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Abstract—We concentrate on the general form of the weight-
ed complementarity problem, which serves as a generalization
of the nonlinear complementarity problem and finds extensive
applications in various fields, including economics, sciences,
engineering, atmospheric chemistry, and multibody dynamics.
We introduce a novel Fischer-Burmeister-based one-parameter
smoothing complementarity function. The WCP is then re-
formulated as a smoothing system of equations, and a new
smoothing Newton method is devised to solve the problem effi-
ciently on the new one-parameter smoothing complementarity
function. To ensure global convergence, we introduce a new
line search rule. The new method exhibits both global and local
quadratic convergence properties under appropriate conditions,
as demonstrated through several numerical experiments that
confirm its effectiveness and stability.

Index Terms—weighted complementarity problem, nonmono-
tone line search, smoothing Newton algorithm, convergence
analysis.

I. INTRODUCTION

CONSIDER the following weighted complementarity
problem (WCP) in this paper: find a triple (x, s, y) ∈

Rn ×Rn ×Rm that satisfies

x ≥ 0, s ≥ 0, G(x, s, y) = 0, xs = w, (1)

where the mapping G(x, s, y) : R2n+m → Rn+m is
nonlinear and the weighted vector w ∈ Rn

+ is known, with
xs denoting the element-wise product of x with s.

When w = 0, the WCP (1) simplifies to the well-known
nonlinear complementarity problem (NCP):

x ≥ 0, g(x) ≥ 0, ⟨x, g(x)⟩ = 0. (2)

The NCP (2) has been extensively studied by vari-
ous researchers, see [1–6]. Moreover, when the mapping
G(x, s, y) : R2n+m → Rn+m assumes a linear form, the
WCP (1) can be further simplified to the linear weighted
complementarity problem (WLCP):

x ≥ 0, s ≥ 0, Ax+Bs+ Cy = t, xs = w, (3)

where A, B ∈ R(m+n)×n, C ∈ R(m+n)×m, t ∈ Rm+n.
The notation of WCP was initially introduced by Potra [7],

who argued that describing certain equilibrium problems in
terms of WCP rather than NCP can lead to more effective
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solutions, particularly in the field of economics. Potra [7]
transformed Fisher market equilibrium problem from eco-
nomics into the WCP and demonstrated that the quadratic
programming and weighted centering problem can be refor-
mulated as the monotone WCP. Furthermore, the WCP shows
promise for applications in atmospheric chemistry [8, 9] and
multibody dynamics [10, 11].

Due to its wide range of applications, the WCP garnered
significant attention from researchers aiming to develop
efficient algorithms [12–15]. In the context of monotone
linear WCP, Potra [7] generalized the approaches of Mc-
shane [16] and Mizuno et al. [17] to introduce two class
of interior-point methods and conduct an analysis on their
computational complexity and convergence properties. For a
class of monotone WLCP, Asadi et al. [18] developed a new
interior-point algorithm and established an iteration bound.
Gowda [19] investigated the WLCP within the framework of
Euclidean Jordan algebra, while Chi et al. [20, 21] presented
infeasible interior-point algorithms for a specific class of
WLCPs with favorable computational complexity.

In addition to the interior point algorithm, the smoothing
Newton algorithm is another popular method for solving var-
ious mathematical programming problems [22–29]. Recently,
several researchers have conducted investigations into the
feasibility and convergence properties of smoothing Newton
algorithms for the WCP. Zhang [30] proposed a smoothing
Newton approach for the monotone WCP, while Tang et
al. [31] developed a smoothing approach for the WCP
over Euclidean Jordan algebra and discussed its convergence
properties under certain assumptions.

Motivated by the aforementioned studies, we develop
a novel nonmonotone smoothing Newton method for the
general form (1). By utilizing a one-parameter smoothing
function, we transform the WCP (1) into an equivalent set of
smoothing equations and develop a new smoothing Newton
algorithm. The feasibility and convergence properties are dis-
cussed under appropriate conditions. Our algorithm possesses
several advantageous features:

1) We construct a new Fischer-Burmeister-based one-
parameter smoothing complementarity function, which
exhibits desirable properties of continuous differentia-
bility. By employing this new smoothing function, we
effectively convert the WCP (1) into a smoothing set
of equations equivalently.

2) Our approach distinguishes itself from the method pre-
sented in [32] by incorporating a novel nonmonotone
line search technique. This technique can be reduced
to a monotone line search by selecting the appropriate
parameters.
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This paper is organized as follows. A one-parameter
smoothing function is presented along with a discussion
of its fundamental features in Section II. In Section III,
a new feasible nonmonotone smoothing Newton algorithm
specifically designed for WCPs is proposed. The conver-
gence properties of the method are thoroughly analyzed in
Section IV. In Section V, we present the results of the
numerical experiments performed. In Section VI, we propose
a conclusion to summarize the results of this paper.

