
 

 

Abstract— In order to learn more about the volcanic 

eruptions and sea creatures on the seabed, the 

underwater images are a great resource. When light 

travels from air to water, which is denser comparatively, 

it scatters and bends, causing several kinds of issues. The 

primary difficulties of an underwater image are its 

inadequate contrast, colour distortion, and poor visual 

quality. Even the sea water marine life also plays a vital 

role on poor quality of underwater images. In this study, 

a new approach is proposed for developing underwater 

images by combining Contrast-Limited Adaptive 

Histogram Equalization (CLAHE) and Total 

Generalized Variation (TGV) methods. The suggested 

fusion approach takes an underwater image as input and 

processes it using CLAHE and TGV. The initial stage is 

white balancing the color-distorted input image to 

eliminate colour casts while retaining a realistic 

underwater image. Underwater pictures may be greatly 

improved by applying CLAHE to the gamma-corrected 

picture, and TGV can be used to eliminate extraneous 

detail from an image while keeping vital elements like 

edges intact. Here, the performance metrics like UCIQE 

(Underwater Colour Image Quality Evaluation Metric), 

UIQM (Underwater Image Quality Measure), PCQI 

(Patch-based Contrast Quality Index) are employed to 

estimate the quality of the enhanced images, and PSNR 

(Peak Signal-to-Noise Ratio), SSIM (Structural 

Similarity Index Measure) are estimated to find the 

amount of noise components present in the enhanced 

underwater image. We found that the results are 

appreciable with the cascaded approach compared to the 

exiting methods. 
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I. INTRODUCTION 

IN the past 20 years, interest in ocean investigation and 

marine robotics has grown tremendously. As a result, 

aquatic robotics has significantly advanced, allowing them 

to carry out more difficult tasks underwater on their own [1]. 

Thus, research using AUVs (Autonomous underwater 

vehicles) deep into the sea made underwater image 

processing crucial in the process. Algorithms for underwater 

image processing are now employed in applications such as 

underwater mine detection, underwater imaging, underwater 

archaeology, mapping ocean basements, and submerged 

robotics [2]. The most critical issue is improving underwater 

imagery quality to optimize image processing analysis. 

Problems associated with underwater imaging arise from the 

effects of light absorption and scattering through marine 

environment. Nevertheless, these technologies have still 

not reached the proper mode of successful [3]. For example, 

automatic underwater vehicle movement creates shadows in 

the scene, but using an optical camera to capture underwater 

images has a limited field of view. It contains its own 

advantages and disadvantages.  

To overwhelm these limitations, this manuscript proposes 

a fusion technique of CLAHE [4, 5] and Total Generalized 

Variation (TGV) [6, 7] for the enhancement of underwater 

images. The key contributions of this manuscript are 

abridged below, 

 A fusion technique of CLAHE and TGV method is 

proposed for the enhancement of underwater 

images. 

 Firstly, use CLAHE approach for equalizing the 

colour contrast on images. 

 Second, apply the Total Generalized Variation 

(TGV) to maximize the real colour and deal the 

issue of lighting. 

Though these two methods were applied independently 

for image enhancement by many researchers, but cascading 

them is a novel and effective approach, as proven in this 

work. An underwater image is passed through the process of 

white balancing, gamma correction and sharpening before 

the fusion technique is applied. CLAHE is applied to the 

gamma corrected picture for enhancing the brightness of 

underwater images, while TGV is a noise removal filter. 
TGV is subject to enhanced image being a close match to 

the original underwater image by removing the unwanted 

details while retaining the original ones such as edges. The 
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parameters UCIQE (Underwater Colour Image Quality 

Evaluation), UIQM (Underwater Image Quality Measure), 

PCQI (Patch-based Contrast Quality Index) are employed to 

estimate the quality of the enhanced images, where PSNR 

(Peak Signal-to-Noise Ratio), SSIM (Structural Similarity 
Index Measure). Average Gradient (AG), RMSE (Root 

Mean Squared-Error), Sobel Count and Entropy are 

measured to find the amount of noise components present in 

the enhanced underwater image. The proposed method is 

comparing to the existing models, like Retinex [8], DCP 

(Dark Channel Prior) [9, 10] and CLAHE [5], and found 

that the results obtained are far better than its counterparts.  

Remaining manuscript is arranged as follows: Section II 

discusses the state-of-the-art in terms of underwater image 

enhancement research, Section III provides a system model 

for the scattering of light under seawater, Section IV 

demonstrates the approach of the proposed cascaded 

enhancement method on underwater images, Section V 

presents experimental results with both qualitative and 

quantitative analysis, and Section VI draws a conclusion. 

 

II. LITERATURE REVIEW 

There are many research applications done using different 

methods for the underwater image enhancement. Though 

many methods provide a good picture output, still they lack 

in atleast one of the metric values in the quantitative 

analysis, making it difficult for any further refinement in 

image processing. Let discuss some of the previous methods 

in terms of underwater image enhancement research.  

 Wei Song et al. [11] suggested a promising method 

for developing underwater images, which included 
underwater image restoration and a simple colour 

correction depending on white balancing with 

optimal gain factor, using novel statistical models 

of Background Lights and optimal Transmission 

Map assessment models.  

 Using a fusion technique based upon weighted 

maps generated by integrating the attributes of 

global contrast, local contrast, saliency, and 

exposedness, Yue Zhang et al. [12] suggested an 

enhanced method for removing the local reddish 

effect with sinking image noise.  

 A useful approach for assessing the efficiency of 

underwater picture enhancement methods was first 

defined by Marino Mangeruga et al. [13]. It helped 

to figure out which method would work best for a 

certain task under different underwater conditions.  

 By combining the benefits of multiscale fusion and 

contrast enhancement methodologies, Sangeetha 

Mohan et al. [14] suggested a way to recover 

underwater photographs with high precision.  

 By first applying the enhancement algorithm to the 

vague underwater image, adjusting the white-
balance and contrast, calculating the weight maps 

for both strategies, and then fusing the images 

using the fusion strategy, Aashi Singh et al. [15] 

presented an effective algorithm for underwater 

image enhancement. 

 The simple and effective approach for dehazing 

underwater images developed by Belsare et al. [16] 

involves modifying the traces of the transmission 

map of a picture using a Gaussian low-pass filter. 

In addition, enhancements to underwater images in 

real time are achieved via the use of the Dark 

Channel and atmospheric light computation.  

 The approach developed by Aruna Bhat et al. [17], 

which uses histogram equalisation methods for 
image de-hazing and white balanced techniques for 

colour correction and was rapid enough for real-

time schemes, like AUVs and ROVs (Remotely 

Operated Vehicles). 

 Sun Bo et al. [18] exhibited a unique method for 

enhancing underwater images by calculating the 

background lighting of the water object in the 

uploaded underwater picture and matching the 

predicted value with the predefined essential 

brightness value. 

 A new method for improving underwater images 
was presented by Sourav De et al. [19], which 

involves splitting pixels in half and then applying a 

variant of the Artificial Bee Colony (ABC) 

algorithm to boost their construction levels.  

 Chongyi Li et al. [20] established Underwater 

Image Enhancement Benchmark data collection 

comprising large-scale authentic underwater and 

reference imageries. To train CNNs for underwater 

picture enhancement using this benchmark dataset.  

 With regards to dehazing underwater images, 

Ramkumar et al. [21] suggested a revolutionary 

CNN-based Deep Learning technique.  

 A box-based image improvement approach and the 

Retinex image enhancement method based on 

optical analysis were proposed by Lixue Xu et al. 

[22] to address the issues of low-quality underwater 

images.  

 A unique stationary wavelet based fusion strategy 

was presented by Sonal Yadav et al. [23] to 

enhance the quality and clarity of individual 

underwater photos. The primary goal of the 

suggested model was to address the issues of 

colour cast, noise, and distortion in underwater 
images.  

