
 

Abstract— Since the birth of modern medicine and 

neuroscience, scientists have been searching for a pain centre in 

the brain. In particular, they have been trying to find a pain 

biomarker in the electrical activity of the human brain. This 

search was not only motivated by mere curiosity but also by an 

immense need in medicine. Finding a brain electrical indicator 

or biomarker to objectively measure the sensation of pain is vital 

in medical practice and the pharmacological development of 

pain remedies. Furthermore, it has recently been observed that 

transient painful stimuli activate several brain parts with 

electrical patterns. This has prompted researchers to pursue a 

quest to objectively measure nociceptive pain based on 

biological biomarkers. In this paper, we review research in the 

literature that attempted to identify physical pain from a 

specific brain activity or correlate pain with any variations in 

brain rhythms. Even though a comprehensive understanding of 

the nature and effects of pain remains unavailable, general 

trends have been observed in the literature. Based on our 

survey, most researchers agreed on the correlation between the 

sensation of pain and two electrical activities: (i) an increase in 

Gamma power in the frontal cortex and (ii) various electrical 

activities in the primary somatosensory cortex (e.g., a decrease 

in Alpha power). Another research trend that was observed is 

the use of machine learning for classifying different intensities 

of pain-related EEG signals. 

 
Index Terms— Pain, Physical Pain, Electroencephalogram 

(EEG), Human Brain, Machine Learning.  

 

I. INTRODUCTION 

ensory neural receptors become activated and transmit a 

signal to the spinal cord when they receive a strong enough 

stimulus. The spinal cord can initiate an immediate reflex, 

such as withdrawing a hand from a hot surface or stepping 

away from a sharp object. Regardless of whether an 

immediate response is taken, the pain signal is ultimately 

transmitted to the brain for perception, recording, and further 

processing [1].  
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Pain can travel to the brain through various pathways, as 

depicted in Figure 1. Over time, scientists have attempted to 

identify a specific pain center in the brain, but the search for 

a singular location has been unsuccessful. In the 1960s, the 

Gate Control Theory and Neuromatrix Theory were proposed 

and eventually combined to form the Pain Matrix[2] and the 

theory of neuromatrix [2]. This matrix comprises the brain 

structures and regions that collaborate to process and perceive 

pain. These include the thalamus, anterior cingulate cortex, 

somatosensory cortex, and insula [3-10]. Surface 

Electroencephalogram (EEG) readings have been used to 

identify the most relevant brain activities linked to pain 

signals, which are primarily associated with the 

somatosensory cortex [11, 12]. Studies indicate that the 

electrical oscillations (EEG) in the brain can reflect pain 

perception and sensation [13-18].  

Pain is a complex and unpleasant emotion that is 

experienced subjectively. Although pain is often associated 

with tissue damage, it is not a simple reflection of sensory 

data. Psycho-physiological factors, such as psychological 

state, age, attention, and culture, significantly influence pain 

perception [19, 20]. Due to the subjective nature of pain, 

different individuals can experience varying levels of pain 

intensity, even when exposed to the same painful stimulus 

[11-21]. Given its complexity, it is challenging to develop an 

objective measure or evaluation system for pain. Therefore, 

in clinical practice, physicians rely solely on self-report pain 

assessments, such as the Numeric Rating Scales (NRS) and 

Visual Analog Scale (VAS) [22, 23].  

Despite the significant role that self-report assessments 

play in clinical practice, they have two primary limitations. 

The first is that they are not suitable for certain vulnerable 

populations and non-communicative patients, including those 

with disorders affecting consciousness or speech [24]. The 

second limitation is that they can result in 

miscommunications or misjudgments [25]. This is 

particularly concerning for pharmacologists and medication 

developers who rely on accurate pain assessment techniques. 

Any inaccuracies in pain assessment measures can lead to 

inadequate or suboptimal treatment, which may result in 

additional clinical complications. Without a reliable measure 

of pain assessment, the consequences could be severe.  

Pain can be classified into two types depending on how 

long it lasts (i.e., Acute and Chronic) [22]. Acute pain 

happens suddenly and due to a specific real/potential damage 

of a tissue such as bone, muscle, or organs. It lasts for a short 

period of time, between minutes and days. It is often 

associated with anxiety, increased heart rate, and increased 

blood pressure. Chronic pain is pain that lasts for a long 
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period of time, such as months or years. It is often caused by 

diseases like arthritis, osteoarthritis, and cancer [26]. Pain can 

also be categorised into three types based on its physiological 

nature, which are nociceptive, inflammatory, and 

pathological pain [22]. Nociceptive pain happens due to 

perceiving a noxious stimulus, like the example demonstrated 

in Figure 1. Inflammatory pain is felt on the occurrence of 

unavoidable tissue damage such as injury or inflammation. 