II. PRELIMINARIES

First, we propose a new one-parameter smoothing function
ϕr(ε, u, v) : R

3 → R as follows:

ϕr(ε, u, v) = (1 + ε)(u+ v)

−
√
(u+ εv)2 + (v + εu)2 + 4(1− ε)r + 2ε2, (4)

where 0 ≤ ε ≤ 1 and r ≥ 0. The properties of ϕr(ε, u, v)
can be easily deduced through straightforward reasoning and
calculation.

Lemma 1. For any 0 ≤ ε ≤ 1, ϕr(ε, u, v) = 0 if and only
if u+εv > 0, v+εu > 0, (u+εv)(v+εu) = 2(1−ε)r+ε2.

Lemma 2. For any ε ∈ (0, 1), ϕr(ε, u, v) is continuously
differentiable, with

(ϕr(ε, u, v))
′
ε = u+ v

− v(u+ εv) + u(v + εu) + 2(ε− r)√
(u+ εv)2 + (v + εu)2 + 4(1− ε)r + 2ε2

, (5)

(ϕr(ε, u, v))
′
u = 1 + ε

− u+ εv + ε(v + εu)√
(u+ εv)2 + (v + εu)2 + 4(1− ε)r + 2ε2

, (6)

(ϕr(ε, u, v))
′
v = 1 + ε

− ε(u+ εv) + v + εu√
(u+ εv)2 + (v + εu)2 + 4(1− ε)r + 2ε2

. (7)

Moreover,
(ϕr(ε, u, v))

′
u > 0, (8)

and
(ϕr(ε, u, v))

′
v > 0. (9)

The proof of Lemma 2, which can be obtained through
some simple calculations, is omitted here.

For a given w ∈ Rn
+, we define

M(ε, x, s, y) =

 ε
G(x, s, y)
ϕw(ε, x, s)

 , (10)

where

ϕw(ε, x, s) =

 ϕw1(ε, x1, s1)
...

ϕwn(ε, xn, sn)

 . (11)

To simplify the notation, let z = (ε, x, s, y). The WCP (1)
can be converted into the equations M(z) = 0 as a direct
consequence. By solving M(z) = 0, we can obtain a solution
to the WCP (1). We first conclude that M(z) is continuously
differentiable.

Lemma 3. Define M(z) by (10), then M(z) is continu-
ously differentiable for any ε > 0 with its Jacobian matrix

M ′(z) =

 1 0 0 0
0 G′

x G′
s G′

y

D1 D2 D3 0

 , (12)

where D1 = (d11, d
1
2, . . . , d

1
n)

T , D2 = diag(d2) and
D3 = diag(d3) with d2 = (d21, d

2
2, . . . , d

2
n)

T and d3 =
(d31, d

3
2, . . . , d

3
n)

T , where

d1i = xi + si

− si(xi + εxi) + xi(si + εxi) + 2(ε− wi)√
(xi + εsi)2 + (si + εxi)2 + 4(1− ε)wi + 2ε2

, (13)

d2i = 1 + ε

− xi + εsi + (si + εxi)ε√
(xi + εsi)2 + (si + εxi)2 + 4(1− ε)wi + 2ε2

, (14)

d3i = 1 + ε

− ε(xi + εsi) + si + εxi√
(xi + εsi)2 + (si + εxi)2 + 4(1− ε)wi + 2ε2

. (15)

Next, we analyze the nonsingularity of M ′(z). To do this,
we introduce the following assumption.
Assumption 1. Assume that Rank(G′

y) = m, for any
(∆x,∆s,∆y) ∈ R2n+m, if

G′
x∆x+G′

s∆s+G′
y∆y = 0,

then ⟨∆x,∆s⟩ ≥ 0.
Note that if G(x, s, y) : R2n+m → Rn+m is linear, then

Assumption 1 simplifies to

A∆x+B∆s+ C∆y = 0,

indicating the monotonicity of G(x, s, y). The feasibility
of smoothing methods for WLCPs in this case has been
previously discussed in [7, 12, 30].

Theorem 1. If Assumption 1 is satisfied, then for any
ε > 0, M ′(z) is nonsingular.

