJmin was chosen from the point
PJ optioned by each subpoint cloud. The k-dimensional tree
algorithm was carried out to find neighbor points, and the
neighbor points N found was used as the sampling point to
be input into the model for this round of training.

To achieve semantic segmentation of point cloud, the
choice of sampling method is crucial. Existing point sam-
pling approaches can be roughly classifies into heuristic
and based on learning approachs. However, there is still
no standard sampling strategy that is suitable for large
scale point clouds. Subsequently, we analyze and compare
the relative merits and complexities of different sampling
methods as shown in Table I. The methods included are: FPS
(farthest point sampling), IDIS (inverse density importance
sampling), GS (Generator-based Sampling), CRS (Continu-
ous Relaxation based Sampling), and PGS (Policy Gradient
based Sampling). Regardless of the size of the input point
cloud, RS (random sampling) exhibits the highest computing
efficiency [13]. When 106 points are processed, only 0.004s
is needed, and its computational complexity is O(1).

2) Spatial Location Coding —Extract Feature: If the
location information after point aggregation only includes
the location of the point itself and the location of the central
point, the network may exhibit limitations in comprehending
the local geometric model [14]. Therefore, the method incor-
porates relative position information and Euclidean distance,
which has been verified to achieve the optimal effect. The
process of this module is illustrated in Fig. 4. By incorpo-
rating additional geometric information, the model gains a
better understanding of the local geometric characteristics,
leading to improved performance in semantic segmentation.

Given a child point cloud P , after random sampling, we
get p, and sum total N . Each point pi(1 ≤ i ≤ N) in p carries

a point feature fi and its position information (x, y, z). For
the ith point ith in p, firstly, a simple nearest neighbor (KNN)
algorithm is used to collect K adjacent points to improve
efficiency.

For each K nearest point {p1i · · · pki · · · pki } of the central
point pi, the position coding rki is shown in Formula (1):

rki = MLP
(
pi ⊕ pki ⊕ (pi − pki )⊕ ∥pi − pki ∥

)
(1)

where pi and pki are the position of the points, ⊕ is the
join operation, and ∥ • ∥ calculates the Euclidean distance
between the adjacent points and the center point. For each
adjacent point pki , the relative point position rki of the code is
connected with its corresponding point feature fk

i to obtain
an augmented feature vector f̂k

i .
The output of this unit is a new set of adjacent feature

F̂i = {f̂1
i · · · f̂k

i · · · f̂K
i } that encodes the local geometry of

the central point.
The above steps ensure that the corresponding point

features always have knowledge of their relative spatial
positions. This allows the module to explicitly observe local
geometric patterns, ultimately enabling the entire network to
effectively learn complex local structures.

3) Attention Pooling —Weighting the Most Important
Adjacent Features: Given a local feature set: F̂i =
{f̂1

i · · · f̂k
i · · · f̂K

i }, a shared function g() is designed to learn
the unique attention score for each feature [15]. g() consists
of a shared MLP and softmax. Its formal definition is as
follows:

ski = g(fk
i ,W ) (2)

where W is a learnable weight of a shared MLP. The learned
attention score can be viewed as a soft mask layer that
automatically selects important features. The weighted sum
of these features is calculated as follows:

f̃j =
K∑

k=1

(f̂k
j · skj ) (3)

This process allows the model to focus on significant and
relevant information, enhancing the effectiveness of feature
learning and improving the overall performance of the net-
work in semantic segmentation tasks.

Given the input point cloud p, for the j th point pj , our
local point and attention pool unit learn to aggregate the
geometric patterns and features of its K closest points, and
finally generate an information feature vector f̃j , as shown
in Fig. 5 below.
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4) Attention Mechanism (SEPC) —Model the Interde-
pendencies between Feature Channels explicitly: Different
from image data, point cloud data has the characteristics of
unstructure and disorder [16], and its characteristics can be
expressed as F ∈ RB × N × 1 × C in neural network,
where B represents Batch Size and C is the number of
feature channels. In Fig. 6, r stands for the reduction rate,
which represents the number of channels reduced at the first
fully connected layer. The reduction rate helps to control the
dimensionality of the features and can be adjusted to balance
the model’s capacity and computational efficiency.