Pathological pain is caused by abnormal functionality in the 

nervous system (neuropathic pain). Unlike the other types of 

pain, it is not a symptom of a particular disease but rather an 

illness state. It could also exist without any sort of damage or 

inflammation (dysfunctional pain), such as what happens in 

conditions like fibromyalgia, temporomandibular joint 

disease, tension type headache, irritable bowel syndrome, and 

interstitial cystitis [22]. In Figure 1, the journey of pain starts 

by reading the sensory neuron to a noxious stimulus. The read 

signal gets delivered to the spinal cord to take immediate 

action (reflex) if needed and, subsequently, forward it to the 

brain for further analysis. 
 

 
Fig 1 An example of a nociceptive pain journey to the brain.  

 

Nociception and pain are even confused with one another. 

Hence, an important distinction to highlight here is the 

difference between nociception and pain. Nociception is the 

neural encoding of potential or actual damage of the 

biological tissue (i.e., noxious stimulation), while pain is the 

subjective experience of this actual or potential harm. 

Although nociceptive stimulation often causes pain 

experience, neuroscientists show that one can exist without 

the other [27]. For instance, in 1995, a 29-year-old 

construction worker was sent to the emergency room after 

jumping onto a 7-inch nail and pierced his boot to the other 

side. He experienced terrible pain and had to be sedated with 

opioids, only to discover later that the nail passed between his 

toes without penetrating his skin at all [28]. In another odd 

instance, another construction worker was using a nail gun 

when it unexpectedly discharged, clocking him in the face. 

He ignored the occasion, thinking nothing serious had 

happened; after six days of experiencing some mild toothache 

and a bruise under his jaw, he decided to see a doctor. The X-

Ray revealed a 4-inch nail embedded in his head, penetrating 

his cerebral cortex [29]. These two cases have taught us a 

clear distinction between nociception and pain. Nociceptive 

pain, however, happens when the nociceptive stimulation 

accompanies the feeling of pain.  

Nociceptive pain has three different ascending pathways or 

tracts through which the pain signal gets transmitted from the 

affected body part to the brain: the neospinothalamic tract, the 

paleospinothalamic tract and the archispinothalamic tract. 

Each tract of them originates in different spinal cord regions 

and ascends to transfer the signal to the brain. The type of 

transmitted pain signal dictates which tract the pain signal 

will use to reach the brain. For instance, pricking pain reaches 

the brain through the neospinothalamic tract, while both the 

paleospinothalamic and archispinothalamic tracts are taken to 

deliver the burning and soreness sensation resulting from 

tissue damage. It is also worth mentioning that more than one 

tract could be activated at the same time [30].  

Based on our current understanding, all types of pain have 

a quite similar effect on the electrical activities of the brain 

[19], [22], [31]. Though slightly different neural networks 

might process them, it is still believed that the impact of the 

different types of pain on the surface electrical activities are 

highly overlapped. However, it is accurate to claim that our 

collective scientific understanding of the pain’s effects on the 

brain still lacks clarity, and so does our ability to measure its 

intensity [2], [19, 20], [29, 30]. In this paper, we will review 

all the relevant findings in the literature with the hope and 

objective that the survey and analysis presented herewith will 

better understand the nature and effect of pain on the human 

brain.  

II. MATERIALS AND METHODS  

When reviewing the literature, we followed strict selection 

and exclusion criteria which are listed below:  

• Selection Criteria:  

o Population: individuals with chronic or 

experimentally induced pain (humans or animals)  

o Age: participants who are at least 18 years old in 

the case of humans.  

o Outcomes: findings related to EEG. 

o Recording device: more than four electrodes. 

o Language of publication: English   

• Exclusion Criteria:  

o The study does not satisfy the selection criteria or 

is unrelated to the pain investigation. 

o Lack of control group. 

o Participants are unconscious or asleep. 

o Participants are diagnosed or have a history of 

stroke. 

Figure 2 shows the breakdown of the included and excluded 

papers.  
 

Although the chosen studies in the literature investigated 

different types of pain, we did not carry out an analysis for 

each type individually but rather a single analysis for all the 

types collectively. This is because this paper aims to find a 

biomarker of pain in the EEG signal. Hence, by investigating 

the overlaps of the different electrical indicators found in the 

literature to be correlated with pain, we hope to achieve this 

objective.  
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Fig 2 The breakdown of the included and excluded surveyed papers. 

III. SURVEY  

Chen and Rappelsberger [31] investigated the effect of 

pain on the human brain by studying the topographic 

amplitude and the coherence mapping of the different 

frequency bands of the EEG signals. A 19 gold-discs 

recording device was used to extract the pain signals. Their 

experiment had the palm ice cube test as a pain stimulator on 

19 healthy participants with an age of 22.5 ± 5.5 years (mean 

± Standard deviation). Eleven of them were females. Their 

analysis concluded that the painful stimulation resulted in an 

increase in EEG coherence and a decrease in EEG amplitude 

in the central regions of the human brain. 

 In another study, the possible neurophysiological 

underpinnings of self-injurious behaviour in women with 

borderline personality disorder (BPD) were investigated [16]. 

