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Abstract—A prescribed performance neural network adap-
tive control scheme based on event-triggered mechanism is pre-
sented for a class of strict-feedback nonlinear systems with un-
modeled dynamics. First, in order to improve the performance
of system, finite-time performance function is introduced. The
unknown nonlinear functions are approximated by radial basis
function (RBF) neural networks. Then, an adaptive event-
triggered controller based on back-stepping is designed, which
guarantees that all signals of the closed-loop system are semi-
globally uniformly ultimately bounded (SGUUB). Meanwhile,
the tracking error can converge to a prescribed range, and the
Zeno-behavior can be avoided. Finally, simulation verifies the
effectiveness of the proposed method.

Index Terms—Nonlinear systems, finite-time prescribed per-
formance, event-triggered, adaptive control, unmodeled dynam-
ics.

I. INTRODUCTION

IN recent years, adaptive back-stepping control combined
with RBF neural networks (NNs) or fuzzy logic systems

(FLS) has been widely applied to solve the problem of
uncertain nonlinear systems. By using the approximation
property of NNs and FLS, the virtual control law derivation
process is simplified, and the unknown smooth function
can be approximated, so that a good control effect can
be obtained. Currently, NNs or FLS adaptive back-stepping
control methods for strict-feedback nonlinear systems have
been adopted by many scholars [1], [2], [3], [4]. NNs and
FLs have also become important in dealing with nonlinear
systems.

In the practical control systems, there exist usually parts of
the unmodeled dynamics that originate from ignored higher-
order state terms. Moreover, the stability of the control sys-
tem can be affected and the difficulty of controller design is
increasing by unmodeled dynamics. If unmodeled dynamics
are simply ignored during modeling, the expected effects
in practical control will be difficult to achieve. Therefore,
unmodeled dynamics can not be simply ignored. In order to
deal with the nonlinear system with unmodeled dynamics,
there are scholars have conducted a lot of researches and
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obtained lots of results [5], [6], [7], [8], [9], [10], [11],
[12], [13]. In [5], dynamic signal was introduced for the
first time to deal with dynamic disturbances, the problem
of unmodeled dynamics was solved. In [6], the small gain
theorem and input-to-state practically stable (ISPS) theory
were introduced, and adaptive back-stepping control was
designed. In [8], [9], [10], [11], [12], [13], a large number
of scholars have proposed different control approaches for
nonlinear systems with unmodeled dynamics by applying
NNs or FLS.

For any control system, how to ensure both transient
and steady-state performance is a problem worth pondering.
Therefore, in [14], prescribed performance control (PPC)
approach has been proposed for the first time. After more
than a decade of development, PPC has been researched
by many scholars [15], [16], [17], [18], [19], [20], [21],
[22]. In [15], for quadrotor unmanned aerial vehicles with
uncertainties and input constraints, prescribed performance
function was introduced, and in order to deal with uncer-
tainties and disturbances, an extended state observer was
constructed, then, back-stepping controller was designed by
using dynamic surface control and extended state observer,
which ensures transient and steady-state performance and
overcame complexity explosion issues, and improves the
robustness of system. In [16], a class of electro-hydraulic
actuator model manipulators were considered, the tracking
error was constrained by prescribed performance constraint
technology, and the NNs adaptive control method was pre-
sented. In [17], a class of strict-feedback nonlinear systems
with actuator failures, component failures and unknown
control directions was considered, and a prescribed per-
formance fault-tolerant controller was designed. However,
traditional prescribed performance control can not satisfy the
requirement of high accuracy control. Therefore, the finite-
time performance function (FTPF) is first proposed in [18],
the tracking error can converge to a bounded range during
the tuning time. Then, in [19], an unknown nonlinear system
was considered, an adjustable finite-time prescribed perfor-
mance function was proposed, and an adaptable finite-time
prescribed performance function is presented, and an fuzzy
adaptive controller with finite-time prescribed performance
is designed.