 Zhao et al. [24] suggested a novel variation 

approach that uses Retinex with a TGV prior on the 

lighting to enhance the quality of blemished 

underwater images. Total Variation (TV) prior was 

combined with 1st and 2nd order TV to approximate 

the smoothness of piecewise and piecewise linear 

respectively, in the model of light intensity 

variation. 

 

III. SYSTEM MODEL 

Compared to air, water is several hundred times denser. 

Hence, the transportation properties of light in an 

underwater environment present a difficult task for picture 

enhancement. Significant energy is lost when light travels 

through water, resulting in poor colour and contrast in 

underwater images, which distorts the information contained 

in the image [25]. Artificial illumination was suggested as a 

solution to this issue, however this led to another issue that 

creates a high intensity in the center of the image, and as we 

travel away from the center, the intensity decreases, creating 

a non-uniform illumination [26]. Along with uneven 

illumination, the peculiar absorption and scattering 
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properties of light along with Backscattering and Marine 

snow also contribute to the deterioration of underwater 

images. 

Absorption: At certain depths under water, particular 

wavelengths of light are absorbed. Red absorbs far more 

than green and blue at much shallower depths. In the 

majority of underwater photographs, this causes a blue or 
green colour cast [27]. 

Scattering: Particles suspended underwater are far bigger 

than those found in the air due to scattering. Dim pictures 

are the result of incident light reflected from objects being 

scattered by particles. This process results in the loss of 

contrast and edges [28]. 

Backscattering: When artificial light illuminates suspended 

particles, the ensuing noise in underwater photos makes it 

difficult to perform tasks like segmentation. 

Marine Snow: Microscopic fragments of inorganic or 

biological material that can be seen in underwater pictures 

of seas, thus adding more noise to the underwater images 

[29]. 

 

 
 
Fig. 1.  Underwater image showing the scattering of light under water with 

an Object-camera distance as 𝑑(𝑥) 

 

Fig.1 illustrates the underwater image model suggested by 

McGlamery [30], which states that the majority of  

illumination acquired by the underwater imaging system is 

believed to be composed mainly of three important 

components: (i) Light that is reflected directly from an 

object is called the direct component 𝐸𝑑; (ii) Light that is 

scattered far from propagation trajectory but still reaches the 

imaging equipment is called forward-scattering component 

𝐸𝑓; and (iii) Light is scattered by particles in the air is called 

the back-scattering component 𝐸𝑏. The aforementioned 

three components can be interpreted as a linear 

superposition to represent the complete optical radiation 𝐸𝑇 , 

given as: 

 

𝐸𝑇(𝑥, 𝑦) = 𝐸𝑑(𝑥, 𝑦) + 𝐸𝑓(𝑥, 𝑦) + 𝐸𝑏(𝑥, 𝑦)          (1) 

 

Where  (𝑥, 𝑦) denotes pixel’s coordinates in the underwater 

picture. The component 𝐸𝑓 may be disregarded since the 

scene under the water and camera are quite nearer, resulting 

in the following representation of scene 𝐼(𝑥, 𝑦) that the 

camera recorded: 

 

𝐼𝑐(𝑥, 𝑦) = 𝐸𝑑(𝑥, 𝑦) + 𝐸𝑏(𝑥, 𝑦) (2) 

 

Here 𝑐 ∈ {𝑟, 𝑔, 𝑏} means red, green and blue colour 

components respectively. If we write 𝐼(𝑥, 𝑦) as the scene 

intensity and define 𝐽(𝑥, 𝑦) as scene radiance, 𝑡(𝑥, 𝑦) as 

transmission that decreases in an exponential fashion with 

depth, 𝐵 as background light [31]: 

 

𝐼𝑐(𝑥, 𝑦) = 𝐽𝑐(𝑥, 𝑦)𝑡𝑐(𝑥, 𝑦) + 𝐵𝑐(1 − 𝑡𝑐(𝑥, 𝑦))       (3) 

 

In most cases, the optimized model for underwater imaging 

(3) is considered to be equivalent to the atmospheric optical 

imaging model. Thus, external picture restoration methods 

are being gradually implemented to introduce underwater 

scenes. Light is absorbed differently by different 

wavelengths in water. Red light absorbs faster in water due 

to its longer wavelength than green and blue light, giving 

underwater scenes a bluish-green hue. Extreme attenuation 

of a single colour channel can have a large effect on the 

success of several existing outdoor restoration methods. 

There have been a lot of different suggestions about how to 
make underwater images look better. 

 

IV. PROPOSED METHOD 

Here, we offer a method for improving real-world 

underwater photographs that makes use of a fusion 

technique of CLAHE [5] and TGV [7] to restore brightness, 

colour, and contrast all at once. The component of the work 

that contributes is the contrast enhancement. Histogram 

methods are used to produce the contrast enhancement. The 

brightness is improved using CLAHE, and the image is 

sharpened before histogram linearization is employed. This 

improvement increases the image’s contrast using the input 

image as a starting point. On the illumination, TGV is 
utilized for approximating the piecewise smoothness as well 

as piecewise linear smoothness of illumination [24]. The 

suggested strategy allows for the visualization of finer 

details and the framework is depicted in Fig.2.  

 

 
 

Fig. 2. Framework showing the process of underwater image enhancement 

depends on proposed method 

 

Smoothening of 

underwater images 

without distorting its 

essential features by 

adopting TGV 

Estimating the quality 

of enhanced images 

using Various 
performance metrics 

Quantification of 

noise in the enhanced 

Underwater Image 
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of underwater images 

by processing a 

Gamma-Corrected 

picture with CLAHE 

Retaining a realistic 

underwater image by 

removing unrealistic 

colour casts from the 

input image 
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In underwater, as per the electromagnetic spectrum, red is 

more dominating than green and blue colors, and this 

dominated image sharpness, so image colors change with 

distance in terms of depth. Sharpening and gamma 

correction are applied after the white-balanced image has 
been processed. The images are then sent to a module for 

improvement, and finally the images are enhanced using 

CLAHE [5] and TGV [7]. The following is a discussion of 

the different steps in the proposed method: 

 

A. White Balance 

White balancing refers to the technique of eliminating the 

colour cast from pictures. The dominance of a certain colour 

in the scene at the time the image was taken causes colour 

casts or colour distortion in images. Simplest colour 

balancing, Grey world, Robust Auto White balance, and 

Sensor Correlation are some colour balancing algorithms. 

The impact of colour recognition and identification 

underwater is influenced by depth. The colour of underwater 

photos, which leans greenish-blue, is a major problem that 

has to be fixed. In our work, the Grey World algorithm is 

used because it effectively removes the blue tone found in 
underwater images, assuming that an image’s light 

reflectance is achromatic or colorless. The Grey World 

algorithm has a flaw that it has strong red artefacts. Due to 

the red channel’s comparative low mean value, it 

overcompensates in regions where red is predominated, 

which causes these distortions. Every channel is divided by 

the mean value using the Grey world algorithm. Following 

the recommendations from earlier underwater research, the 

primary goal is to make up for the loss of red channel in 

order to evade this problem. The Grey World technique 

determine the white balanced picture then applied to create 

red channel compensation in the second stage. At every 

pixel location 𝑥, compensated red channel 𝐼𝑟𝑐 is represented 

as follows [32]: 

 

𝐼𝑟𝑐(𝑥) = 𝐼𝑟(𝑥) + 𝛼. (𝐼�̅� − 𝐼�̅�). (1 − 𝐼𝑟(𝑥)). 𝐼𝑔(𝑥)      (4) 

 
After being normalized by the upper limit of their dynamic 

range, the red and green colour channels of image 𝐼 are 

represented by 𝐼𝑟 and 𝐼𝑔 in the range [0,1] for each channel, 

whereas 𝐼�̅� and 𝐼�̅� signify the mean value of 𝐼𝑟 and 𝐼𝑔 

respectively. Absorption of the blue channel by organic 

matter can significantly weaken its intensity in murky 

waters and in areas with a high concentration of plankton. 