Seventy-six female subjects with an age range of (18-50) 

participated in the study. A Cold Pressor Test (CPT) stimulus 

was recorded through 16-channel gold disk electrodes. This 

study empirically proved the effect of psychological state on 

the physiological preceptive nature of pain. Moreover, the 

effect of attention on the subjective pain experience is 

experimentally demonstrated in [34]. 

Thirteen healthy male subjects participated in the 

experiment conducted in [35], where their EEG signals were 

recorded through a 32-channel device while they were 

intramuscularly injected with hypertonic saline. The study 

has found that Beta activity is positively, but Alpha activity 

is negatively related to the pain intensity and pain area on the 

skin. The difference between brain activities induced by skin 

pain and muscle pain was intuitively investigated in [36], 

where 15 healthy subjects participated in the study at the age 

of 25.6 ± 3.2 years. The stimulus used was Capsaicin 

Injection. However, the study has found an increase of Beta 

waves in the frontal, parietal, and occipital areas that are only 

induced by muscle pain with no other differences in the 

topographical EEG patterns. Hence, the authors concluded 

that the nociceptive signals fed by the muscles and skin are 

processed similarly with very slight differences by the same 

neural matrix.  

Babiloni et al. [37] tested the hypothesis that the evaluation 

of the subject’s subsequent pain intensity gets affected by the 

suppression of pericentral (Rolandic) Alpha power before the 

occurrence of the predictable painful stimulation. The 

hypothesis was tested on ten healthy participants with an age 

range of (24-32) years. The subjects experienced a CO2-

leaser painful stimulus while their high-resolution EEG was 

being recorded during the experiment. The study concluded 

that anticipatory Rolandic Alpha is a good biological marker 

to estimate the subjective intensity of pain.  

Rissacher et al. [38] demonstrated how the frequency 

domain of EEG could provide features that will help in the 

pattern recognition of pain. A CPT experiment was carried 

out on 15 healthy participants. A 29-electrode device was 

used in the recording process. They found an independent and 

direct relationship between the decrease in the power of the 

Alpha frequency band over the parietal and temporal cortices 

and the intensity of the pain.  

The spatial and temporal identification of pain-induced 

Gamma oscillations in the human somatosensory cortex were 

achieved in [39], where a noxious lesser stimulus was applied 

to 12 healthy male participants to induce their EEG pain 

signals. The authors' analyses confirmed the correlation 

between primary somatosensory cortex Gamma band 

oscillations and the subjective intensity of pain.  

In [11], it was aimed to indicate EEG features that can 

index cortical activities which could be related to pain 

nociception. Fifteen health subjects, nine males and six 

females, with an age of 20.1 ± 2.9 years, participated in the 

study. The participants were exposed to a painful cold 

stimulus while recording their EEG through 29-electrode 

recording devices. The study found that Alpha amplitudes 

increased over the posterior scalp and decreased over the 

contralateral temporal scalp during the experience of the 

painful stimulus. However, an increase in Gamma activity in 

all electrodes was observed due to the EMG artefacts. The 

study also indicated markers that might represent EEG 

features that are pain related. These markers included (a) an 

increase in Alpha power in the visual cortex, which is 

hypothesised to be related to the withdrawal of attention 

towards the pain; (b) an increase in Gamma band activity 

which is hypothesised to be related to the EMG activities 

generated by muscles reaction that often accompanies the 

painful experience. 

The effect of heat stimulus on the nociceptive pathways 

and the brain was studied in [40]. Both EEG and fMRI images 

were recorded and analysed for ten healthy participants, six 

females and four males, with an age range of (22-35) years. 

The study claimed the contribution of the insula, post-central 

gyrus, middle supplementary motor area (SMA), pre-central 

gyrus, and cingulate cortex in pain processing and, thus, in 

the brain pain matrix or network.  

The association between the leaser-evoked pain and EEG 

brain activities was investigated in [41] where seven healthy 

subjects, five males and two females, whose ages were 24 ± 

6 years) participated in the study. The EEG was recorded 

using seven silver disc electrodes device. Unfortunately, the 

study could not find any direct correlation between the EEG 

activities in the brain and the perception of the noxious 

radiant heat stimuli. 

In [42], the coupling of the phase amplitude between 

Gamma and Theta was correlated to the nociceptive pain. 

This was done by recording the EEG of rats while 

experiencing nociceptive stimulation. The scalps of the rats 

were exposed to 14 stainless steel screws with sockets that 

worked as epidural electrodes. A significant coupling 

between Gamma amplitude and Theta phase was found over 
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the parietal and frontal region was found after the nociceptive 

stimulation. This suggested that the coupling between 

Gamma and Theta was involved in the processing of 

nociception. 

The relationship between the power of the Alpha frequency 

band and the subjective perception of tonic pain was 

demonstrated in [43], where 18 healthy subjects aged 26 ± 2.1 

years old participated in the study in which they experienced 

an innocuous thermal stimulus. Based on the signal analysis, 

R. Nir et al. concluded that the Alpha frequency band power 

could be considered a stable, direct, and objective measure of 

the tonic pain subjective perception [43]. 