On the other hand, in order to solve the problem of
limited network resources, in literature [23], the event-
triggered was proposed. Then, several event-triggered control
(ETC) shames were proposed for nonlinear systems in [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34]. In
[25], Xing et al. used adaptive compensation mechanism to
improve the traditional control methods, which provided a
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firm foundation for the extensive development of subsequent
event-triggered. Since then, many scholars have successfully
researched a number of important results based on the
event-triggered mechanism. In [26], the stochastic systems
with actuator failures was studied. literature [27] researched
nonstrict-feedback stochastic systems with external distur-
bances. In [28], the event-triggered finite-time stabilization
of nonlinear switched systems was studied by Deng et al.
In [29], non-fragile reliable passive event-triggered control
for switched systems was researched. Furthermore, the fixed
time method was used in literature [30], [31], and feed-
back linearization was applied by [32], pure-feedback was
researched in [33], output-feedback controller was designed
in [34]. The event-triggered mechanisms in the above liter-
ature mainly include fixed threshold and relative threshold
strategies. Compared with the fixed threshold strategy, the
relative threshold strategy is more flexible. Moreover, the
considered nonlinear systems with unmodeled dynamics is
more consistent with the practical systems, and in [18],
the finite-time performance function can only change the
convergence time to the boundary, but cannot change the
convergence speed within the convergence time. In addition,
to the best of our knowledge, there has not been any work
considering the finite-time prescribed performance adaptive
NNs event-triggered controller design for nonlinear systems
with unmodeled dynamics. Therefore, in this paper, the
event-triggered mechanism and the improved finite-time pre-
scribed performance are used in the design of the controller,
and the impact of unmodelled dynamics on the system is
fully considered.

Inspired by the above literatures, in this paper, a novel
finite-time prescribed performance event-triggered adaptive
control scheme for a class of nonlinear systems with unmod-
eled dynamics is proposed. By comparing with the existing
results, the contributions of this paper are summarized below:

(1) The improved FTPF is first proposed, different form
[18], the improved performance function can not only
ensure converge to the bounded range during the settling
time, but also change the convergence speed.

(2) Comparing to [4] and [30], the event-triggered mech-
anism can improve communication utilization, and the
relative threshold strategy is more flexible than fixed
threshold strategy.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider an uncertain nonlinear systems with unmodeled
dynamics as follows:

ξ̇ = p(ξ, x)
ẋ1 = g1(x1)x2 + f1(x̄1) + ∆1(x, ξ, t)
ẋi = gi(xi)xi+1 + fi(x̄i) + ∆i(x, ξ, t)
ẋn = gn(xn)u+ fn(x̄n) + ∆n(x, ξ, t)
y = x1

(1)

where x̄i = [x1, x2, . . . , xi]
T ∈ Ri represent the system state

vector; u ∈ R and y ∈ R is the system input and output
respectively, ξ ∈ Rn0 is the unmodeled dynamics in (1),
∆i (·) denotes uncertain dynamic disturbance, fi (·) and gi (·)
are smooth unknown nonlinear functions, ∆i (·) and ξ (·) are
uncertain Lipschitz functions.

Assumption 1 [6]: For i = 1 . . . n , there exists an
unknown constant bm satisfying 0 < bm ≤ |gi (x̄i)| < ∞ .

Assumption 2 [7]: The reference signal yr is known
smooth and bounded function.

Assumption 3 [8]: For i = 1 . . . n, there exist the non-
negative monotone increasing smooth functions φi1 (·) and
φi2 (·) satisfying

|∆i (x, ξ, t)| ≤ φi1 (|x̄i|) + φi2 (|ξ|) (2)

Assumption 4 [5]: For system (1) is supposed to be ex-
ponentially input-to-state practically stable(Exp-ISPS). Then,
there exists a Lyapunov function V (ξ) which satisfying

ν1 (|ξ|) ≤ V (ξ) ≤ ν2 (|ξ|) (3)

∂V (ξ)

∂ξ
p(ξ, x) ≤ −Λ0V (ξ) + η (|x|) + d0 (4)

where ν1, ν2 and η are three class K∞ functions, and Λ0,
d0 > 0 are constants.

Lemma 1 [5]: If there exists an Exp-ISPS Lyapunov
function V , i.e. (3) and (4) holds , then for ∀Λ ∈ (0,Λ0),
with initial value ξ0 = ξ0 (0) and function η̄ (x1) ≥ η (|x1|),
there exists a finite time T0 = T0 (Λ, r0, ξ0) , D (t) ≥ 0 for
all t ≥ 0 and a signal expressed by

ṙ = −Λr + η (x1 (t)) + d0, r (0) = r0 (5)

such that D (t) = 0 for all t ≥ T0

V (ξ (t)) ≤ r (t) +D (t) (6)

For all t > 0, the solutions are defined. Generally, we can
choose a smooth function satisfying η̄ (s) = s2η