Proof. Suppose that there is ∆z = (∆ε,∆x,∆s,∆y) ∈
R2n+m+1 satisfying

M ′(z)∆z = 0. (16)

Next, we only need to demonstrate that ∆z = 0. By
substituting (12) into (16), we obtain

∆ε = 0,

G′
x∆x+G′

s∆s+G′
y∆y = 0,

D1∆ε+D2∆x+D3∆s = 0.

(17)

According to Lemma 2 and Lemma 3, the diagonal ma-
trices D2 and D3 are positive definite. Applying (17), we
have

∆x = −D−1
2 D3∆s, (18)

and consequently

⟨∆x,∆s⟩ = −∆sTD3D
−1
2 ∆s ≤ 0. (19)

By virtue of Assumption 1, we have ⟨∆x,∆s⟩ ≥ 0. This,
combined with (19), leads to

⟨∆x,∆s⟩ = −∆sTD3D
−1
2 ∆s = 0,

and ∆s = 0. Furthermore, we have ∆x = 0 by (18). Thus,
utilizing the second equation in (17) results in ∆y = 0.
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III. A NONMONOTONE SMOOTHING NEWTON METHOD

Based on (10), we set θ(z) =
1

2
∥M(z)∥2. Now, we

propose the novel nonmonotone smoothing method.
Algorithm 1.
Step 0. Choose τ, l ∈ (0, 1), δ ∈ (0,

√
2) and ε0 > 0

such that ε0 ≥ δ. S ≥ 0 is a positive integer and q0 = 1.
{ξk} ⊆ R+ satisfies that lim

k→∞
ξk = 0. (x0, s0, y0) ∈ R2n+m

is an arbitrary starting point. Set z0 = (ε0, x
0, s0, y0), Υ0 =

θ(z0), W0 = θ(z0) and e = (1, 0)T ∈ R × R2n+m. Let
k = 0.
Step 1. If ∥M(zk)∥ = 0, stop. Else, set

γk =

{
min{δ, δΥ0}, k = 0,
min{δ, δΥk, γk−1}, k ≥ 1.

(20)

Step 2. Obtain the Newton direction ∆zk =
(∆εk,∆xk,∆sk,∆yk) by solving

M ′(zk)∆zk = −M(zk) + γke. (21)

Step 3. Let βk be the maximum among l0, l, l2, . . . that
meets the following inequality:

θ(zk + βk∆zk) ≤ [1− τ(2−
√
2δ)βk]Υk. (22)

Step 4. Let zk+1 = zk + βk∆zk, s(k) = min(k, S) and

Wk+1 = max
0≤i≤s(k+1)

{θ(zk+1−i)}. (23)

Step 5. Set

Υk+1 =
ξkqkθ(z

k+1) +Wk+1

qk+1
, (24)

qk+1 = ξkqk + 1. (25)

and k = k + 1. Return to Step 1.
Remark 1.

1) Contrary to [32], Step 5 of Algorithm 1 indicates that
Υk+1 is a convex combination some θ(zj) with k +
1 − s(k + 1) ≤ j ≤ k + 1 and θ(zk+1). Considering
the definition of qk+1, we can see that (22) can be
simplified to the following monotone line search

θ(zk + βk∆zk) ≤ [1− τ(2−
√
2δ)βk]θ(z

k),

if S = 0.
2) Based on Step 0, we have

W0 = Υ0 = θ(z0).

From (23) and (24), it can be observed that Wk ≥
Υk ≥ θ(zk) for any k ≥ 0.

3) It follows from the definition of Wk that

Wk+1 = max
0≤i≤s(k+1)

θ(zk+1−i)

≤ max
0≤i≤s(k)+1

θ(zk+1−i)

= max{Wk, θ(z
k+1)}

= Wk,

(26)

where the last equality is derived from (22) and (23).
Thus, {Wk} is nonincreasing and then convergent.

By conducting straightforward computations and reason-
ing, we can derive the following lemma. For brevity, we will
only state the conclusion.

Lemma 4. If Assumption 1 is satisfied, then the state-
ments hold that εk ≥ 0, εk ≥ γk and {εk} is nonincreasing
for any k ≥ 0.

Theorem 2. If Assumption 1 is true, then Algorithm 1 is
well-defined.

Proof. We can establish the invertibility of M ′(z) based
on Theorem 1, thereby rendering Step 2 feasible. Then, we
demonstrate the viability of Step 3.