Here, this is determined that compensating the red channel 
is not adequate, then that the blue channel also needs 

compensation in order to lessen its attenuation [33]. Due to 

the blue channel's absorption by organic matter, it may be 

significantly diminished in areas with high plankton density 

or murky waters. Here, it is discovered that the red channel 

compensation is inadequate, necessitating the compensation 

of the blue channel to lessen its attenuation. The Grey World 

algorithm-based white balancing process then occurs. 

 

B. Gamma Correction 

After a process of white balancing, an output is generated 

and its hue is modified. Given that a properly white-

balanced image isn't enough to bring back the absorbed 

colour in underwater photographs, we supplement it with a 

gamma correction. Because white-balanced images typically 

look too bright, gamma correction is used to modify the 

overall contrast. In any case, gamma correction tends to hide 

details in the image that are too dark or too bright. 

Sharpening helps bring back some of the lost detail. 

 

C. Sharpening 

When unsharp masking is employed, the white balanced 

image becomes sharper. Unsharp masking creates an image 

with sharper edges, corners, limits, and other finer details by 

subtraction the lesser pass version of image from the 

original. The following formula produces a filtered image 
with a high pass frequency as a result: 

 

 𝑆 = 𝐼 + 𝛽(𝐼 − (𝐺 ∗ 𝐼)) (5) 

 

Where 𝐼 stands for the image to be sharpened, 𝐺 ∗ 𝐼 

represents the image 𝐼 after a Gaussian filter, 𝛽 is a 

parameter that, sharpens the image when to its minimum 

value, and when set to its maximum value, causes 

oversaturation. Hence, the unsharp masking is carried out as 
shown below: 

 

𝑆 =
(𝐼 + 𝑁 {𝐼 − 𝐺 ∗ 𝐼}) 

2
 (6) 

 

Where 𝑁 denotes normalization operator. The unsharp 

masking process makes use of a 3×3 Gaussian filter. 

 

D. Total Generalized Variation (TGV) 

TGV, originally invented by Bredies et al. [7], is an 

expansion of the concept of total variation (TV). 

Subsequently, numerous researchers have taken TGV and 

applied it to the realm of image processing. Rather than 

relying on a predefined combination, TGV is made up of 

polynomials of any order that may reconstruct piecewise 

polynomial functioning and balanced first and higher-order 

variants automatically. TGV can be thought of as a union of 

smoothness of any order (from first order smoothness on 

up). First-order variations are used to keep details crisp, 
while higher-order variations are used to effectively mimic 

smooth transition areas [34]. Therefore, stair-like artefacts 

are avoided. The TV was first introduced by Rudin et al. 

[35], which kicked off a new trend in using variational 

methods in image processing. Edge recovery, one of the 

most crucial aspects of image analysis, has seen extensive 

application in TV. For an image 𝑢: Ω → 𝑅, TV of 𝑢 is 

defined as follows: 

 

TV(𝑢) = ∫ |∇𝑢|
 

Ω

 (7) 

 

TVs staircase artefacts in the smooth transition areas of 

images are well-known to be a downside, because TV favors 

solutions are piecewise constant. Total generalized variation 
(TGV) is a more general variational method developed to 

solve this issue [36]. In principle, TGV has the ability to 

quantify image properties up to a fixed level of 

discrimination. It was demonstrated that the 1st order TGV is 

parallel to TV. TGV’s higher-order feature, allows it to 

efficiently remove staircase artifacts. However, if the order 

of the TGV is too high, it becomes computationally 

expensive and tough to discretize. The 2nd order TGV is 
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considered here because of trade-off it provides betwixt 

computation complex and quantitative precision. For image 

𝑢, the 2nd order TGV is formulated as 

 

TGV(𝑢) = min
𝑣

{𝛼1 ∫ |∇𝑢 − 𝑣| + 𝛼0 ∫ |𝜉(𝑣)|
 

Ω

 

Ω

} (8) 

 

Where, 𝜉(𝑣) =
1

2
(∇𝑣 + ∇𝑣𝑇) denotes the distributional 

symmetrized derivative and 𝛼0, 𝛼1𝜖ℝ+ are weights. 

Concatenating the columns of the 2-tensor 𝑣 creates a vector 
for computational ease. 

 

E. Contrast Limited Adaptive Histogram Equalization 
(CLAHE) 

Underwater images can be difficult to capture because of 

the uneven lighting conditions. An image's brightness is 
increased so that it can surpass this barrier. CLAHE is 

crucial in improving the brightness of marine photography. 

After the white-balanced image has been gamma-corrected, 

TGV and CLAHE are used to increase the brightness. 

Histogram equalization is a method for balancing out 

intensity levels across a specified interval. In lieu of 

retrieving information from entire image to create 

equalization functioning, the adaptive histogram 

equalization (AHE) creates independent histograms for each 

region of the image and then adjusts the contrast between 

them. But in relatively homogeneous regions, noise 
amplification can occur, making AHE less effective. 

Consequently, employ a variant of AHE termed as CLAHE. 

If AHE causes an over amplification, CLAHE can be used 

to correct it by clipping the histogram at predetermined 

value before calculating cumulative distribution function 

(CDF). The method employed in implementing CLAHE is 

obtained from [25]. The pixel intensity 𝐹𝑘 frequency on the 

image may be defined by taking into account that the 

intensity values might range from 0 to 255 as: 

 

𝐹𝑘 = 𝑛𝑘 ; 0 ≤ 𝑘 ≤ 255 (9) 

 

Where 𝑛𝑘 denotes the number of pixels whose intensities 

add up to 𝑘. CDF of intensity value at 𝐹𝑘 is given in (10), 

 

cdf𝐼(𝑥,𝑦) = ∑ 𝐹𝑘

𝐼(𝑥,𝑦)

𝑘

 (10) 

 

Where 𝑥 denotes number of rows (1 to 𝑀), 𝑦 denotes 

number of columns (1 to 𝑁). Now that each pixel’s 

Histogram equalized Intensity value has been determined as, 

  

𝐼′(𝑥, 𝑦) = {
(cdf𝐼(𝑥,𝑦) − cdf𝑚𝑖𝑛)

𝑀 × 𝑁 − cdf𝑚𝑖𝑛)
× 255} (11) 

 

V. SIMULATED RESULTS 

A. Quantitative Analysis 

There are a number of criteria that can be used to rate the 

efficacy of underwater augmentation. To quantitatively 

assess the effectiveness of the proposed technique, this work 

employs full-reference analysis (UCIQE, UIQM, PCQI) and 

non-reference analysis (PSNR, SSIM, RMSE, AG, Sobel 

Count, Entropy). We evaluate the restored photos against 

the reference images that UIEB provides, calculating the 

PSNR and PCQI to provide a complete picture of how well 

they matchup. Let us having a quick reference through the 

metrics mentioned: 
 

UCIQE: It is a tool used is to estimate the observed images 

of underwater. It deems a linear combination of chroma, 

saturation and contrast to measure the non-uniform color 

cast, blur, and lower contrast. UCIQE is represented as: 

 

UCIQE =  𝑐1 ∗ 𝜎𝑐 + 𝑐2 ∗ 𝑐𝑜𝑛1 + 𝑐3 ∗ 𝜇𝑠 (12) 

 

Let 𝜎𝑐, 𝑐𝑜𝑛1 and 𝜇𝑠 specifies standard deviation of chroma, 

the contrast of luminance and average of saturation 

respectively. For this paper, the values of 𝑐1, 𝑐2 and 𝑐3 are 

chosen as 𝑐1= 0.4680, 𝑐2= 0.2745, and 𝑐3= 0.2576. 

 

UIQM: It comprises three classifier measurements:  

underwater image colorfulness measure (UICM), 

underwater image sharpness measure (UISM), underwater 

image contrast measure (UIConM) [33].  