(
s2
)
. Then,

(6) can be written as follow:

ṙ = −Λr + x2
1η0

(
x2
1

)
+ d0, r(0) = r0 (7)

where η0 ≥ 0 is a smooth function.
Lemma 2 [4]: For ∀χ ∈ R and ℓ > 0, one has

0 ≤ |χ| − χ tanh
(χ
ℓ

)
< βℓ, β ≤ 0.2785 (8)

Lemma 3 [35]: Defined set Ωz1 = {z1| |z1| < 0.8814υ},
where υ > 0 is constant. When ∀z1 /∈ Ωz1 , the inequality[
1− tanh2 (z1/v)

]
< 0 holds.

Lemma 4 [30]: For ∀x, y ∈ R, there exists

xy ≤ βp

p
|x|p + 1

qβq
|y|q (9)

where β is an non-negative constant, p > 1, q > 1,
furthermore p and q need to satisfy (p− 1) (q − 1) = 1.

A. RBF Neural Network

The RBF neural networks are used to approach the con-
tinuous functions F (Z) : Rq → R

F (Z) = W ∗TS (Z) (10)

where Z ∈ ΩZ ⊂ Rq is the input vector and q de-
notes the RBF NNs input dimension, the desired weight
vector is expressed by W ∗ = [W ∗

1 ,W
∗
2 . . .W ∗

l ]
T ∈ Rl,

where l > 1 is the NNs node number, and S (Z) =
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[S1 (Z) , S2 (Z) . . . Sl (Z)]
T is the basis function vector of

Gaussian function. Generally, Si(Z) can be expressed as

Si(Z) = exp

[
− (Z − pi)

T
(Z − pi)

G2
i

]
, i = 1, 2 . . . j (11)

where pi = [pi1, pi2 . . . piq]
T represents the center of the re-

ceptive field, and the width of Gaussian function is expressed
by Gi. For given accuracy δ > 0, the unknown function
F (Z) can be approached as follows

F (Z) = W ∗TS (Z) + δ (Z) (12)

where the weight vector W ∗ is

W ∗ := arg min
W∈Rj

{
sup

Z∈ΩZ

∣∣F (Z)−WTS(Z)
∣∣} (13)

and δ (Z) represents the approximation error and δ (Z) < δ̄,
where δ̄ is a positive constant.

B. Prescribed Performance

The system state errors can be expressed by the following
form: {

z1 = x1 − yr

zi = xi − αi−1

(14)

where yr represents the desired signal, αi (i = 2, 3 . . . n) is
the virtual control law.

In order to improve the performance of system and en-
sure bounded tracking error z1, the finite-time performance
function is defined as

ρ (t) =

{ (
ρ0 − t

Ts

)
e

lt
t−Ts + ρ∞ t ∈ [0, Ts)

ρ∞ t ∈ [Ts,+∞)
(15)

where ρ0 is the initial value of ρ(t), ρ∞ is the maximum
allowable range of z1 at the steady state, Ts is the settling
time, l is convergence speed and ρ0, ρ∞, , Ts, l are positive
parameters.

To achieve the output tracking error can guarantee
bounded and constrained the transient, the error transforma-
tion is selected as

ζ = tan

(
πz1
2ρ

)
(16)

Further, the time-derivative of ζ is given by

ζ̇ = H

(
f1 + g1x2 +∆1 − ẏr −

2

π
ρ̇ arctan z1

)
(17)

where H = π
(
1 + ζ2(t)

)
/2ρ.

III. CONTROLLER DESIGN

Now, an n-order adaptive back-stepping controller is de-
signed. Here’s the design process.

STEP 1: Consider the system (1) when i = 1 and noting

ξ̇ = p (ξ, x) (18)

ζ̇ = H

(
f1 + g1x2 +∆1 − ẏr −

2

π
ρ̇ arctan z1

)
(19)

Consider a Lyapunov function as

V1 =
1

2
ζ2 +

1

λ0
r +

bm
2γ1

θ̃21 (20)

where θ̃i = θi − θ̂i, i = 1, 2, ..., n represent the estimation
error, and λ0, γ1 are the design positive parameters.