From the definition of γk, it can be deduced that

γk ≤ δ ·
√
Υk. (27)

Given that

εk ≤ ∥M(zk)∥ =
√
2θ(zk) ≤

√
2Υk,

we can infer from (21) and (27) that

θ(zk + β∆zk)

= θ(zk) + βθ′(zk)∆zk + o(β)

= θ(zk) + βM(zk)T (γke−M(zk)) + o(β) (28)

≤ θ(zk) +
√
2βδΥk − 2βθ(zk) + o(β)

≤ [1− β(2−
√
2δ)]Υk + o(β),

indicating that there is a constant β̄ ∈ (0, 1) satisfying

θ(zk + β∆zk) ≤ [1− τβ(2−
√
2δ)]Υk

holds for any β ∈ (0, β̄) and τ ∈ (0, 1) and thus Step 3 is
available.

IV. CONVERGENCE PROPERTIES

We begin by demonstrating a significant theorem.
Theorem 3. If Assumption 1 is true, then, lim

k→∞
βkΥk =

0.
Proof. For any k ≥ 0, set the integer p(k) ∈ [k−s(k), k]

such that

Wk = max
0≤i≤s(k)

θ(zk−i)

= θ(zp(k)),
(29)

Based on (22) and Remark 1 2), we can obtain that

Wk = θ(zp(k))

= θ(zp(k)−1 + βp(k)−1∆zp(k)−1)

≤ Υp(k)−1 − (2−
√
2δ)τβp(k)−1Υp(k)−1 (30)

≤ Wp(k)−1 − (2−
√
2δ)τβp(k)−1Υp(k)−1.

As {Wk} is convergent according to Remark 1 3), we have

lim
k→∞

(
Wk −Wp(k)−1

)
= 0. (31)

Combining (30) and (31) yields that

lim
k→∞

βp(k)−1Υp(k)−1 = 0. (32)

We now demonstrate that lim
k→∞

βkΥk = 0. By assuming
that p̂(k) = p(k + S + 2), we can utilize induction to prove
that

lim
k→∞

βp̂(k)−jΥp̂(k)−j = 0, (33)

and
lim
k→∞

θ(zp̂(k)−j) = lim
k→∞

Wk, (34)

for any given j ≥ 1.
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Let k ≥ j − 1, without loss of generality. Since {p̂(k)}
is a subsequence of {p(k)}, (33) holds for j = 1 based on
(32).

As M(zp̂(k)−1) is invertible according to Theorem 1 for
εp̂(k)−1 > 0, there exists some ζ > 0 such that

∥[M(zp̂(k)−1)]−1∥ ≤ ζ. (35)

By utilizing (21) and (27), we get

∥∆zp̂(k)−1∥
= ∥[M(zp̂(k)−1)]−1[γp̂(k)−1e−M(zp̂(k)−1)]∥

≤ ζ ·
(
∥γp̂(k)−1e∥+ ∥M(zp̂(k)−1)∥

)
(36)

= ζ(δ +
√
2) ·

√
Υp̂(k)−1,

and subsequently,

∥zp̂(k) − zp̂(k)−1∥ = ∥βp̂(k)−1∆zp̂(k)−1∥

≤ ζ(δ +
√
2) ·

√
β2
p̂(k)−1Υp̂(k)−1.

(37)

Notice that (33) is valid for j = 1. Furthermore, (37)
demonstrates that

lim
k→∞

∥zp̂(k) − zp̂(k)−1∥ = 0, (38)

since βp̂(k)−1 ∈ (0, 1). We know that (34) holds for j = 1
due to the continuity of θ(zk).

Now, we assume that both (33) and (34) hold for some
j > 1 and examine the case of j + 1. By employing (22),
we obtain

θ(zp̂(k)−j) ≤ [1− τ(2−
√
2δ)βp̂(k)−(j+1)]Υp̂(k)−(j+1)

≤ Cp̂(k)−(j+1) − τ(2−
√
2δ)βp̂(k)−(j+1)Υp̂(k)−(j+1),

which, when combined with lim
k→∞

θ(zp̂(k)−j) = lim
k→∞

Wk

and lim
k→∞

p̂(k)− (j + 1) = ∞, yields

lim
k→∞

βp̂(k)−(j+1)Υp̂(k)−(j+1) = 0.

Furthermore, we have

lim
k→∞

∥zp̂(k)−j − zp̂(k)−(j+1)∥ = 0,

by employing an inequality comparable to (38). Consequent-
ly, we deduce

lim
k→∞

θ(zp̂(k)−(j+1)) = lim
k→∞

θ(zp̂(k)−j) = lim
k→∞

Wk,

by utilizing (34) and the continuity of θ(zk). Therefore, for
any j ≥ 1, both (33) and (34) hold.

Combining (33) and (36) yields

lim
k→∞

∥zk+1 − zp̂(k)∥ = 0,

since

zk+1 = zp̂(k) +

p̂(k)−k−1∑
j=1

βp̂(k)−j∆zp̂(k)−j .