The main goal of [12] was to confirm the correlation 

between the painful stimulus and the Gamma band oscillation 

in the somatosensory cortex. The study’s experiment was 

conducted on seven healthy participants, five males and two 

females, with an age of 29 ± 6 years old. The noxious radiant 

heat was used in the experiment as used a painful stimulus. 

The study found a direct correlation between the Gamma 

band oscillations over the somatosensory and the subjective 

pain intensity.  

In [44], the electrocortical activities inflicted by tonic cold 

pain were investigated through the source analysis of EEG in 

its frequency domain, and to indicate potential electrocortical 

indices of acute tonic pain in 26 healthy subjects, 14 males 

and 12 females, participated in the study with an age of 25.1 

± 3.3 years old. A negative correlation was found between the 

subjective pain intensity and (a) Theta activities in the frontal 

cortex, (b) the Alpha activities in the anterior cingulate, and 

(c) the Beta activities in the posterior cingulate.  

Twenty-three healthy subjects, nine males and 14 females, 

who were in an age range of (19-35) years, participated in 

[45]. The study aimed to develop a classification technique to 

decode the subjective pain sensitivity of individuals. The 

stimulus used in the experiment was leaser, and the 

classification algorithm was Support Vector Machine (SVM). 

The developed classifier could achieve an accuracy of 83%.  

Huang et al. [24] proposed a practice-oriented and novel 

approach to predict pain perception by recording and 

analysing single-trial Leaser-Evoked Potentials (LEPs). The 

experiment was conducted on 29 participants with 40 LEP. 

They then divided the collected signals into 39 training trails 

and 1 test trail. They used a binary Naïve Bayes classifier to 

classify between the low and high pain signals. They could 

achieve a cross-individual classification accuracy of 

80.3±8.5% and a within-individual classification accuracy of 

86.3±8.4%. 

Nine healthy subjects participated in [46], where the 

concepts of polynomial kernel SVM and fuzzy logic were 

used to build a classifier that estimated the pain intensity by 

using extracted features from the EEG signals. The EEG 

recording device included 32 channels, and the stimulus used 

was a hot thermal pad placed under the hand of the subject. 

The study developed a high-accuracy classifier and found that 

the pain intensity is directly correlated to the Alpha Power 

Spectral Density (PSD) and negatively correlated to the Beta 

PSD.  

Jensen et al. [44] examined the relationship between EEG 

activities and pain severity in a group of patients who had a 

Spinal Cord Injury (SCI) and experiencing chronic pain. A 

total of 82 participated in the study, 64 with SCI (38 of them 

suffered from chronic pain), and 28 were control subjects 

who were healthy. The study showed that the Alpha activities 

were correlated to the intensity of chronic pain.  

Indicating specific pre-stimulus EEG activity and 

connectivity patterns correlated to subsequent pain 

perception, a total of 23 healthy subjects participated in [47]. 

A 64-channel EEG was recorded during noxious stimulation 

that was achieved by directing an electrical current to the 

flexor/abductor pollicis brevis of the left hand. This study 

found that Gamma band power increased by 12% at 

frontocentral regions, and the frontoparietal connectivity 

decreased in the pre-stimulus EEG activities.  

The EEG reaction to tonic muscle pain was investigated in 

[48]. The subjective pain ratings and EEG signals were 

recorded in three order-counterbalanced innocuous 

conditions from 43 males with an age of 22± 3 years. A 64-

channel EEG recording device was used. The study provided 

evidence for the correlation between frontal-central Gamma 

oscillations and tonic pain intensity.  

The existence of pain sensation in healthy subjects was 

indicated in [49] with the purpose of duplicating the exact 

process for patients who were non-communicative. A CPT-

induced EEG effect was recorded by a 128-channel EEG 

recording device from 20 healthy subjects. The study 

concluded that pain was directly correlated with an increase 

in Beta frequency band power over the interhemispheric 

region in the brain.  

Leancester et al. [50] developed a method of detecting 

acute pain by extracting features from EEG and combining it 

with some other physiological markers, such as heartbeat 

variations. A 16-dry electrodes cap was used as a recording 

device. Their experiment used a noxious cold stimulus 

applied on the left volar forearm of 14 healthy participants 

(ten males and four females) with an age range of (21-35) 

years. Their analyses concluded a correlation between the 

pain intensity with the high Gamma activities in the brain.  

A total of 20 subjects, 16 females and four males, with an 

age of 20± 2 years, participated in [51]. Thermal stimuli were 

directed to the right forearm of the subjects using a contact 

heat-evoked potential stimulator thermode. A 256-channel 

EEG recording device was used. The study found that the 

Theta and Gamma power increased in the prefrontal and 

medial cortex regions. Additionally, a Beta power decrease in 

the contralateral sensorimotor cortex was associated with the 

increase in pain intensity perception. The study then applied 

a machine-learning algorithm to achieve a binary 

classification accuracy of 89.88% (low and high pain). 