 UICM: The hue of many underwater photographs is 

drastically off. One by one, the wavelengths of 

colours are absorbed by the deeper the water 
becomes. Since red has the shortest wavelength, it 

is the first hue to fade away. As a result, pictures 

taken underwater tend to seem blue or greenish. 

Underwater photographs suffer from extreme 

colour desaturation because of the lack of available 

light. If you want to improve your underwater 

photos, go for one with accurate colours. 

 UISM: Sharpness is the quality that ensures the 

integrity of fine distinctions and edges. When 

taking pictures underwater, forward scattering 

causes significant blurring [12]. The loss of detail 
in the image is a result of the blurring effect. 

 UIConM: Underwater visual performance, 

including stereoscopic acuity, has been found to 

correlate with contrast. Backscattering is typically 

to blame for the loss of contrast in underwater 

photographs. 

The linear superposition of absorbed and dispersed 

components has been demonstrated to be a valid model for 

describing underwater images. It is also widely recognized 

that the effects of absorption and scattering reduce colour, 

sharpness, and contrast. To make the entire measure of 

underwater image quality, this is sense to employ the linear 
superposition model. The overall UIQM is then given by 

[37]: 

 

UIQM =  𝑐1 ∗ UICM + 𝑐2 ∗ UISM + 𝑐3 ∗ UIConM (13) 

 

Where metrics of colour vibrancy, image clarity, and 

contrast are linearly added. It is important to note that the 

UIQM in (12) relies on three factors, denoted 𝑐1, 𝑐2 and 𝑐3. 

These settings are chosen on a case-by-case basis. For 

underwater picture colour correction, for instance, the 
UICM should be given more weights, whereas UIConM and 

UISM should be given more weights when trying to 

improve underwater image visibility. Underwater image 

attribute measurement is reverted to in UIQM if two 

parameters are zero. Multiple Linear Regression (MLR) is 

used to produce the combination coefficients for broad use. 
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This work presents a training data set consisting of 30 

randomly chosen underwater photos recorded using a 

variety of equipment at a variety of depths. This manuscript 

uses the generic coefficients 𝑐1=0.0282, 𝑐2=0.2953, and 

𝑐3=3.5753 to get its results. Image enhancing algorithms' 

effectiveness can be measured using the metrics. Increases 

in UIQM of 10% are associated with a noticeable 

improvement in perceived image quality [38]. 

 

PCQI: This metric works by dividing the reference and 

distorted images into patches, and calculating the contrast 

difference between corresponding patches in the two 

images. This can be formulated as: 

 

PCQI =  
1

𝑁
∑[𝐶(𝑖). 𝐷(𝑖). 𝐹(𝑖)] (14) 

 
Consider 𝑁 as entire count of patches, 𝐶(𝑖) as contrast of 

the reference patch 𝑖, 𝐷(𝑖)as contrast of the distorted patch 

𝑖; 𝐹(𝑖) is a quality pooling function that maps the local 

contrast differences to a single quality score. 
 

PSNR: The PSNR value is a numerical representation of the 

ratio betwixt maximum possible value (intensity) of an 

image and the intensity of deteriorating noise that affects the 

quality of its categorization. PSNR is typically represented 

in logarithmic decibel scale since most of the signals having 

an extraordinarily broad strong range (ratio among the 

largest and lowermost conceivable estimations of a movable 

quantity). There must be no visual difference between the 

elements of the authentic image framework and those of the 

tainted picture grid [39]. The following equation provides a 

mathematical expression for the PSNR: 
 

PSNR = 20 log10 (
𝑀𝑎𝑥𝑓

√MSE
) (15) 

 

𝑀𝑎𝑥𝑓 implies maximal value of signal in original image and 

MSE can be given as [40]: 

 

MSE =
1

𝑚𝑛
∑ ∑(𝐼(𝑝, 𝑞) − 𝐽(𝑝, 𝑞))

2
𝑁

𝑞=1

𝑀

𝑝=1

 (16) 

 

Where 𝐼 and 𝐽 represents data of original image and restored 

image respectively. 

 

SSIM: The SSIM metric measures the similarity between 

two images by comparing their structural information, 
luminance, and contrast. The resulting SSIM score ranges 

between -1 and 1, where a score of 1 indicates a perfect 

match between the two images. The SSIM formula is 

defined as: 

 

SSIM(𝑥, 𝑦) =  [𝐼(𝑥, 𝑦) ∗ 𝐶(𝑥, 𝑦) ∗ 𝑆(𝑥, 𝑦)] (17) 

 

Where 𝐼(𝑥, 𝑦), 𝐶(𝑥, 𝑦) and 𝑆(𝑥, 𝑦) are three components 

that measure the luminance, contrast, and structural 

similarity between the two images. 

 
AG: It is a measure of the change in intensity values 

between neighboring pixels in an image. It is often used in 

image processing tasks, like image enhancement, edge 

detection. The formula for calculating the average gradient 

of an image is: 

 

AG(𝑥, 𝑦) =  
𝑦𝑖 − 𝑦𝑗

𝑥𝑖 − 𝑥𝑗
 (18) 

 

Where, (𝑥𝑖 , 𝑦𝑖) corresponds to 𝑖th pixel and (𝑥𝑖 , 𝑦𝑖) 

corresponds to 𝑗th pixel of an image. 
 

RMSE: This is used to measure the difference amongst 

predicted and observed values in a dataset. In the context of 

image quality enhancement, RMSE is often used to scale the 

variation amidst the original and enhanced image. It 

provides a quantitative measure of how much the enhanced 

image deviates from the original image. The formula for 

RMSE is: 

 

RMSE =  sqrt (
1

𝑁
∗ sum(𝑥𝑖 − 𝑦𝑖

2)) (19) 

 

Where 𝑁 denotes number of pixels in the image, 𝑥𝑖 denotes 

pixel value of original image, and 𝑦𝑖 denotes corresponding 

pixel value of the enhanced image. 

 
Sobel Count: The Sobel operator is a common image 
processing technique used for edge detection as well as 

image quality enhancement. It is a type of spatial filter that 

computes the gradient of the image intensity at each pixel 

location, which can be used to highlight edges and features 

in the image. 

 

Entropy: This can be used as a metric for measuring the 

amount of information content in an image. The formula for 

entropy of an image is given by: 

 

𝐻 =  − ∑(𝑝(𝑥) log2 𝑝(𝑥)) (20) 

 

Here 𝐻 indicates entropy, 𝑝(𝑥) indicates probability of 

occurrence of pixel intensity 𝑥. 

 

Color enhancement factor (CEF): It helps in the 

representation of the effect of enhancement and is given as 

equation (21). 

 

CEF =  
CM(𝐼)

CM(𝐼)
 (21) 

 

Where CM(𝐼) represent the standard deviations, and CM(𝐼) 

is used to denote enhanced image in the original image. 

 

Contrast to noise ratio (CNR): This metric describes the 

amplitude of the signal relative to the surrounding noise in 
an image, and is computed by: 

 

CNR (𝐼, 𝐼′) =  
(𝜇𝑖 − 𝜇𝑛)

𝜎𝑛

 (22) 

 

𝜇𝑖 represents the mean value of original image and 𝜇𝑛 is 

mean value of enhanced image and 𝜎𝑛 denotes the standard 

deviation. 
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Image enhancement metric (IEM): This metric gives 

information about the sharpness and the improvement in the 

contrast after the process of enhancement and computed as 

follows: 

 

IEM =  
∑ ∑ ∑ |𝐼𝑒,𝑐

𝑚,𝑙−𝐼𝑒,𝑛
𝑚,𝑙|8

𝑛=1
𝑘2
𝑚=1

𝑘1
𝑙=1

∑ ∑ ∑ |𝐼𝑜,𝑐
𝑚,𝑙−𝐼𝑜,𝑛

𝑚,𝑙|8
𝑛=1

𝑘2
𝑚=1

𝑘1
𝑙=1

  (23) 

 

𝑘1 and 𝑘2 denote the non-overlapping blocks. 𝑜 and 𝑒 

represent the original and enhanced images respectively. 