Additionally, by the continuity of θ(zk), we determine that

lim
k→∞

θ(zk+1) = lim
k→∞

θ(zp̂(k))

= lim
k→∞

θ(zp(k)) = lim
k→∞

Wk, (39)

as {Wk}, which corresponds to {θ(zp(k))}, is convergent.

On the other hand, by utilizing (22), we can deduce that

θ(zk+1) ≤ Υk − τ(2−
√
2δ)βkΥk

≤ Wk − τ(2−
√
2δ)βkΥk,

which combining with (39) results in lim
k→∞

βkΥk = 0.

Theorem 4. If Assumption 1 is satisfied, then any
accumulation point of {zk} is a solution to the WCP (1).

Proof. Considering Remark 1, we can conclude that

0 ≤ θ(zk+1) ≤ Υk+1 ≤ Wk ≤ W1 < ∞,

indicating that, {θ(zk)} and {Υk} are bounded, and {Wk}
is convergent. Assume that {zk} ⊇ {zk}k∈N converges to
z∗ = (ε∗, x

∗, s∗, y∗). Consequently, we obtain

lim
N∋k→∞

∥M(zk)∥ = ∥H(z∗)∥, lim
N∋k→∞

Υk = Υ∗.

If Υ∗ = 0, then

lim
N∋k→∞

∥M(zk)∥ = lim
N∋k→∞

√
2θ(zk)

≤ lim
N∋k→∞

√
2Υk =

√
2Υ∗,

implying that lim
N∋k→∞

∥M(zk)∥ = 0. Now, we suppose that
Υ∗ > 0.

According to Theorem 3, it is evident that lim
N∋k→∞

βk = 0.

Let β̂ =
βk

l
, for sufficiently large k, β̂ does not meet (22),

i.e.,
θ(zk + β̂∆zk) > [1− τ(2−

√
2δ)β̂]Υk. (40)

Meanwhile, we deduce from (28) that

θ(zk + β̂∆zk) ≤ [1− β̂(2−
√
2δ)]Υ(zk) + o(β̂). (41)

Combining (40) with (41) yields

(2−
√
2δ)(1− τ)Υ(zk) <

o(β̂)

β̂
, (42)

for any sufficiently large k.
Let k → ∞ on both sides of (42), we have

(2−
√
2δ)(1− τ)Υ∗ ≤ 0,

which contradicts the conditions of τ ∈ (0, 1), δ ∈ (0,
√
2)

and Υ∗ > 0.
Finally, the local convergence property is investigated. Us-

ing a method similar to the one in Theorem 8 of [33], whose
proof is omitted, we can reach the following conclusion.

Theorem 5. Suppose that Assumption 1 is satisfied, all
D ∈ ∂M(z∗) are nonsingular and G′(x, s, y) is Lipschitz
continuous around x∗, then {zk} converges to z∗ locally
quadratically.

V. NUMERICAL EXPERIMENTS

To showcase the efficacy and efficiency of Algorithm 1,
we employ it to deal with a WLCP and a nonlinear WCP.
The implementation of all algorithms is carried out in Matlab
R2018b, running on a computer equipped with a 2.30GHz
CPU and 16.00GB RAM. The stopping criterion is defined
as ∥M(zk)∥ ≤ 10−6, and the parameters are set as

τ = 0.05, l = 0.7, δ = 0.0000001 and ε0 = 0.001.
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In the following tables, TM(ATM) represents the (average)
running time of the algorithm in seconds, Iter(AIter) stands
for the (average) number of iterations and GAP(AGAP) in-
dicates the (average) value of ∥M(zk)∥ in the final iteration.

First, we consider the WLCP (3) with

A =

(
M
N

)
, B =

(
0
−I

)
, C =

(
0

−MT

)
, t =

(
Mr
f

)
,

where N ∈ Rn×n, M = randn(m,n), f = rand(n, 1) and
r = −rand(n, 1). w ∈ Rn is obtained by w = uv where
v = Nu− f with u = rand(n, 1).