According to Assumption 3 and equation (7), the time-
derivative of V1 as

V̇1 ≤ζH

(
f1 + g1x2 +∆1 − ẏr −

2

π
ρ̇ arctan z1

)
+ |ζH|φ11 (x1) + |ζH|φ12 (ξ)−

Λ

λ0
r

− bm
γ1

θ̃1
˙̂
θ1 +

1

λ0

(
x2
1η0

(
x2
1

)
+ d0

) (21)

Then, handling |ζH|φ11 (x1) and |ζH|φ12 (ξ). Based on
Lemma 2, one has

|ζH|φ11 (|x1|) ≤ζHφ11 (|x1|) tanh
(
ζHφ11 (|x1|)

τ11

)
+ 0.2785τ11

≤ζHφ∗
11 + τ∗11

(22)
where φ∗

11 = φ11 (|x1|) tanh (ζφ11 (|x1|)/τ11) , τ∗11 =
0.2785τ11.

Due to ν1 is K∞ function, and ν−1
1 is increasing function,

one has
|ξ| ≤ ν−1

1 (r (t) +D (t)) (23)

Based on Assumption 3 and φ12 is a non-negative incre-
mental function, one gets

φ12 (|ξ|) ≤ φ12

[
ν−1
1 (r (t) +D (t))

]
(24)

Let φ12 ◦ ν−1
1 (r (t) +D (t)) = φ12

[
ν−1
1 (r (t) +D (t))

]
,

one obtains

φ12 (|ξ|) ≤ φ12 ◦ ν−1
1 (r (t) +D (t)) (25)

For any t, one has

min {2r(t), 2D(t)} ≤ r(t) +D(t) ≤ max {2r(t), 2D(t)}
(26)

By equation (27) and the Young’s inequality, it yields

|ζH|φ12 (ξ) = |ζH|φ12 ◦ ν−1
1 (r (t) +D (t))

≤ |ζH|φ12 ◦ ν−1
1 (2r (t))

+ |ζH|φ12 ◦ ν−1
1 (2D (t))

(27)

By equation (27) and Young’s inequality, one has

|ζH|φ12 (ξ) ≤ζHφ̄12 +
1

4
ζ2H2 + d1(t)

≤ζHφ̄12 tanh

(
ζHφ̄12

τ12

)
+ 0.2785τ12

+
1

4
ζ2H2 + d1(t)

≤ζHφ∗
12 + τ∗12 +

1

4
ζ2H2 + d1(t)

(28)

where d1(t) =
(
φ12 ◦ ν−1

1 (2D (t))
)2

, τ∗12 = 0.2785τ12, and
φ∗
12 = φ̄12 tanh (|ζ| φ̄12/τ12), φ̄12 = φ12 ◦ ν−1

1 (2r (t)) .
Substituting (22) and (28) into (21), it produces

V̇1 ≤ζ

(
Hf1 +Hg1x2 −Hẏr −H

2

π
ρ̇ arctan z1

)
+ ζHφ∗

11 + ζHφ∗
12 + ζ

x2
1η0

(
x2
1

)
λ0ζ

+
1

4
ζ2H2

+ τ∗11 + τ∗12 + d1(t) +
d0
λ0

− Λ

λ0
r − bm

γ1
θ̃1

˙̂
θ1

(29)
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when ζ = 0, x2
1η0

(
x2
1

)
/(λ0ζ) is discontinuous function,

and can not be approximated by RBF NNs. Therefore the
hyperbolic tangent function tanh (ζ/ℓ) is used to solve this
problem. Then, (29) can be written as

V̇1 ≤ζHg1z2 + ζHg1α1 + ζF1 (Z1)−
1

2
ζ2 + τ∗11

+ τ∗12 + d1(t) +
d0
λ0

− Λ

λ0
r − bm

γ1
θ̃1

˙̂
θ1 +Υ

(30)

where Υ =
(
1− 2tanh2

(
ζ
ℓ

))
x2
1η0(x2

1)
λ0

, and F1 (Z1) is
expressed by the following form

F1 (Z1) =H

(
f1 − ẏr −

2

π
ρ̇ arctan z1 + φ∗

11 + φ∗
12

)
+

1

2
ζ +

1

4
ζH2 +

2

ζ
tanh2

(
ζ

ℓ

)
x2
1η0

(
x2
1

)
λ0

(31)

Due to F1 (Z1) is unknown nonlinear smooth and continu-
ous function, Therefore, F1 (Z1) can be approached through
RBFNN W ∗T

1 S1 (Z1), one has

F1 (Z1) = W ∗T
1 S1 (Z1) + δ1 (Z1) , |δ1 (Z1)| ≤ δ̄1 (32)

According to the Young’s inequality, it produces

ζF1 (Z1) = ζ
(
W ∗T

1 S1 (Z1) + δ1 (Z1)
)

≤ ζ
(
∥W ∗

1 ∥ ∥∥S1 (Z1) ∥+ δ̄1
)

≤ bm
2a21

ζ2θ1S
T
1 S1 +

a21
2

+
δ̄21
2

+
ζ2

2

(33)

where θ1 = ∥W ∗
1 ∥

2
/bm is unknown constant.