However, The different pain intensities were classified [52] 

by extracting important features from the EEG signals and 

inputting them into a machine-learning classifier. CPT 

stimuli were recorded from 24 healthy subjects, 15 males and 

nine females, with an age range of (20-28) years, by a 28-

channel EEG recording device. The finding revealed a direct 

correlation between the Delta and Alpha activities with the 

pain intensity. The accuracy of their developed SVM 

classifier achieved 83±5%. 

A pre-clinical screening of analgesic efficacy in vivo was 

done in [53], which contributed to the scientific 

understanding of the pain electrical nature in the brain and the 

effects of the three tested drugs: (1) minocycline, a CNS-

acting glial inhibitor. (2) EMA 401, a PNS-acting angiotensin 
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II type 2 receptor inhibitor; and (3) pregabalin, a CNS-acting 

calcium channel inhibitor. The subjects of this study were 67 

rats that underwent a chronic implant of EEG electrodes over 

the primary somatosensory cortex. It was also found that 

there was a strong relationship between the power of the 

Theta frequency band over the primary region of the 

somatosensory cortex and the preceptive physical pain.  

The relationship between the Alpha activity peak 

frequency over the sensorimotor cortex with the pain 

intensity while experiencing capsaicin-heat pain (C-HP) was 

examined in [54]. Twenty-one participants experienced 

capsaicin-heat pain when recording their EEG with a 64-

channel recording device. The study found that the slowing 

Peak Alpha Frequency (PAF) in response to prolonged pain 

could possibly act as an objective indicator of the subjective 

intensity of pain.  

An automated assessment technique of pain intensity was 

proposed in [55] by using EEG signal processing and decision 

tree classifiers. A 14-dry electrode cap was used as a 

recording device. A CPT was used as a painful stimulus on 

22 healthy participants with an age of 25 ± 2 years. Seventeen 

of them were males. The developed decision tree classifier 

achieved an accuracy of 72.7%. Some other advanced 

algorithms of deep learning were used in [56] to achieve the 

classification of the different levels of pain from EEG signals. 

The developed classifier's accuracy was 82.8 %. The study 

used the dataset from [57], which consisted of 85 participants 

who were healthy and had different ages and genders. The 

subjects experienced painful heat stimuli in their right 

forearm. In our previous work [58], 30 subjects,17 males and 

13 females, males with an age of 24 ± 3 years, participated in 

a CPT experiment. We found the following consistent 

observations in the EEG pain signals: (1) a decrease of Alpha 

frequency band power over the somatosensory cortex, (2) a 

decrease of all the electrical activities over the frontal cortex, 

(3) and an increase of Gamma frequency power in all the 

sensors’ readings due to the EMG artefacts. We utilised deep 

learning algorithms to build a classifier to classify four 

different levels of pain with an accuracy of 94.83 %. 

A classification accuracy of 60% was achieved in [59] by 

using the state-space model (SSM) and SVM. The data was 

collected from 51 healthy right-handed participants, 26 males 

and 25 females, with an age range of (20–37) using cutaneous 

laser stimulation and an EEG recorder with 65 electrodes. 

Bayes optimised support vector machine (BSVM) was 

used in [60] to achieve a binary accuracy of 99.8% accuracy 

(pain and no-pain) and classification accuracy of 93.33% (5 

different classes of pain). The data was collected from 44 

healthy right-handed participants, 24 males and 20 females, 

with an age range of (20-28) using CPT and a 34 silver 

channels EEG recorder. The following regions were found to 

be correlated to the pain sensation: the primary and secondary 

somatosensory cortices; anterior cingulate; prefrontal cortex; 

basal ganglia, posterior parietal cortex; Posterior cingulate; 

primary and supplementary motor cortices. 

In [61], it was found that painful stimuli significantly 

increased gamma power bilaterally in regions such as 

frontotemporal regions and decreased alpha power in the 

contralateral central scalp. The study used CPT and a 128-

electrode EEG recorder on 14 healthy participants, six males 

and eight females, with an age of 23.5 ± 3.8. 

A bio-inspired decision tree that achieved a binary 

accuracy of 92 % (pain and no-pain) and an accuracy of 86% 

(between 5 different classes of pain) was proposed in [62]. 

The data was collected using CPT and a 29-electrode EEG 

recorder on 23 participants with an age of 22 ± 1.4 years.  

It was concluded after surveying the chronic pain literature 

indicating the clinical characteristics of individuals who had 

chronic pain as the increased Theta and Alpha power at 

spontaneous EEG and the low amplitudes of ERP during 

various stimuli [63]. According to the review paper of [19], 

phasic pain is often related to Alpha and Beta frequency 

bands over the sensorimotor cortex, while the Gamma band 

is often correlated to the intensity of the pain. Tonic pain, 

however, evoked the same type of frequencies but over the 

medial prefrontal cortex. Chronic pain is persistently 

correlated to Theta oscillations. Table 1 summarises all the 

correlations between different pain stimulations and the 

different frequency bands in the aforementioned studies.  

 

Table 1  Summary of the relevant findings compiled from the literature. 