TABLE I
NUMERICAL COMPARISON RESULTS FOR SOLVING THE WLCP WITH N1

Algorithm 1 [30], SNzhang

m n Iter TM GAP Iter TM GAP

6 1.6005 1.7014 × 10−7 6 2.7134 2.6577 × 10−9

6 1.4960 1.8576 × 10−7 6 2.7820 1.3676 × 10−9

500 1000 6 1.5263 2.2546 × 10−7 6 2.6051 5.5531 × 10−9

7 1.7162 9.1566 × 10−10 7 2.9324 5.5531 × 10−9

7 1.7594 1.4407 × 10−10 8 3.3145 6.2509 × 10−9

6 9.4619 1.4377 × 10−8 8 15.8012 2.9857 × 10−7

7 10.8039 1.9064 × 10−7 8 13.2422 4.8900 × 10−9

1000 2000 7 10.7726 1.3502 × 10−9 8 18.0144 2.8000 × 10−7

7 10.8088 4.4566 × 10−9 8 18.9309 3.5054 × 10−10

7 10.9075 2.4927 × 10−7 8 19.1643 1.1193 × 10−9

6 29.0347 2.7727 × 10−7 8 77.7497 1.7961 × 10−9

7 32.7497 2.0578 × 10−9 8 79.1600 8.8037 × 10−8

1500 3000 7 35.9581 1.0358 × 10−8 8 75.8348 1.6339 × 10−8

7 36.1701 1.6646 × 10−9 8 76.5640 4.5752 × 10−8

7 32.5845 2.3333 × 10−9 8 76.5480 5.6413 × 10−10

7 79.6557 3.9503 × 10−7 8 145.6442 1.3405 × 10−7

7 85.6767 1.7166 × 10−8 8 171.5185 3.9481 × 10−8

2000 4000 7 92.6848 5.7068 × 10−7 8 170.4471 1.5378 × 10−8

7 72.8459 8.7711 × 10−9 8 170.5121 4.1869 × 10−8

7 72.6069 3.1610 × 10−9 8 180.7858 7.4412 × 10−8

7 137.2600 8.3807 × 10−8 8 298.3107 2.3009 × 10−8

7 136.2246 2.7135 × 10−7 8 320.0004 4.4900 × 10−8

2500 5000 7 160.5432 2.2443 × 10−7 8 312.1355 4.1091 × 10−8

7 158.5533 2.8880 × 10−9 8 312.1363 1.6451 × 10−8

7 161.5871 9.1816 × 10−9 8 311.0846 8.9347 × 10−8

For this problem, we evaluate the performance of Algo-
rithm 1 under different values of N , specifically denoted
by N1 and N2, respectively. N1 is produced by setting
N1 = BBT /∥BBT ∥ where B is uniformly generated from
[0, 1]. On the other hand, N2 = diag(rand(n, 1)). In order
to ensure robustness, we conduct 5 trials for each instance.
For each trial, the initial points x0, s0 and y0 are chosen as
(1, 0, . . . , 0)T with the appropriate dimension. Additionally,
we implement the method proposed in [30] and refer to it
as SNzhang to demonstrate the performance of Algorithm 1.
The test results, presented in Tables I and II, demonstrate
that Algorithm 1 performs fewer iterations than SNzhang.
Moreover, the running time of Algorithm 1 is much less
than that of SNzhang, particularly for higher-dimensional
problems.