Feature layer U ∈ RN×1×C is compressed by global
average pooling, the process is as follows:

Zc = Fsq(uc) =
1

h ∗ w

h∑
i=1

w∑
j=1

uc(i, j) (4)

where h ∗ w represents the spatial dimensions of the inter-
mediate features.

In the proposed model, each channel learns the activation
of specific samples through an optional gate mechanism
based on channel dependence. This mechanism allows the
model to learn how to use global information and selectively
emphasize important information features while suppressing
less relevant ones. The activation function is sigmoid and
ReLU function is embedded to help network training and
limit the complexity of the model. These design choices
help in enhancing the model’s ability to capture meaningful
patterns and improve its overall performance in semantic
segmentation tasks.

Through two fully connected layers (FC), the number of
W1 neurons in the first fully connected layer is less for
dimension reduction, and the number of W2 neurons in
the second fully connected layer is the same as that in the
input feature layer for dimension enhancement. The weight
is fixed between 0 and 1 by Sigmoid, that is, the weight of
each channel in the input feature layer (between 0 and 1) is
obtained.

s = Fex(zc,W ) = δ(f(zc,W )) = δ(W2ϑ(W1ZC)) (5)

where δ and ϑ are the representation of Sigmoid function.
SEPC automatically acquires the importance degree of

each channel through learning, and then promotes useful
features according to this importance degree and inhibits the
features that are not useful for the current task, so as to
improve the network expression ability.

5) Feature Aggregation Module (FAM) —Increment Ac-
ceptance Field: This module connects the above two mod-
ules as shown in Fig. 7 to increase the range of the acceptance
domain.

Following the initial positioning and pooling operation,
each 3D point depicted in the figure perceives K adjacent
points, enabling it to gather information from up to K2

adjacent points. The two-hop neighborhood after the second
positioning [17]. This is an inexpensive method to extend the
receptive domain and the effective neighborhood by feature
propagation. This feature propagation approach enhances the
model’s ability to handle complex and large-scale point cloud
data while maintaining computational efficiency.

Given the substantial downsampling of large point clouds,
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Fig. 6: SEPC Module

it becomes imperative to significantly expand the acceptance
domain of each point. This ensures that even if certain points
are removed, the geometric intricacies of the input point
cloud are more likely to be retained. We use multiple atten-
tion pool units with skip connections as extended residual
blocks.

The residual block, comprising SEPC and FAM, effec-
tively enhances the network’s capacity for characterization
while maintaining the integrity of the point cloud data
structure, as depicted in Fig. 8. The channel weights are
dynamically adjusted within local features to enhance the
network’s representation in the given task. Within point
cloud data, this attention mechanism can be conceptualized
as operating on distinctive channels at each point, thereby
accentuating task-relevant information and mitigating the
presence of extraneous details.

Utilizing the GELU function as the activating layer for the
outputs of the residual module FAM offers a pathway for
refining the acquisition of nonlinear features par excellence.
This strategic selection finds its rationale in GELU’s adept
utilization of the probabilistic statistics inherent to input data,
thereby upholding the integrity of input information while
seamlessly accommodating the inherent stochastic regulari-
ties within the activation function itself. The mathematical
formulation of the GELU function is expressed as follows:

GELU(X) = X ∗ P (X ≤ x) = X ∗Ψ(x) (6)

where Ψ(x) refers to the cumulative function of the Gaussian
normal distribution of x.

In RanSeNet, two sets of local pools are deployed along
with an attention pool to create standard residual blocks,
striking a favorable balance between efficiency and effective-
ness. This module takes into account the adjacent geometry
and expands the receptive field, effectively preserving the
complex local structure within the point cloud data.

B. Network Structure

As depicted in Fig. 9, the extended residual block structure
is denoted as FAM. RS signifies random sampling, NL
represents near point interpolation (used for image upsam-
pling), SEPC refers to the attention mechanism module. Cin

Fig. 7: FAM: Feature Aggregation Module

MLP

MLP

MLP

MLPFAM

SEPC Share MLP

Fig. 8: Overall architecture of RanSeNet’s feature extraction

represents the input channel of each module, Cout represents
the output channel of each module, and Concat denotes
the concatenation operation. The model in RanSeNet fully
integrates feature information from different dimensions,
which involves four rounds of downsampling and four rounds
of upsampling.