Study Participants Stimuli Inducing Force Findings 

[31] 19 humans Noxious Cold Temperature Decrease of EEG amplitude and an increase of EEG coherence in the central 

regions of the human brain. 

[16] 76 humans Noxious Cold Temperature Theta activity was significantly associated with pain ratings. 

[35] 13 humans Hypertonic Saline Injection Alpha activity is negatively associated with the pain intensity and pain area on 

the skin, while Beta activity was found to have a positive correlation. 

[36] 15 humans Capsaicin Injection Muscle pain induced a significant increase in Beta activity. 

[37] 10 humans Noxious Radiant Heat Rolandic Alpha is directly associated with subjective pain intensity. 

[38] 15 humans Noxious Cold Temperature A decrease in the power of the Alpha frequency band. 

[39] 12 humans Noxious Radiant Heat Gamma band oscillations over the primary somatosensory cortex increase with 

the subjective pain intensity. 
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[11] 15 humans Noxious Cold Temperature Alpha amplitudes increased over the posterior scalp and decreased over the 

contralateral temporal scalp during the cold pain condition, in addition to 

increased Gamma activities in all the electrodes due to the EMG artefacts. 

[41] 7 humans Noxious Radiant Heat No Correlations found 

[42] Rats Noxious Radiant Heat Coupling between Theta and Gamma can work as a pain biomarker. 

[44] 26 humans Noxious Cold Temperature The power of Beta increases. 

[45] 23 humans Noxious Radiant Heat The pain experience caused the appearance of Gamma oscillations at 80 Hz. 

[43] 18 humans Noxious Hot Temperature The Alpha band is negatively correlated with the subjective perception of the 

pain intensity. 

[12] 7 humans Noxious Radiant Heat Gamma band frequencies over the primary region of the somatosensory cortex 

increase with the subjective pain intensity. 

[64] 64 humans Spinal cord chronic pain Increase of Alpha and Theta bands associated with the pain in the frontal 

cortex. 

[46] 9 humans Noxious Hot Temperature Low PSD in the Beta band and high PSD in the Alpha band are associated with 

subjective pain intensity. 

[47] 23 humans Noxious Electrical current The Gamma band power was increased by 12% at frontocentral sites, and a 

decrease in frontoparietal connectivity. 

[48] 43 humans Isotonic Saline and Hypertonic Saline 

Injection. 

A correlation between the frontal-central Gamma frequencies and tonic pain 

intensity was found. 

[50] 14 humans Noxious Cold Temperature Increase in high Gamma activities. 

[49] 20 humans Noxious Cold Temperature Beta power increases over intrahemispheric 

[51] 20 humans Noxious Hot Temperature The Theta and Gamma power increase in regions such as the prefrontal and 

medial cortex, in addition to the Beta power decrease in the contralateral 

sensorimotor cortex, is associated with the increase of pain intensity 

perception. 

[53] 67 rats Chronic Clinical Illness CCI Increase in Theta waves over the primary somatosensory cortex. 

[52] 24 humans Noxious Cold Temperature A correlation between the Delta and Alpha activities and the pain intensity was 

found. 

[54] 21 humans Capsaicin-Heat Pain (C-HP). A correlation between subjective pain intensity and the slowing response of 

PAF to prolonged pain. 

[55] 22 humans Noxious Cold Temperature Built a successful decision tree classifier with no observable human 

correlations. 

[56] 85 humans Noxious Hot Temperature Built a successful neural network classifier with no observable human 

correlations. 

[58] 30 humans Noxious Cold Temperature A decrease in the power of the Alpha frequency band over the somatosensory 

cortex, a decrease in all the electrical activities in the prefrontal cortex, and an 

increase of the Gamma power in all of the cerebral cortex. 

[59] 51 humans  Noxious Cold Temperature No correlation  

[60] 44 humans  Noxious Cold Temperature Fluctuation in the electrical activities of the following brain region: the primary 

and secondary somatosensory cortices; anterior cingulate; prefrontal cortex; 

basal ganglia; posterior parietal cortex; Posterior cingulate; primary and 

supplementary motor cortices. 

[61] 14 humans  Noxious Cold Temperature An Increase of gamma power bilaterally in regions such as frontotemporal 

regions and a decrease of alpha power in the contralateral central scalp. 

[62] 23 humans  Noxious Cold Temperature Changes in Alpha frequency band connectivity.  

IV.   RESULTS  

Unfortunately, the exact statistical power and effect size of 

the investigated studies could not be compared due to the lack 

of reporting them or reporting insufficient variables that did 

not allow us to calculate them in most cases. Additionally, the 

data/samples heterogeneity, different experiments protocol 

and quality prevented the proper conduction of meta-analysis 

and made them hardly comparable [65]. Moreover, it may be 
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obvious by now that the current scientific literature has no 

single unified trend that can represent the EEG activities 

caused by nociceptive pain [66].  

The usage of deep learning or machine learning techniques 

has been proven to be useful in classifying the bio-signals due 

to the flexibility and the nonlinearity they provide [67, 68]. 