Setting a virtual control law α1 as

α1 = − ζ

H

(
c1 +

1

2a21
θ̂1S

T
1 S1

)
(34)

where c1 > 0 is design parameter, and ˙̂
θ1 is adaptive updating

law as
˙̂
θ1 =

γ1
2a21

ζ2ST
1 S1 − µ1θ̂1 (35)

where γ1, µ1 are design positive parameters.
Substituting (33)-(35) into (30), it yields

V̇1 ≤ζHg1z2 − c1bmζ2 + τ∗11 + τ∗12 + d1(t) +
a21
2

+
δ̄21
2

+
d0
λ0

− Λ

λ0
r +

µ1bm
γ1

θ̃1θ̂1 +Υ

(36)

Applying the Young’s inequality gives

µ1bm
γ1

θ̃1θ̂1 ≤ µ1bm
γ1

θ̃1

(
θ1 − θ̃1

)
≤ −µ1bm

2γ1
θ̃21 +

µ1bm
2γ1

θ21

(37)

Finally, the expression for V̇1 is as follows

V̇1 ≤ζHg1z2 − k1ζ
2 − µ1bm

2γ1
θ̃21 +B1

+
d0
λ0

− Λ

λ0
r +Υ

(38)

where k1 = c1bm, B1 = τ∗11+τ∗12+d1(t)+
a2
1

2 +
δ̄21
2 + µ1bm

2γ1
θ21 .

STEP 2 : z2 = x2 − α1, so ż2 can be obtained

ż2 = ẋ2 − α̇1

= f2 + g2x3 +∆2 −
∂α1

∂x1
∆1 − Γ1

(39)

where Γ1 = ∂α1

∂x1
(f1 + g1x2) +

∂α1

∂ρ ρ̇ + ∂α1

∂θ̂1

˙̂
θ1 + ∂α1

∂r ṙ +∑1
j=0

∂α1

∂y
(j)
r

y
(j+1)
r .

Consider a Lyapunov function as

V2 = V1 +
1

2
z22 +

bm
2γ2

θ̃22 (40)

The time-derivative of V2 is as follows

V̇2 ≤ζHg1z2 − k1ζ
2 − µ1bm

2γ1
θ̃21 +B1 +

d0
λ0

− Λ

λ0
r

+ z2 (f2 + g2x3 +∆∗
2 − Γ1)−

bm
γ2

θ̃2
˙̂
θ2 +Υ

(41)

where ∆∗
2 = ∆2 − (∂α1/∂x1)∆1, Γ1 = ∂α1

∂x1
(f1x2 + g1)−

∂α1

∂ρ ρ̇− ∂α1

∂θ̂1

˙̂
θ1 +

1∑
j=0

∂α1

∂y
(j)
r

y
(j+1)
r + ∂α1

∂r ṙ.

Based on Assumption 3, it can obtain

|z2∆∗
2| ≤

∣∣∣∣z2 (|∆2|+
∣∣∣∣∂α1

∂x1

∣∣∣∣ |∆1|
)∣∣∣∣

≤ |z2|
(
φ21 (|x̄2|) +

∣∣∣∣∂α1

∂x1

∣∣∣∣φ11 (|x2|)
)

+ |z2|
(
φ22 (|ξ|) +

∣∣∣∣∂α1

∂x1

∣∣∣∣φ12 (|ξ|)
) (42)

According to Lemma 2, it can get

|z2|
(
φ21 (|x̄2|) +

∣∣∣∣∂α1

∂x1

∣∣∣∣φ11 (|x2|)
)

≤ z2φ
∗
21 (x2) + τ∗

21

(43)

|z2|
(
φ22 (|ξ|) +

∣∣∣∣∂α1

∂x1

∣∣∣∣φ12 (|ξ|)
)