III. EXPERIMENTAL DESIGN AND IMPLEMENTATION

A. Design and Implementation

In this chapter, we evaluate the overall efficiency of
RanSeNet on large-scale semantic segmentation point clouds
in real-world scenarios. To assess the performance of
RanSeNet, we conducted evaluations on the S3DIS dataset,
which is a widely-used large-scale indoor point cloud dataset.
For evaluation, we use standard metrics such as Mean
Intersection over Union (mIoU) and overall accuracy (OA) of
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Fig. 9: Overall architecture of RanSeNet

TABLE II: The result of semantic segmentation on S3DIS area 5

OA mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet - 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2

SegCloud - 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6

PointCNN 85.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

SPGraph 86.4 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2

PointWeb 87.0 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5

RandLA-Net 87.2 63.17 91.2 97.4 81.7 0.0 30.5 58.1 49.6 78.4 83.9 54.5 72.3 70.3 53.36

RanSeNet 88.67 64.27 91.65 97.20 80.99 0.0 21.83 61.06 47.67 78.57 86.97 74.28 71.92 70.96 52.43

all classes. These metrics provide a comprehensive measure
of the model’s ability to accurately segment different classes
in the point cloud data. The results of the evaluation provide
insights into the effectiveness and efficiency of RanSeNet in
handling large-scale point cloud data for semantic segmen-
tation tasks, which is crucial for its real-world applicability
in various indoor environments.

B. The Data Set S3DIS

The S3DIS dataset is a large 3D indoor dataset designed
for semantic segmentation tasks. It consists of 271 rooms
distributed across six areas, including teaching buildings and
office areas. Each room contains multiple objects such as
tables, chairs, windows, and more. The primary goal of

the dataset is to locate and segment semantic objects from
these large-scale three-dimensional point clouds. The dataset
covers an impressive area of more than 6,000 square meters,
containing over 215 million points. It comprises 13 mean-
ingful categories, including ceilings, floors, walls, beams,
columns, windows, doors, tables, chairs, sofas, bookcases,
blackboards, and sundry objects.

The S3DIS dataset stands as a pivotal resource, indis-
pensable for the rigorous assessment and benchmarking of
semantic segmentation algorithms within authentic indoor
settings. With its vast scale and diverse array of object
categories, a challenging yet invaluable dataset is presented,
one that serves as a catalyst for the advancement of research
in the domains of 3D point cloud semantic segmentation.
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Fig. 10: Area5’s subregion Semantic segmentation results

C. Experimental Results

The RanSeNet model was trained for 100 cycles during the
experiment. The test set consisted of Area5, known for its
intricate spatial structure within the S3DIS dataset, while the
remaining five regions served as the verification set. Fig. 10
shows the accuracy of the model in each subarea (meeting
room, storage, toilet, and so on) in Area 5, the accuracy
comparison results with baseline RandLA-Net are shown in
Fig. 10.

During the training of RanSeNet, a four-layer network
architecture was used with feature sizes of 32, 128, 256,
and 512. The Adam optimizer was employed with a learning
rate of 0.01 and a decay rate of 0.05 to optimize the
model parameters. Throughout the training process, the grid
sampling used a mesh size of 0.04, and the downsampling
ratios for each layer were set to 8, 4, 4, and 2, respectively.
The parameter K, which determines the number of neighbors
in the local neighborhood for feature learning, was set to
16. To train the RanSeNet model, a fixed number of 40,960
points were sampled from each point cloud as input data. The
evaluation results indicate that the average mIoU achieved is
64.27%, while the overall accuracy is 88.67%.

TABLE III: Ablation experiments based on model time
efficiency were conducted in each room of area 5

time (ms)

Baseline 332

RanSeNet 156

IV. RESULT ANALYSIS

A. Evaluation of Attention Mechanism (SE-PC)

Using traditional point semantic segmentation algorithms,
the point cloud may not effectively distinguish the impor-
tance of different feature channels, leading to inadequate
feature extraction and reduced accuracy. To address this
issue, the paper introduces an attention mechanism that
explicitly models the relationships between different feature

channels. With the attention mechanism, the model can
adaptively learn different feature channel weights. It assigns
higher weights to valid features and lower weights to less
relevant ones. This allows the limited computing resources
to focus on filtering out more important information for the
current task, improving the adequacy of feature expression,
and consequently enhancing the accuracy of classification.