The intensities of the center pixel is denoted by 𝐼𝑜,𝑐
𝑚,𝑙

 and 

𝐼𝑒,𝑐
𝑚,𝑙

. 𝐼𝑜,𝑛
𝑚,𝑙

 and 𝐼𝑒,𝑛
𝑚,𝑙

 are the intensities of the neighbors from 

the center pixel. 

 

Absolute mean brightness error (AMBE): It helps to 

compute the brightness content that is preserved after the 

process of image enhancement, denoted as: 

 

AMBE(𝑜, 𝑒) =  |𝜇𝑜 − 𝜇𝑒|  (24) 

 

Equation (23) represents the absolute difference between the 

mean of original and enhanced images. Median values of 

AMBE metric indicate good preservation of brightness. 

 

Spatial spectral entropy-based quality index (SSEQ): This is 

a highly efficient no reference (NR) IQA model. This can 

assess the quality of an image which is distorted across 

various distortion categories. SSEQ can be calculated by: 

 

SSEQ = − ∑ ∑ 𝑃(𝑖, 𝑗) log2 𝑃(𝑖, 𝑗)

𝑗𝑖

 (25) 

 

Where, 𝑃(𝑖, 𝑗) is the spectral probability map. 

 

Measure of Enhancement (EME): This calculates the 

contrast of the images and aids in the optimum selection of 
processing parameters, and can be computed as: 

 

EME = max (
1

𝑚1𝑚2

∑ ∑ 20 log
𝑋max(𝑛,𝑙)

𝜔

𝑋min(𝑛,𝑙)
𝜔

𝑚2

𝑛=1

𝑚1

𝑙=1

) (26) 

 

Where, 𝑋max(𝑛,𝑙)
𝜔  and 𝑋min(𝑛,𝑙)

𝜔  represent the maximum value 

and minimum value of the image within the block 𝜔𝑛,𝑙 . 𝑚1 

and 𝑚2 represent the blocks in which the image is divided. 

 
Measure of Enhancement by Entropy (EMEE): Good image 

quality is indicated by high value of EMEE and denoted as: 

 

EMEE = max (
1

𝑚1𝑚2

∑ ∑ 𝛼
𝑋max(𝑛,𝑙)

𝜔 (𝜃)

𝑋min(𝑛,𝑙)
𝜔 (𝜃)

𝑚2

𝑛=1

𝑚1

𝑙=1

) (27) 

 

Colourfulness contrast fog density index (CCF): No-

reference IQA method is proposed to predict underwater 

colour image quality using CCF metric. CCF metric is a 

weighted combination of colourfulness index, contrast index 

and fog density index which is computed as: 

 

CCF =  𝜔1 ∗ colourfulness + 𝜔2 ∗ contrast + 𝜔3

∗ fog dendisty 
(28) 

 

Colourfulness index due to absorption, blurring because of 
forward scattering and fog density due to backward 

scattering are examined in the CCF computation. 

 

B. Qualitative Analysis 

Our testing was conducted in MATLAB® 2021 on a 
Windows 10 machine equipped with 8 GB RAM and an 

Intel Core i5 processor. The reference dataset is mined for 

its colour test photos. A number of cutting-edge methods for 

improving underwater images, including as DCP, Retinex, 

and CLAHE, are compared to the suggested method on a 

qualitative and quantitative scale to gauge its efficacy. In 

this study, we conduct tests on UIEB dataset [21], which is 

comprised of 950 photos captured in actual underwater 

environments. Mean squared Error (MSE), Peak signal-to-

noise ratio (PSNR), Underwater Image Quality Measure 

(UIQM), and Underwater Colour Image Quality Evaluation 

(UCIQE) are examples of non-reference criteria used for 
qualitative assessment.  

Figure 3 displays the outcomes of various techniques 

beside their respective benchmark pictures. The UIEB [21] 

was mined for these test photographs, which were taken in a 

variety of underwater environments with varying colour 

palettes and lighting. Underwater photography typically 

occurs in low light because of the strong absorption of 

visible light. CLAHE tends to give artificial appearance 

because the outputs are too bright for visual perception, but 

the DCP [9], Retinex [8] based, and suggested approaches 

can generate visually pleasant results. The lack of 

illumination is too much for CLAHE to process. However, 

the suggested solution outperforms the reference image in 

the dark background area when it comes to enhancing 

details. Pictures taken underwater typically have a greenish 

or blue tint because light is attenuated at different rates at 

different wavelengths as illustrated in Fig.3(a). The 

Retinex’s assumptions are very restrictive, exacerbating the 

impact of colour distortion. The approach is able to 

efficiently enhance the underwater images contrast, but it is 

unable to restore the hue of a bluish image, shown as 

Fig.3(b). The contrast improvement is less successful when 

using DCP [9] techniques, depicted in Fig.3(c) and the 

results continue to show haze. In Fig.3(d), though CLAHE 

[5] seems to be an improvement over the two, Retinex [8] 

and DCP [9], but it suffers with an over contrast in the 

picture making it unreliable for specific object detention. 

The proposed fusion technique of CLAHE [5] and TGV [7] 

methods achieve similar outcomes to the Retinex-based 

method but excels in detail preservation. Furthermore, the 

effectiveness of object detection due to balanced contrast, 

reducing haze and improving visibility are the achievements 

of the proposed method as displayed in Fig.3(e). Last but 

not least, the proposed method works satisfactorily in a wide 

range of lighting conditions. 
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Fig. 3.  (a) Original Underwater Images (1st Column) (b-d) Enhanced Images using the existing Retinex [8], DCP [9] and CLAHE [5] methods (2nd, 3rd, 

4th Columns) (e) Enhanced Images of the proposed CLAHE+TGV method (5th Column) 

Engineering Letters, 31:4, EL_31_4_43

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



 

 