≤ z2φ
∗
22 + τ∗

22
+ d2(t) +

z22
4

[
1 +

∣∣∣∣∂α1

∂x1

∣∣∣∣2
] (44)

where d2(t) =
(
φ22 ◦ ν−1

1 (2D (t))
)2

, τ∗21 = 0.2785τ21 and
τ∗22 = 0.2785τ22, φ∗

21 = (φ21 + |∂α1/∂x1|φ21) ×
tanh (z2 (φ11 + |∂α1/∂x1|φ11) /τ21), φ∗

22 =
φ̄22 tanh (z2φ̄22/τ22), φ̄22 = |∂α1/∂x1|φ12 ◦ ν−1

1 (2r) +
φ22 ◦ ν−1

1 (2r).
Substituting (43) and (44) into (41) gets

V̇2 ≤− k1ζ
2 − µ1bm

2γ1
θ̃2
1
+B1 + z2 (g2x3 + F2 (Z2))

− 1

2
z22 + τ∗21 + τ∗22 + d2(t)−

Λ

λ0
r +

d0
λ0

− bm
γ2

θ̃2
˙̂
θ2 +Υ

(45)

where F2 (Z2) = 1
2z2 + f2 + ζHg1 − Γ1 + φ∗

21 + φ∗
22 +

z2
4

[
1 +

∣∣∣∂α1

∂x1

∣∣∣2] .
Similarly, the unknown function F2 (Z2) can be approxi-

mated by the RBF neural network W ∗T
2 S2 (Z2), it can get

F2 (Z2) = W ∗T
2 S2 (Z2) + δ2 (Z2) , |δ2 (Z2)| ≤ δ̄2 (46)

According to Young’s inequality, one obtains

z2F2 (Z2) =z2
(
W ∗T

2 S2 (Z2) + δ2 (Z2)
)

≤z2
(
∥W ∗

2 ∥ ∥S2 (Z2)∥+ δ̄2
)

≤ bm
2a22

z22θ2S
T
2
S2 +

1

2
a22 +

1

2
z22 +

1

2
δ̄22

(47)
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where θ2 = ∥W ∗
2 ∥/bm is unknown constant.

Setting the virtual control law α2 as

α2 = −c2z2 −
1

2a22
z2θ̂2S

T
2 S2 (48)

where c2 > 0 is design parameter, and the adaptive updating
law ˙̂

θi is as follows

˙̂
θ2 =

γ2
2a22

z22S
T
2 S2 − µ2θ̂2 (49)

where γ2, µ2 are positive constants.
Bring (47)-(49) into (45), it yields

V̇2 ≤− k1ζ
2 − c2bmz22 − µ1bm

2γ1
θ̃21 +B1 + z2g2z3

+
1

2
a22 +

1

2
δ̄22 + τ∗21 + τ∗22 + d2(t) +

d0
λ0

− Λ

λ0
r +

µ2bm
γ2

θ̃2θ̂2 +Υ

(50)

Similar to Step 1, according to the Young’s inequality, it
yields

µ2bm
γ2

θ̃2θ̂2 ≤ µ2bm
γ2

θ̃2

(
θ2 − θ̃2

)
≤ −µ2bm

2γ2
θ̃22 +

µ2bm
2γ2

θ22

(51)

Finally, the time-derivative of V2 is expressed by

V̇2 ≤− k1ζ
2 − k2z

2
2 −

2∑
j=1

µjbm
2γj

θ̃2j +

2∑
j=1

Bj

+ z2g2z3 +
d0
λ0

− Λ

λ0
r +Υ

(52)

where k2 = c2bm, B2 = τ∗21+τ∗22+d2(t)+
a2
2

2 +
δ̄22
2 + µ2bm

2γ2
θ22 .

STEP i ( 3 ≤ i ≤ n−1 ) : The derivative of zi = xi−αi−1

is expressed by the following form

żi = ẋi − α̇i−1

= fi + gixi+1 +∆i −
i−1∑
j=1

∂αi−1

∂xj
∆j + Γi−1

(53)

where Γi−1 =
i−1∑
j=1

∂αi−1

∂xj
(fj + gjxj+1)+

i−1∑
j=1

∂αi−1

∂y
(j)
r

y(j+1)
r

+

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj +

i−1∑
j=1

∂αi−1

∂ρ(j) ρ
(j+1) +

i−1∑
j=1

∂αi−1

∂r ṙ.