By incorporating the attentional mechanism, the model
gains the ability to emphasize relevant features and suppress
less useful ones, enabling it to make more informed decisions
during the semantic segmentation process. This approach
effectively addresses the challenges of feature extraction in
point cloud data, leading to improved performance in various
classification tasks.

B. Evaluate the details of the Transformer structure

With an increase in the number of transformer layers,
the network’s capacity becomes larger, and its expression
capacity becomes stronger. However, this may also lead
to issues such as slow network convergence and gradient
disappearance [18]. To address these challenges, RanSeNet
utilizes point subsampling when encoding the point cloud
data. We have improved the layers and sampling ratio of
the Transformer model and conducted multiple compari-
son experiments. The results demonstrate that RanSeNet
outperforms other configurations, showing the best overall
performance.

By carefully selecting the number of layers and optimizing
the point subsampling approach, RanSeNet strikes a balance
between network capacity and computational efficiency, re-
sulting in superior results for point cloud semantic segmen-
tation. This highlights the significance of the design choices
made in RanSeNet, which contributes to its effectiveness in
handling large-scale point cloud data.

Indeed, point cloud data is a unique data structure with
a large number of points and a specific spatial arrangement,
making it challenging to process efficiently. However, point
cloud data holds great practical significance for research on
scene perception and understanding.

In the context of point cloud semantic segmentation, real-
time performance is a critical aspect as it directly impacts
the usability of the technology in various applications. The
speed at which the model can process point clouds is a key
factor in making it practical for real-world scenarios.

The proposed method in RanSeNet has demonstrated sig-
nificant improvements in processing speed, as shown in Table
III. By leveraging attention mechanisms and optimizing the
transformer layers and sampling ratio, RanSeNet achieves a
good balance between accuracy and efficiency. The results
demonstrate the model’s capability to process large-scale
point cloud data in real-time, making it a valuable tool for
various applications in scene perception and other related
fields.

C. Ablation analysis

In order to demonstrate the performance of the improved
model, ablation experiments were performed, and the influ-
ence of the GELU function and the attention module on the
segmentation accuracy could be seen.
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TABLE IV: The mIoU and OA scores of all ablated networks based on our full RanSeNet.

OA(%) mIoU(%) ceiling floor wall beam column window door table chair sofa bookcase board clutter

Replace with RELU 88.1 62.37 92.66 97.19 79.45 0.0 25.60 60.34 30.84 78.87 85.79 61.69 70.44 68.17 52.90

Remove Attention Mechanism 87.5 63.39 93.00 97.36 80.04 0.0 19.98 61.57 43.67 78.03 87.74 72.56 71.21 68.13 53.46

The Full framework (RanSeNet) 88.67 64.27 91.65 97.20 80.99 0.0 21.83 61.06 47.67 78.57 86.97 74.28 71.92 70.96 52.43

Initially, the RELU activation function was employed
in the feature aggregation module FAM. Subsequently, the
attention mechanism SE-PC was removed to nullify the
influence of the model on the point cloud feature channels.

Table IV presents a comparison of overall accuracy (OA)
and mean Intersection over Union (mIoU) scores for all
ablation analysis results. From these results, we can observe
the effect of using different activation functions on accuracy
and how the removal of the attention module affects the
performance by not effectively preserving useful features.

The ablation study provides valuable insights into the
contributions of the GELU function and the attention module
in improving the segmentation accuracy of the model. It
demonstrates how the proposed neural units complement
each other to achieve excellent performance in point cloud
semantic segmentation. This analysis further validates the ef-
fectiveness of the enhancements introduced in the RanSeNet
model.

V. CONCLUSION

In this paper, a lightweight neural network model called
RanSeNet has been designed for the efficient semantic
segmentation of expansive point cloud datasets within pic-
turesque domains. The empirical findings from the S3DIS
dataset demonstrate the adeptness of our model in swiftly
and accurately handling substantial data volumes. RanSeNet
offers two key advantages: efficient handling of large-scale
point cloud data for real-world applications and superior per-
formance compared to other methods, ensuring accurate and
real-time semantic segmentation. By incorporating attention
mechanisms, point subsampling, and optimized transformer
layers, RanSeNet strikes a balance between accuracy and
efficiency, making it a valuable solution for various scene
perception tasks. The experiments confirm the effectiveness
and practicality of our model, making it a promising choice
for point cloud semantic segmentation in real-world scenar-
ios.
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