TABLE II
NUMERICAL COMPARISON RESULTS FOR SOLVING THE WLCP WITH N2

Algorithm 1 [30], SNzhang

m n Iter TM GAP Iter TM GAP

7 2.3473 1.1794 × 10−8 6 2.2938 1.7135 × 10−9

7 1.6890 8.7344 × 10−10 6 2.2381 7.3915 × 10−7

500 1000 7 1.5116 1.3626 × 10−9 7 3.2154 1.6683 × 10−10

7 1.4724 2.2892 × 10−7 7 2.8470 2.8737 × 10−7

7 1.5066 1.4819 × 10−8 7 2.2989 2.3545 × 10−9

6 7.4253 7.0920 × 10−7 6 17.5515 5.1926 × 10−12

7 9.3816 5.5287 × 10−7 7 20.7418 2.1289 × 10−8

1000 2000 7 9.2737 1.3493 × 10−9 7 22.2149 1.6028 × 10−9

7 8.6559 1.7792 × 10−8 8 23.5621 4.0224 × 10−11

7 8.5201 1.3211 × 10−9 8 24.8038 3.5177 × 10−11

7 24.0990 5.4242 × 10−9 7 66.0803 1.9924 × 10−8

7 27.2737 5.2470 × 10−9 7 71.3545 1.3117 × 10−9

1500 3000 7 27.0466 1.8006 × 10−9 8 88.4625 1.0130 × 10−11

7 27.2405 9.6434 × 10−8 8 74.6301 6.6432 × 10−10

7 27.2752 2.0286 × 10−7 8 66.0803 1.9924 × 10−8

7 54.0027 1.2151 × 10−8 7 178.5136 2.6987 × 10−10

7 53.5682 2.9794 × 10−9 7 171.5552 5.5322 × 10−11

2000 4000 7 53.8382 4.5529 × 10−8 8 204.7930 2.5617 × 10−10

7 61.0597 6.3556 × 10−8 8 205.2599 5.1473 × 10−8

7 52.7841 2.1679 × 10−7 9 204.0851 2.1492 × 10−8

7 99.0762 6.9838 × 10−8 7 346.8380 2.5480 × 10−11

7 120.8204 8.3114 × 10−8 7 343.7178 1.7028 × 10−9

2500 5000 7 128.4566 1.3047 × 10−8 8 399.0091 1.0139 × 10−8

7 122.1990 1.0983 × 10−7 8 382.8897 7.9749 × 10−9

7 123.5217 5.1374 × 10−8 9 457.4124 2.6399 × 10−7

Then, we consider the WCP (1) with

G(x, s, y) =

(
Tx+AT y − s+ d

A(x− b)

)
,

where T = diag(rand(n, 1)), A = randn(m,n), b =
rand(n, 1), d = rand(n, 1) and w = rand(n, 1).

 [30], SNzhang

Fig. 1. The average running time of Algorithm 1 and SNzhang based on
10 trials.
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Fig. 2. The average number of iterations of Algorithm 1 and SNzhang

based on 10 trials.

We conducted 10 tests for each size. The starting points x0,
s0 and y0 are vectors whose elements are generated randomly
in [0, 1]. The numerical experimental results are shown in
Table III, Figures 1 and 2. We can observe that Algorithm 1 is
more efficient than SNzhang. As the dimensionality increases,
Algorithm 1 requires less time compared to SNzhang.

TABLE III
NUMERICAL RESULTS FOR A WCP

Algorithm 1 [30], SNzhang

m n AIter ATM AGAP AIter ATM AGAP

500 1000 6.1 1.4948 2.4291 × 10−7 6.6 1.6792 1.2633 × 10−7

1000 2000 6.2 12.6265 3.6072 × 10−7 6.5 13.0823 5.8239 × 10−8

1500 3000 6.3 36.1982 3.3831 × 10−7 7.2 37.5804 2.4647 × 10−8

2000 4000 6.4 72.7058 1.0191 × 10−7 7.4 92.0072 2.0717 × 10−7

2500 5000 6.6 146.1622 3.2427 × 10−7 7.2 168.9312 1.1941 × 10−7

3000 6000 6.6 260.4692 3.3894 × 10−7 7.0 287.9610 6.9728 × 10−8

VI. CONCLUSIONS

For the WCP, a new smoothing Newton method is sug-
gested. By utilizing a one-parameter smoothing function, the
WCP is converted into an equivalent system of smoothing
equations. The solution to the WCP is obtained by solving
the smoothing equation. Through appropriate parameter se-
lection, the nonmonotone line search can be simplified to a
monotone line search. The viability and convergence prop-
erties of the proposed algorithm are thoroughly discussed
under suitable conditions. Furthermore, numerical results
are provided to demonstrate the efficiency of the suggested
algorithm.
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[5] N. Krejić and S. Rapajić, Globally convergent Jacobian smoothing
inexact Newton methods for NCP, Computational Optimization and
Applications, 41(2) (2008) 243-261.

[6] M.J. Luo and Y. Zhang, Stochastic generalized complementarity prob-
lems in second-order cone: Box-constrained minimization reformula-
tion and solving methods, IAENG International Journal of Applied
Mathematics, 47(2) (2017) 143-147.

[7] F. Potra, Weighted complementarity problems-a new paradigm for
computing equilibria, SIAM Journal on Optimization, 22(4) (2012)
1634-1654.

[8] N. Amundson, A. Caboussat, J. He and J. Seinfeld, Primal-dual
interior-point method for an optimization problem related to the mod-
eling of atmospheric organic aerosols, Journal of Optimization Theory
and Applications, 130(3) (2006) 377-409.

[9] A. Caboussat and A. Leonard, Numerical method for a dynamic
optimization problem arising in the modeling of a population of aerosol
particles, Comptes Rendus Mathematique, 346(11) (2008) 677-680.

[10] P. Flores, R. Leine and C. Glocker, Modeling and analysis of planar
rigid multibody systems with translational clearance joints based on the
non-smooth dynamics approach, Multibody System Dynamics, 23(2)
(2010) 165-190.

[11] F. Pfeiffer, M. Foerg and H. Ulbrich, Numerical aspects of non-smooth
multibody dynamics, Computer Methods in Applied Mechanics and
Engineering, 195(50-51) (2006) 6891-6908.

[12] F. Potra, Sufficient weighted complementarity problems, Computation-
al Optimization and Applications, 64(2) (2016) 467-488.