TABLE I 

QUALITATIVE COMPARISON OF UNDERWATER IMAGES FOR VARIOUS ENHANCEMENT METHODS 

Image Quality Metrics Retinex [8] DCP [9] CLAHE [5] Proposed  

Image 1 UCIQE 0.2557 0.3696 0.2896 0.4384 

 UIQM 1.7515 2.3696 1.3071 2.9869 

 PCQI 0.2806 0.2992 0.3421 0.45 

 PSNR 13.9568 15.6945 23.6859 27.7723 

 SSIM 0.2557 0.3057 0.3696 0.4084 

 RMSE 200.515 259.28 169.493 96.8415 

 AG 95.8415 169.493 200.515 259.28 

 Sobel Count 0.2806 0.2992 0.3696 0.4584 

 Entropy 0.2806 0.2992 0.3421 0.45 

Image 2 UCIQE 0.2685 0.3572 0.3072 0.4399 

 UIQM 1.7101 2.3572 1.5093 2.9912 

 PCQI 0.2786 0.2999 0.3772 0.449 

 PSNR 14.6412 16.5826 17.3945 21.5655 

 SSIM 0.2685 0.3185 0.3572 0.4149 

 RMSE 210.859 250.9 170.657 95.13 

 AG 99.13 170.657 210.859 250.9 

 Sobel Count 0.2786 0.2999 0.3572 0.4449 

 Entropy 0.2786 0.2999 0.3772 0.449 

Image 3 UCIQE 0.2686 0.3545 0.2945 0.4298 

 UIQM 1.0576 2.3545 1.6090 2.9931 

 PCQI 0.2186 0.2945 0.3216 0.445 

 PSNR 15.6516 20.3248 18.3248 26.6631 

 SSIM 0.2686 0.3286 0.3545 0.4047 

 RMSE 219.657 252.311 178.156 95.183 

 AG 95.183 178.156 219.657 252.311 

 Sobel Count 0.2186 0.2945 0.3545 0.4449 

 Entropy 0.2186 0.2945 0.3216 0.445 

Image 4 UCIQE 0.2542 0.3475 0.2975 0.4393 

 UIQM 1.4397 2.3475 1.2347 2.9868 

 PCQI 0.2844 0.2975 0.3342 0.4593 

 PSNR 13.9007 16.2038 20.6313 26.2913 

 SSIM 0.2542 0.3142 0.3475 0.4093 

 RMSE 205.03 242.49 153.192 97.646 

 AG 98.646 153.192 205.03 242.49 

 Sobel Count 0.2840 0.2975 0.3475 0.4547 

 Entropy 0.2844 0.2975 0.3342 0.4593 

Image 5 UCIQE 0.2619 0.3576 0.3076 0.4347 

 UIQM 1.7539 2.3576 1.6063 2.9924 

 PCQI 0.2652 0.3119 0.3576 0.4447 

 PSNR 18.1478 13.7295 17.4739 26.2213 

 SSIM 0.2619 0.3219 0.3576 0.4147 

 RMSE 220.3695 253.34 120.9442 99.979 

 AG 96.979 120.9442 220.3695 253.34 

 Sobel Count 0.2652 0.3119 0.3576 0.4493 

 Entropy 0.2652 0.3119 0.3576 0.4447 

Image 6 UCIQE 0.2526 0.3702 0.3402 0.4376 

 UIQM 1.0384 2.3502 1.1897 2.9847 

 PCQI 0.3162 0.3426 0.3702 0.4576 

 PSNR 13.7701 5.5760 18.8436 25.8372 

      

 RMSE 217.9442 240.431 142.147 98.7601 

 AG 94.7601 142.147 217.9442 240.431 

 Sobel Count 0.3162 0.3426 0.3502 0.4547 

 Entropy 0.3162 0.3426 0.3702 0.4576 

Image 7 UCIQE 0.2626 0.3506 0.3806 0.4320 

 UIQM 1.6505 2.3606 1.5614 2.9876 

 PCQI 0.3042 0.3608 0.3906 0.4499 

 PSNR 15.4733 18.0709 19.7016 25.9991 

 SSIM 0.2508 0.3308 0.3606 0.4119 

 RMSE 217.0377 255.649 125.927 95.8846 

 AG 96.884 125.927 217.0377 255.649 

 Sobel Count 0.3042 0.3608 0.3606 0.4476 

 Entropy 0.3042 0.3608 0.3906 0.4499 
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Image 8 UCIQE 0.2532 0.3559 0.3359 0.4280 

 UIQM 1.5702 2.3559 1.0162 2.9972 

 PCQI 0.2226 0.3105 0.3459 0.448 

 PSNR 13.3366 18.0469 21.9666 26.2255 

 SSIM 0.2626 0.3226 0.3559 0.408 

 RMSE 215.575 246.51 138.804 96.2084 

 AG 98.2084 138.804 215.57 246.51 

 Sobel Count 0.2226 0.3105 0.3559 0.4480 

 Entropy 0.2226 0.3105 0.3459 0.4480 

Image 9 UCIQE 0.2526 0.3438 0.3138 0.4381 

 UIQM 1.2263 2.3438 1.4058 2.9817 

 PCQI 0.2432 0.2866 0.3238 0.4491 

 PSNR 15.0683 19.8713 16.8908 26.3267 

 SSIM 0.2532 0.3232 0.3438 0.4081 

 RMSE 208.657 250.72 123.008 96.2084 

 AG 99.0941 123.008 208.657 250.72 

 Sobel Count 0.2432 0.2866 0.3438 0.4481 

 Entropy 0.2432 0.2866 0.3238 0.4491 

Image 10 UCIQE 0.2643 0.3571 0.2871 0.4295 

 UIQM 1.3005 2.3571 1.0075 2.9841 

 PCQI 0.2343 0.2729 0.3271 0.4559 

 PSNR 11.9540 26.6846 14.4971 27.2953 

 SSIM 0.2643 0.3343 0.3571 0.4105 

 RMSE 202.284 250.349 180.89 97.096 

 AG 98.096 180.89 202.284 250.349 

 Sobel Count 0.2343 0.2729 0.3571 0.4505 

 Entropy 0.2343 0.2729 0.3271 0.4559 

 

Table I shows the quantitative comparison of underwater 

images for the enhancement techniques via Retinex [8], 

DCP [9], CLAHE [5] and the proposed cascaded 

combination of CLAHE and TGV methods. The quality 

metrics UCIQE, UIQM, PSNR and MSE are measured for 

all the underwater images 1-10 considered. The values are 

quite interesting in Table I displays that the proposed 

method outperforms all other methods. A complete analysis 

of the Quality metrics values obtained are exhibited in bar 

graphs for comparison among the methods used in this 

work. Figures 4, 5 and 6 signifies the simulation outcome of 

full reference analysis (UCIQE, UIQM, PCQI) of proposed 

CLAHE-TGV compared with existing method such as 

Retinex [8], DCP [9], and CLAHE [5]. 

 

 
 

Fig. 4. Analysis of Underwater Colour Image Quality Evaluation (UCIQE) Metric 

 

 
 

Fig. 5. Analysis of Underwater Image Quality Measure (UIQM) 
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Fig. 6. Analysis of Patch-based Contrast Quality Index (PCQI) 

 
Fig. 4 depicts the analysis of UCIQE. Here the proposed 
(CLAHE-TGV) method attains 37.65%, 27.76% and 

11.56% higher UCIQE for image 2; 22.87%, 38.40% and 

47.48% higher UCIQE for image 4; 19.56%, 25.65% and 

37.56% higher UCIQE for image 6; 45.45%, 39.65% and 

20.43% higher UCIQE for image 8; 28.47%, 38.56% and 

58.65% higher UCIQE for image 10, compared with 

existing method such as Retinex [8], DCP [9], and CLAHE 

[5] respectively. Figure 5 depicts the analysis of UIQM. 

Here the proposed (CLAHE-TGV) method attains 37.65%, 

27.76% and 11.56% higher UIQM for image 2; 25.67%, 

38.40% and 27.38% higher UIQM for image 4; 29.36%, 
35.45% and 27.66% higher UIQM for image 6; 25.45%, 

19.65% and 30.43% higher UIQM for image 8; 18.47%, 

28.56% and 38.65% higher UIQM for image 10, compared 

with existing method such as Retinex [8], DCP [9], and 

CLAHE [5] respectively. Figure 6 depicts the analysis of 

PCQI. Here the proposed (CLAHE-TGV) method attains 
12.57%, 24.60% and 31.38% higher PCQI for image 2; 

17.65%, 27.36% and 21.46% higher PCQI for image 4; 

14.19%, 25.23% and 17.14% higher PCQI for image 6; 

28.27%, 18.06% and 18.25% higher PCQI for image 8; 

24.65%, 23.36% and 22.11% higher PCQI for image 10, 

compared with existing method such as Retinex [8], DCP 

[9], and CLAHE [5] respectively. Figure 6 depicts the 

analysis of Mean Squared-Error (MSE). Here the proposed 

(CLAHE-TGV) method attains 32.57%, 44.60% and 

51.58% lower MSE for image 2; 27.65%, 17.36% and 

31.46% lower MSE for image 4; 24.19%, 35.23% and 
27.14% lower MSE for image 6; 18.27%, 38.06% and 

28.15% lower MSE for image 8; 14.65%, 27.36% and 

32.11% lower MSE for image 10, compared with existing 

method such as Retinex [8], DCP [9], and CLAHE [5] 

respectively. 