However, their accuracies might be, in some cases, 

statistically misleading as they are impacted by a number of 

sophisticated considerations and biases [69]. To illustrate, the 

accuracy of every machine learning model does not reflect 

the accuracy of the classification universally, but rather the 

accuracy of classification for only the selected data sample, 

and it does not explain the potential data biases. However, 

based on the statistical concepts, it is understood that the 

larger and the more diverse the pool of population the data is 

collected from, the more statistical power the study would 

have, or the more reliable the study gets. Figure 3 shows the 

number of participants in all the studies that experimented on 

humans.    

 

 
Fig 3 The number of participants in all the surveyed studies that 
experimented on humans.  

 

It is important to highlight here again that the outcome 

variables heterogeneity averted the data standardisation, 

which made the meta-analysis conduction impossible to be 

performed. Although meta-analysis conduction is not 

possible, a comparison between the accuracies of the studies 

that used machine learning algorithms in the literature has 

been conducted. Table 2 presents a comparison between the 

accuracies of the relevant studies that were reported in the 

literature. Note that the accuracies shown in Table 2 do not 

necessarily reflect the actual performance of the algorithm or 

the developed system. This is because they are hardly 

comparable due to different experimental designs and the use 

of different datasets and algorithms.  

The brain areas affected by the pain sensation in the  

surveyed studies included cerebral structures like frontal, 

medial, interhemispheric, contralateral temporal, 

somatosensory cortexes, insula, the midbrain, and parts of the 

limbic system. This confirms our previous understanding of 

the brain regions involved in the pain matrix or network. To 

further investigate this, the automated meta-analysis tool 

Neurosynth (https://neurosynth.org/) was used to narrow 

down the studies of the term ‘pain’. It demonstrated the 

findings found in 516 studies [70]. Although these studies 

were mainly fMRI images, it was helpful to look at them as 

they investigated the same phenomenon of pain, and it is 

well-known that fMRI has better spatial resolution than EEG. 

Figure 4 shows the results of the Neurosynth meta-analysis 

[70] after being redrawn by the Analysis of  Functional 

NeuroImages (AFNI) software [71]. Figure 4 shows three 

cross-sections in each of the sagittal, coronal, and axial views.  

 
Table 2 A Comparison between the accuracies of the studies that used 

machine learning algorithms in the literature. 

Study  Machine 

Learning 

Algorithm  

Accuracy  Participants  Stimulus  

[45] SVM 83 % 23 Leaser 

[24] Decision Tree  72.7 % 22 CPT 

[51] SVM 89.88 % 20 Thermal 

[52] SVM 83 % 24 CPT 

[55] Binary Naïve 

Bayes classifier  

83.3 % 29 Leaser 

[56] Neural Networks 82.3 % 85 Thermal 

[58] Neural Networks  94.83 % 30 CPT 

[59] SSM and SVM  60 % 51 CPT 

[60] BSVM 93.33 % 44 CPT 

[62] Decision Tree 92% 23 CPT 

  

 It was found that different stimulators were used in the 

literature. Below is a list of the stimulators and the number of 

studies that used them in the literature: 

• Noxious cold temperature: 14 studies.  

• Noxious hot temperature/ radiant heat: 10 studies. 

• Hypertonic saline, isotonic saline, and capsaicin 

injections: 3 studies. 

• Capsaicin-Heat Pain: 1 study.  

• Noxious electrical current: 1 study  

• Chronic pain:  2 studies.  

Figure 5 shows the percentage distribution of the different 

stimulators used in the surveyed studies. 

 

 
Fig 4 The brain regions activated while perceiving the sensation of pain.  
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Fig 5 The percentage distribution of the different types of simulators used in 
the surveyed studies.   

  

V. DISCUSSION 

Notably, there is no consistent trend in literature that links 

pain intensity with specific EEG activity [66]. The studies 

and findings presented in Section III clearly show a lot of 

conflicts, contradictions, and gaps in our collective scientific 

understanding of the brain’s electrical activities inflicted by 

the pain sensation. Obviously, we still lack a comprehensive 

understanding of the electrical measures of brain activity that 

we can relate directly to perceptive physical pain [72]. There 

is also an apparent problem with the effect size of most, if not 

all, of the surveyed studies, as the number of participants is 

too small to make an induction that will be held true in 

representing the collective human population. Figure 6 shows 

the number of studies that correlate pain sensation with a 

frequency band in a certain brain region. There are some 

overlaps between the correlated frequency maps, as could be 

seen in [51], which was repeated in three frequency bands. 

For more information about the affected brain region, refer to 

Figure 4.  

However, there were a few observed tendencies which 

could be summarised as correlating the perception of pain 

with the increase of Gamma power in the frontal cortex and 

variational electrical activities in the primary somatosensory 

cortex (e.g., the decrees of Alpha power). Unfortunately, 

these observed tendencies were not common in all the 

surveyed studies, so we cannot even hesitantly call them 

global trends. Moreover, there is a tendency to direct the 

classification of the EEG and bio-signals in general towards 

the machine learning direction. This is clear from the studies 

that have been published in the past five years. Craik et al. 