[13] X. Jiang and H, Huang, A smoothing Newton method with a mixed
line search for monotone weighted complementarity problems, Math-
ematical Problems in Engineering, 2020(1-3) (2020) 1-10.

[14] J.Y. Tang and J.C. Zhou, Quadratic convergence analysis of a
nonmonotone LevenbergCMarquardt type method for the weighted
nonlinear complementarity problem, Computational Optimization and
Applications, 80(1) (2021) 213-244.

[15] J.Y. Tang and J.C. Zhou, A modified damped GaussCNewton method
for non-monotone weighted linear complementarity problems, Opti-
mization Methods and Software, 37(3) (2021) 1145-1164.

[16] K. McShane, Superlinearly convergent -iteration interior-point algo-
rithms for linear programming and the monotone linear complemen-
tarity problem, SIAM Journal on Optimization, 4(2) (1994) 247-261.

[17] S. Mizuno, M. Todd and Y. Ye, On adaptive-step primal-dual interior-
point algorithms for linear programming, Mathematics of Operations
Research, 18(4) (1993) 964-981.

[18] S. Asadi, Z. Darvay, G. Lesaja, N. Mahdavi-Amiri and F. Potra,
A full-Newton step interior-point method for monotone weighted
linear complementarity problems, Journal of Optimization Theory and
Applications, 186(3) (2020) 864-878.

[19] M.S. Gowda, Weighted LCPs and interior point systems for copositive
linear transformations on Euclidean Jordan algebras, Journal of Global
Optimization, 74(2) (2019) 285-295.

[20] X. Chi and G. Wang, A full-Newton step infeasible interior-point
method for the special weighted linear complementarity problem,
Journal of Optimization Theory and Applications, 190(11-12) (2021)
108-129.

[21] X. Chi, Z. Wan and Z. Hao, A full-modified-Newton step infeasible
interior-point method for the special weighted linear complementarity
problem, Journal of Industrial and Management Optimization, 18(4)
(2021) 2579-2598.

[22] L.X. Liu, S.Y. Liu and H.W. Liu, A predictorCcorrector smoothing
Newton method for symmetric cone complementarity problem, Applied
Mathematics and Computation, 149(1) (2010) 2989-2999.

[23] Y. Narushima, N. Sagara and H. Ogasawara, A smoothing Newton
method with Fischer-Burmeister function for second-order cone com-
plementarity problems, Journal of Optimization Theory and Applica-
tions, 149(1) (2011) 79-101.

[24] H. Wang and M. Qin, A modified regularized newton method for
unconstrained convex optimization, IAENG International Journal of
Applied Mathematics, 46(2) (2016) 130-134.

[25] H. Fu, Improved convergence results of a BFGS trust region quasi-
Newton method for nonlinear equations, IAENG International Journal
of Applied Mathematics, 50(4) (2020) 767-771.

[26] X.J. Liu and S.Y. Liu, A new nonmonotone smoothing Newton method
for the symmetric cone complementarity problem with the Cartesian
P0-property, Mathematical Methods of Operations Research, 92(1)
(2020) 229-247.

[27] P. Chen, G. Lin, X. Zhu and F. Bai, Smoothing Newton method

Engineering Letters, 31:4, EL_31_4_38

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



for nonsmooth second-order cone complementarity problems with
application to electric power markets, Journal of Global Optimization,
80(3) (2021) 1-25.

[28] S.L. Zhou, L.L. Pan, N.H. Xiu and H.D. Qi, Quadratic convergence of
smoothing Newton’s method for 0/1 Loss optimization, SIAM Journal
on Optimization, 31(4) (2021) 3184-3211.

[29] R. Khouja, B. Mourrain and J.C. Yakoubsohn, Newton-type methods
for simultaneous matrix diagonalization, Calcolo, 59(4) (2022) 38.

[30] J. Zhang, A smoothing Newton algorithm for weighted linear comple-
mentarity problem, Optimization Letters, 10(3) (2016) 499-509.

[31] J. Tang and H. Zhang, A nonmonotone smoothing Newton algorithm
for weighted complementarity problem, Journal of Optimization The-
ory and Applications, 189(2) (2021) 679-715.

[32] H.C. Zhang and W.W. Hager, A nonmonotone line search technique
and its application to unconstrained optimization, SIAM Journal on
Optimization, 14(4) (2004) 1043-1056.

[33] L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton
methods for nonlinear complementarity problems and box constrained
variational inequalities, Mathematical Programming, 87(1) (2000) 1-
35.

Engineering Letters, 31:4, EL_31_4_38

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 