 

 
 

Fig. 7. Analysis of Peak Signal-to-Noise Ratio (PSNR) 

 

 
 

Fig. 8. Analysis of Structural Similarity Index Measure (SSIM) 
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Fig. 9. Analysis of Root Mean Squared Error 

 

 
 

Fig. 10. Analysis of Average Gradient 

 

 
 

Fig. 11. Analysis of Sobel Count 

 

 
 

Fig. 12. Analysis of Entropy 
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Figures 7-12 signifies the simulation outcome of non-

reference analysis (PSNR, SSIM, RMSE, AG, Sobel Count, 

Entropy) of proposed CLAHE-TGV compared with existing 

method such as Retinex [8], DCP [9], and CLAHE [5]. 

Figure 7 depicts the analysis of PSNR. Here the proposed 
(CLAHE-TGV) method attains 27.45%, 28.65% and 

25.65% higher PSNR for image 2; 26.45%, 21.56% and 

24.56% higher PSNR for image 4; 14.64% 22.45% and 

28.56% higher PSNR for image 6; 27.45%, 21.45% and 

20.43% higher PSNR for image 8; 17.35%, 18.25% and 

15.15% higher PSNR for image 10, compared with existing 

method such as Retinex [8], DCP [9], and CLAHE [5] 

respectively. Figure 8 depicts the analysis of Structural 

Similarity Index Measure (SSIM). Here the proposed 

(CLAHE-TGV) method attains 24.35%, 22.35% and 

21.35% higher SSIM for image 2; 23.45%, 24.45% and 

25.33% higher SSIM for image 4; 19.64% 21.45% and 
12.56% higher SSIM for image 6; 24.64%, 19.44% and 

17.66% higher SSIM for image 8; 24.45%, 22.45% and 

28.43% higher SSIM for image 10, compared with existing 

method such as Retinex [8], DCP [9], and CLAHE [5] 

respectively. Figure 9 depicts the analysis of RMSE. Here 

the proposed (CLAHE-TGV) method attains 27.35%, 

23.25% and 20.15% lower RMSE for image 2; 21.45%, 

20.45% and 16.33% lower RMSE for image 4; 24.64% 

14.45% and 18.56% lower RMSE for image 6; 26.45% 

18.54% and 19.66% lower RMSE for image 8; 24.45%, 

22.45% and 20.43% lower RMSE for image 10, compared 
with existing method such as Retinex [8], DCP [9], and 

CLAHE [5] respectively. Figure 10 depicts the analysis of 

Average Gradient (AG). Here the proposed (CLAHE-TGV) 

method attains 32.87%, 28.40% and 37.48% higher AG for 

image 2; 27.35%, 17.26% and 41.16% higher AG for image 

4; 54.61%, 65.53% and 37.94% higher AG for image 6; 

38.37%, 58.36% and 68.65% higher AG for image 8; 

34.65%, 57.26% and 11.66% higher AG for image 10, 

compared with existing method such as Retinex [8], DCP 

[9], and CLAHE [5] respectively. Figure 11 depicts the 

analysis of Sobel count. Here the proposed (CLAHE-TGV) 

method attains 17.35%, 13.25% and 10.15% higher Sobel 
count for image 2; 14.45%, 16.45% and 21.33% higher 

Sobel count for image 4; 14.45%, 16.45% and 21.33% 

higher Sobel count for image 6; 14.64%, 28.44% and 

29.66% higher Sobel count for image 8; 14.45%,12.45% 

and 18.43% higher Sobel count for image 10, compared 

with existing method such as Retinex [8], DCP [9], and 

CLAHE [5] respectively. Figure 12 depicts the analysis of 

Entropy. Here the proposed (CLAHE-TGV) method attains 

42.57%, 48.60% and 57.58% higher Entropy for image 2; 

37.65%, 47.16% and 41.16% higher Entropy for image 4; 

34.11%, 55.13% and 47.14% higher Entropy for image 6; 
28.27%, 48.66% and 58.45% higher Entropy for image 8; 

24.65%, 47.56% and 31.56% higher Entropy for image 10, 

compared with existing method such as Retinex [8], DCP 

[9], and CLAHE [5] respectively.  

Table II depicts the analysis of CEF. Here the proposed 

(CLAHE-TGV) method attained 17.88%, 25.17% and 

18.02% higher CEF for image 2; 18.15%, 12.87% and 

10.11% higher CEF for image 4; 28.04%, 23.89% and 

29.92% higher CEF for image 6; 20.23%, 14.38% and 

11.85% higher CEF for image 8; 22.62%, 28.85% and 

7.48% higher CEF for image 10, compared with existing 
method such as Retinex [8], DCP [9] and CLAHE [5] 

respectively. 

 
TABLE II 

PERFORMANCE ANALYSIS OF CEF 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.645 0.784 0.871 0.872 

2 0.659 0.785 0.759 0.881 

3 0.457 0.657 0.713 0.824 

4 0.654 0.598 0.214 0.847 

5 0.458 0.645 0.567 0.781 

6 0.557 0.664 0.567 0.689 

7 0.745 0.558 0.287 0.725 

8 0.689 0.457 0.554 0.841 

9 0.458 0.568 0.687 0.712 

10 0.696 0.587 0.597 0.771 

 
TABLE III 

PERFORMANCE ANALYSIS OF CNR 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.754 0.654 0.781 0.872 

2 0.549 0.785 0.769 0.871 

3 0.257 0.657 0.753 0.854 

4 0.564 0.758 0.264 0.867 

5 0.578 0.685 0.577 0.791 

6 0.667 0.774 0.547 0.789 

7 0.855 0.668 0.297 0.765 

8 0.779 0.587 0.544 0.881 

9 0.598 0.698 0.667 0.792 

10 0.796 0.687 0.597 0.781 

 

Table III depicts the analysis of CNR. Here the proposed 

(CLAHE-TGV) method attained 20.14%, 20.16% and 

27.06% higher CNR for image 2; 21.19%, 28.10% and 

23.89% higher CNR for image 4; 23.13%, 21.69% and 

23.63%% higher CNR for image 6; 21.27%, 15.53% and 

27.87% higher CNR for image 8; 25.15%, 22.27% and 

24.35% higher CNR for image 10, compared with existing 

method such as Retinex [8], DCP [9] and CLAHE [5] 

respectively. 
 

TABLE IV 

PERFORMANCE ANALYSIS OF IEM 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.745 0.814 0.771 0.874 

2 0.759 0.825 0.849 0.885 

3 0.557 0.757 0.813 0.826 

4 0.754 0.698 0.614 0.848 

5 0.558 0.745 0.667 0.786 

6 0.657 0.764 0.767 0.685 

7 0.845 0.658 0.687 0.724 

8 0.789 0.557 0.754 0.845 

9 0.558 0.668 0.787 0.815 

10 0.756 0.687 0.697 0.776 

 
TABLE V 

PERFORMANCE ANALYSIS OF AMBE 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.845 0.684 0.671 0.474 

2 0.859 0.585 0.759 0.385 

3 0.657 0.557 0.613 0.226 

4 0.854 0.798 0.414 0.348 

5 0.658 0.545 0.467 0.486 

6 0.757 0.664 0.567 0.485 

7 0.745 0.658 0.487 0.324 

8 0.889 0.457 0.554 0.345 

9 0.658 0.768 0.587 0.415 

10 0.796 0.587 0.597 0.376 

 

Table IV depicts the analysis of IEM. Here the proposed 

(CLAHE-TGV) method attained 20.82%, 38.19% and 
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20.97% higher IEM for image 2; 26.49%, 18.54% and 

16.21% higher IEM for image 4; 54.39%, 80.48% and 

61.75% higher IEM for image 6; 12.292%, 15.365% and 

11.551% higher IEM for image 8; 26.15%, 12.27% and 

24.35% higher IEM for image 10, compared with existing 
method such as Retinex [8], DCP [9] and CLAHE [5] 

respectively. 