[67] demonstrated the efficiency and the popularity of using 

deep learning in EEG signal classification and realisation, 

while the study [68] demonstrated the success of the machine 

learning algorithms in generating accurate new EEG data. 

 

 
Fig 6 The number of studies that correlated the pain sensation to the different 

frequency bands.   

Figure 7 shows the distribution of the different machine-

learning techniques that have been used in the literature to 

identify pain and quantify its intensity. The utilisation of 

these machine-learning algorithms is not only restricted to the 

EEG analysis but includes other bio-signals too. In fact, some 

studies take this even step further and analyse the pain 

sensation through the analysis of video sequences which 

identify pain through the face expression [73]. Similarly, a 

novel approach to infant facial pain classification using a 

multi-stage classifier and geometrical-textural features 

combination was implemented in [74]. The research work 

reported in [75] is another example of a study that used 

machine learning to deal with biological signals where some 

machine learning techniques with low dimensional feature 

extraction to Improve the Generalizability of Cardiac 

Arrhythmia detection. All of these studies clearly 

demonstrate a global trend of using machine learning 

algorithms to investigate pain sensation and biological signals 

in general.  

 

 
Fig 7 The distribution of the different machine learning techniques that have 

been used in the literature to identify the pain and quantify its intensity. 

It was also observed in [58] that females and males tend to 

have different tolerances to pain intensity as males tend to 

have more tolerance to low-intensity pain and females have 

more intensity to high-intensity pain. However, this 

observation, though interesting, has not been supported by 

any other studies in the literature, and no EEG analysis has 

been made on the differences between the genders when it 

comes to pain sensitivity or tolerance to the best of our 

knowledge. There are only 19 studies out of all the surveyed 

papers that clearly mentioned the breakdown of the gender 

count of the participants. So, we added all of them. The male 

participants were 241, while the females were 227. Figure 8 

shows this breakdown.  

 

 
Fig 8 The number of female and male participants in the surveyed studies.  
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It was also found that only 25 studies clearly mentioned the 

age of the participants. The mean and standard deviation of 

all the participants was averaged to be 22.9 ± 5.2 years. This 

shows a clear gap in our understanding of how pain sensation 

might have different effects on the elderly and children.  

It may be clear that we are still far from having an objective 

pain measure or measurement technique that could have 

clinical applicability or that can possibly be adapted to any 

therapeutic applications. Such an ambitious goal, however, 

requires more studies and experiments to be conducted so we 

can have more robust and conclusive findings than the ones 

that are currently reported in the literature.  

The study of the nature and effects of physical pain on the 

human brain is extremely challenging due to the very 

subjective nature of the human brain and its connectivity. 

Any action potential produced by any part of the brain gets 

deflected and reflected countlessly within the skull. So, when 

we record the surface EEG, we get a combination of mixed-

up and complex signals that originated in different parts of 

the brain, which makes the processing of these signals 

complicated.  

Another factor that makes the study of pain challenging is 

the pain’s very subjective nature. The perception of any 

painful stimulus intensity depends on one’s subjective pain 

tolerance. It is possible that this subjectivity is not solely 

associated with the intensity of pain but also with the way it 

is perceived and processed in the brain. Perhaps that is why 

the literature cannot really reveal conclusive correlations.  

The unpleasantness of any painful experience makes it 

difficult for researchers to recruit participants. Thus, most of 

the pain studies have a tiny sample size, making it tough to 

come up with firm, conclusive results. Furthermore, the study 

of pain involves many ethical complications, whether in 

humans or animals.  

It may also be that EEG is just not accurate or powerful 

enough to facilitate such application and objectively measure 

the nociceptive pain. However, to empirically conclude 

whether this is the case or not, further investigations have to 

be done.  

This review also highlights a massive problem in the fields 

of neuroscience and bioengineering, which is the issue of 

reproducibility. Little to none of the surveyed studies could 

be empirically reproduced due to the lack or improper 

reporting of the data needed to reproduce the study. This 

could be the biggest problem in the scientific field because if 

all our studies have a very small statistical effect size and are 

not reproducible, then all our collective efforts are deemed 

meaningless [76]. 

VI. CONCLUSION 

This paper presents a comprehensive systematic literature 

review aimed at identifying pain biomarker/s in the electrical 

activities of the human brain. It was found that we still lack a 

comprehensive understanding of the brain activity measures 

that can be directly related to perceptive physical pain, as the 

literature is full of contradictory findings and gaps. However, 

a few tendencies were observed, such as correlating the 

perception of pain with an increase in Gamma power in the 

frontal cortex and various electrical activities in the primary 

somatosensory cortex (e.g., a decrease in Alpha power). 

Furthermore, a trend of using machine learning to classify the 

different intensities of EEG pain signals was found. It is clear 

that further clinical studies are needed to help us better 

understand the nature and effects of pain on the human brain. 
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