Select a Lyapunov function as

Vi = Vi−1 +
1

2
z2i +

bm
2γi

θ̃2i (54)

The time-derivative of Vi is as follows

V̇i ≤− k1ζ
2 −

i−1∑
j=2

kjz
2
j −

i−1∑
j=1

µjbm
2γj

θ̃2j +
i−1∑
j=1

Bj

+ zi (fi + gixi+1 + zi−1gi−1 +∆∗
i − Γi−1)

+
d0
λ0

− Λ

λ0
r − bm

γi
θ̃i
˙̂
θi +Υ

(55)

where ∆∗
i = ∆i −

∑i−1
j=1

∂αi−1

∂xj
∆j , and kj = cjbm, Bj =

τ∗n1 + τ∗i2 + dj(t) +
a2
j

2 +
δ2j
2 +

µjbm
2γj

θ2j , j = 1, 2, . . . ., i− 1.

By Assumption 3, one has

|zi∆∗
i | ≤ |zi|

φi1 (|x̄i|) +
i−1∑
j=1

∣∣∣∣∂αi−1

∂xj

∣∣∣∣φj1 (|xj |)


+ |zi|

φi2 (|ξ|) +
i−1∑
j=1

∣∣∣∣∂αi−1

∂xj

∣∣∣∣φj2 (|ξ|)

 (56)

According to Lemma 2, one obtains

|zi|

φi1 (|x̄i|) +
i−1∑
j=1

∣∣∣∣∂αi−1

∂xj

∣∣∣∣φj1 (|xj |)


≤ ziφ

∗
i1 + τ∗i1

(57)

|zi|

φi2(|ξ|) +
i−1∑
j=1

∣∣∣∣∂αi−1

∂xj

∣∣∣∣φj2(|ξ|)


≤ ziφ

∗
i2 + τ∗i2 +

z2i
4

1 + i−1∑
j=1

(
∂αi−1

∂xj

)2
+ di(t)

(58)
where the expression functions of φ∗

i1, φ∗
i2 are as follows

φ∗
i1 =

φi1 +
i−1∑
j=1

∣∣∣∣∂αi−1

∂xj

∣∣∣∣φj1


× tanh

zi

φi1 +

i−1∑
j=1

∣∣∣∣∂αi−1

∂xj

∣∣∣∣φj1

 /τi1

 (59)

φ∗
i2 = (φ̄i2)× tanh

(
ziφ̄i2

τi1

)
(60)

where di(t) =
i∑

j=1

[
φj2 ◦ ν−1

1 (2D (t))
]2

, τ∗i1 = 0.2785τi1,

τ∗i2 = 0.2785τi2, φ̄i2 =
i−1∑
j=1

|∂αi−1/∂xj |φj2 ◦ ν−1
1 (2r) +

φi2 ◦ ν−1
1 (2r). .

Substituting (59) and (60) into (55), it yields

V̇i =− k1ζ
2 −

i−1∑
j=2

kjz
2
j −

i−1∑
j=1

µjbm
γj

θ̃2i −
Λ

λ0
r

+ zi (gixi+1 + Fi (Zi))−
1

2
z2i + τ∗i1 + τ∗i2

+ di(t) +
d0
λ0

− Λ

λ0
r − bm

γi
θ̃i
˙̂
θi +Υ

(61)

where Fi (zi) =
1
2zi + fi + zi−1gi−1 − Γi−1 + φ∗

i1 + φ∗
i2 +

zi
4

[
1 +

∑i−1
j=1

(
∂αi−1

∂xi

)2
]

.

Similar to Step 1, the unknown nonlinear function Fi (Zi)
can be approximated by the RBF neural network W ∗

i Si (Zi),
it can get

Fi (Zi) = W ∗
i Si (Zi) + δi (Zi) , |δi (Zi)| ≤ δ̄i (62)

According to Young’s inequality, one has

ziFi (Zi) =zi
(
W ∗T

i Si (Zi) + δi (Zi)
)

≤ |zi|
(
∥W ∗

i ∥ ∥Si (Zi)∥+ δ̄i
)

≤ bm
2a2i

z2i θiS
T
i Si +

1

2
a2i +

1

2
z2i +

1

2
δ̄2i

(63)
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where θi = ∥W ∗
i ∥

2
/bm is unknown constant.