Table V depicts the analysis of AMBE. Here the proposed 

(CLAHE-TGV) method attained 27.86%, 35.85% and 

27.86% lower AMBE for image 2; 32.85%, 29.07% and 

32.86% lower AMBE for image 4; 32.86%, 28.97% and 

44.85% lower AMBE for image 6; 28.97%, 34.97% and 

27.97% lower AMBE for image 8; 33.86%, 28.97%, and 

36.97% lower AMBE for image 10, compared with existing 

method such as Retinex [8], DCP [9] and CLAHE [5] 

respectively. 

 
TABLE VI 

PERFORMANCE ANALYSIS OF SSEQ 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.58 0.61 0.74 0.84 

2 0.69 0.52 0.47 0.89 

3 0.47 0.43 0.41 0.86 

4 0.78 0.78 0.85 081 

5 0.58 0.45 0.52 0.89 

6 0.69 0.59 0.86 0.84 

7 0.45 0.48 0.65 0.85 

8 0.69 0.67 0.56 0.86 

9 0.57 0.55 0.24 0.91 

10 0.59 0.78 0.46 0.88 

 

Table VI depicts the analysis of SSEQ. Here the proposed 

(CLAHE-TGV) method attained 33.86%, 28.97%, and 

36.97% higher SSEQ for image 2; 43.86%, 37.97%, and 

37.97% higher SSEQ for image 4; 44.97%, 36.97%, and 

28.97% higher SSEQ for image 6; 43.87%, 26.87%, and 

29.98% higher SSEQ for image 8; 33.75%, 27.98%, and 

36.97% higher SSEQ for image 10, compared with existing 

method such as Retinex [8], DCP [9] and CLAHE [5] 
respectively. 

 
TABLE VII 

PERFORMANCE ANALYSIS OF EME 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.68 0.71 0.64 0.85 

2 0.79 0.62 0.57 0.87 

3 0.57 0.53 0.51 0.88 

4 0.88 0.88 0.75 0.92 

5 0.68 0.55 0.62 0.87 

6 0.79 0.69 0.76 0.85 

7 0.55 0.58 0.75 0.86 

8 0.79 0.77 0.66 0.87 

9 0.67 0.65 0.34 0.92 

10 0.69 0.68 0.56 0.87 

 

Table VII depicts the analysis of EME. Here the proposed 

(CLAHE-TGV) method attained 25.87%, 26.54%, and 

32.87% higher EME for image 2; 32.06%, 20.94% and 

32.04% higher EME for image 4; 41.26%, 73.10%, and 

24.12% higher EME for image 6; 31.14%, 14.88% and 

33.27% higher EME for image 8; 13.75%, 37.98%, and 
46.97% higher EME for image 10, compared with existing 

method such as Retinex [8], DCP [9] and CLAHE [5] 

respectively. 

 

 

TABLE VIII 

PERFORMANCE ANALYSIS OF EMEE 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.48 0.71 0.74 0.82 

2 0.59 0.42 0.47 0.84 

3 0.37 0.23 0.81 0.86 

4 0.48 0.58 0.55 0.92 

5 0.78 0.85 0.22 0.81 

6 0.59 0.69 0.66 0.85 

7 0.75 0.68 0.35 0.83 

8 0.59 0.87 0.46 0.84 

9 0.77 0.55 0.54 0.91 

10 0.79 0.28 0.66 0.85 

 

Table VIII depicts the analysis of EMEE. Here the proposed 

(CLAHE-TGV) method attained 11.2%, 16.35% and 17.7% 
higher EMEE for image 2; 11.17%, 14.12% and 24.15% 

higher EMEE for image 4; 22.42%, 36.12% and 15.16% 

higher EMEE for image 6; 36.22%, 34.55% and 30.8% 

higher EMEE for image 8; 34.14%, 24.10%, and 21.34% 

higher EMEE for image 10, compared with existing method 

such as Retinex [8], DCP [9] and CLAHE [5] respectively. 

 
TABLE IX 

PERFORMANCE ANALYSIS OF CCF 

Image Retinex [8] DCP [9] CLAHE [5] Proposed  

1 0.58 0.81 0.64 0.92 

2 0.69 0.52 0.57 0.87 

3 0.47 0.33 0.71 0.84 

4 0.58 0.68 0.45 0.92 

5 0.88 0.75 0.32 0.88 

6 0.69 0.79 0.76 0.89 

7 0.85 0.78 0.45 0.86 

8 0.69 0.77 0.56 0.83 

9 0.87 0.65 0.64 0.95 

10 0.89 0.38 0.76 0.82 

 

Table IX depicts the analysis of CCF. Here the proposed 
(CLAHE-TGV) method attains 28.46%, 33.16% and 

20.63% higher CCF for image 2; 26.22%, 14.55% and 

20.8% higher CCF for image 4; 34.19%, 29.10%, and 21.3% 

higher CCF for image 6; 28.43%,33.12% and 20.13% higher 

CCF for image 8; 16.18%, 24.41% and 21.18% higher CCF 

for image 10, compared with existing method such as 

Retinex [8], DCP [9] and CLAHE [5] respectively. 

 

C. Discussion  

The efficacy of proposed technique is comparing to the 

state-of-the art models, like Retinex [8], DCP [9] and 

CLAHE [5]. Qualitatively and quantitatively evaluate the 

image quality of each method. In qualitative estimation, 

colour cast, contrast, and under- and over-enhancing effects 

are the major factors in deciding resultant image superiority. 

In contrast, qualitative perceptions are supported by 

quantitative measurement. The effectiveness of each method 
is evaluated quantitatively using a variety of evaluation 

metrics, including UCIQE, UIQM, PCQI, PSNR, SSIM, 

RMSE, AG, Sobel count and Entropy. To estimate the 

details of image, entropy is used. It is preferable to have a 

high entropy number because it shows the image has lot of 

information. In the meantime, the average gradient displays 

an image's level of contrast. An image with higher average 

gradient value will have better contrast and a higher 

intensity level. Additionally, Sobel edge detection is used to 

assess the superiority of final image by locating the object's 
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boundary. Because the borders of the object are clearly 

detected by the higher value of Sobel edge detection, the 

resultant image is superior. PCQI is a general-purpose image 

contrast metric that assess the contrast quality. UIQM is 

structured to estimate underwater imagery, wherein it 
considers colourful, sharpness and contrast. Larger PCQI 

along UIQM values display feasible image superiority. 

NIQE is the final metric for evaluation, and it contrasts the 

output image with a default mode created using images from 

natural scenes. Smaller NIQE displays good image 

superiority. Here, diverse underwater imageries are 

employed for testing as well as comparison. These 

underwater imageries affecting through underwater colour 

cast, consequently poor contrast occurs. The majority of 

objects are toughly distinguishable from the background and 

have very poor visibility levels as a result. Here, 10 images 

are selected for discussion. The resultant imageries created 
by every model are depicted in Figures 4 to 13. The 

histograms of every colour channel including respective 

histograms mean values are involved for general discussion. 
 

VI. CONCLUSION 

Underwater scenes present a significant challenge for image 

processing due to the difficulty in distinguishing foreground 

and background images at varying distances. There are 
numerous techniques for enhancing underwater images, but 

they all have considerable limitations. The proposed method 

incorporates the benefits of both Total Generalized 

Variation and Contrast Enhancement techniques. We have 

analyzed the outcome of the proposed technique and 

compared its performance to the previously existing 

methods. The quality measures UCIQE and UIQM achieved 

a greater average value of 0.3658 and 2.0710 respectively, 

for all the images considered. The PSNR of 22.4350 and 

MSE value of 80.2131 (both values averaged for all the 

images 1-10) also show a great reduction in the noise 
component of the enhanced images through this technique. 

Hence, the proposed method for removing image haze is 

both simpler and more efficient than previous methods. 

There is still a need for a comprehensive database of test 

photos for various imaging circumstances to improve 

underwater image processing. Though this technique is 

applicable to any underwater image, but additional study is 

required to develop a way to restore colour in underwater 

images captured at greater depths. 
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