Setting the virtual control law αi as

αi = −cizi −
1

2a2i
ziθ̂iS

T
i Si (64)

where ci > 0 is design parameter, and the adaptive updating
law ˙̂

θi as
˙̂
θi =

γi
2a2i

z2i S
T
i Si − µiθ̂i (65)

where γi, µi are design positive parameters.
Substituting (63) - (65) into (61), it yields

V̇i =− k1ζ
2 −

i−1∑
j=2

kjz
2
j −

i−1∑
j=1

µjbm
γj

θ̃2j +
i−1∑
j=1

Bj

+ zigizi+1 − cibmz2i + τ∗i1 + τ∗i2 + di(t)

+
1

2
a2i +

1

2
δ̄2i +

d0
λ0

− Λ

λ0
r +

µibm
γi

θ̃iθ̂i +Υ

(66)

According to the Young’s inequality, it produces

µibm
γi

θ̃iθ̂i ≤
µibm
γi

θ̃i

(
θi − θ̃i

)
≤− µibm

2γi
θ̃2i +

µibm
2γi

θ2i

(67)

Finally, V̇i is written as follows

V̇i =− k1ζ
2 −

i∑
j=2

kjz
2
j −

i∑
j=1

µjbm
2γj

θ̃2i +
i∑

j=1

Bj

+ zigizi+1 +
d0
λ0

− Λ

λ0
r +Υ

(68)

where ki = cibm, Bi = τ∗i1+τ∗i2+di(t)+
a2
i

2 +
δ̄2i
2 + µibm

2γi
θ2i .

STEP n : From zn = xn − α̇n−1, the derivative of zn is
as follows

żn = ẋn − α̇n−1

= fn + gnu+∆n −
n−1∑
j=1

∂αn−1

∂xj
∆j − Γn−1

(69)

where Γn−1 =
n−1∑
j=1

∂αn−1

∂y
(j)
r

y(j+1)
r

+
n−1∑
j=1

∂αn−1

∂θ̂j

˙̂
θj +

n−1∑
j=1

∂αn−1

∂xj
(fj + gjxj+1) +

n−1∑
j=1

∂αn−1

∂ρ(j) ρ(j+1) +
n−1∑
j=1

∂αn−1

∂r ṙ.

Then, choose a Lyapunov function as follows

Vn = Vn−1 +
1

2
z2n +

bm
2γn

θ̃2n (70)

The time-derivative of Vn is expressed by

V̇n ≤− k1ζ
2 −

n−1∑
j=2

kjz
2
j −

n−1∑
j=1

µjbm
2γj

θ̃2j +
n−1∑
j=1

Bj

+ zn (fn + gnu+ zn−1gn−1 +∆∗
n − Γn−1)

+
d0
λ0

− Λ

λ0
r − bm

γn
θ̃n

˙̂
θn +Υ

(71)

where ∆∗
n = ∆n −

∑n−1
j=1

∂αn−1

∂xj
∆j .

By Assumption 3, one obtains

|zn∆∗
n| ≤ |zn|

φn1 (|x̄n|) +
n−1∑
j=1

∣∣∣∣∂αn−1

∂xj

∣∣∣∣φj1 (|xj |)


+ |zn|

φn2 (|ξ|) +
n−1∑
j=1

∣∣∣∣∂αn−1

∂xj

∣∣∣∣φj2 (|ξ|)


(72)

According to Lemma 2, it yields

|zn|

φn1 (|x̄n|) +
n−1∑
j=1

∣∣∣∣∂αn−1

∂xj

∣∣∣∣φj1 (|xj |)


≤ znφ

∗
n1 + τ∗n1

(73)

|zn|

φn2(|ξ|) +
n−1∑
j=1

∣∣∣∣∂αn−1

∂xj

∣∣∣∣φj2(|ξ|)


≤ ziφ

∗
n2 + τ∗n2 +

z2n
4

1 + i−1∑
j=1

(
∂αn−1

∂xj

)2
+ dn(t)

(74)
where the functions of φ∗

n1 and φ∗
n2 are expressed by

φ∗
n1 =

φn1 +
n−1∑
j=1

∣∣∣∣∂αn−1

∂xj

∣∣∣∣φj1


× tanh

zn

φn1 +
n−1∑
j=1

∣∣∣∣∂αn−1

∂xj

∣∣∣∣φj1

 /τn1


(75)

φ∗
n2 = (φ̄n2)× tanh

(
znφ̄n2

τi1

)
(76)

where dn(t) =
n∑

j=1

[
φj2 ◦ ν−1

1 (2D (t))
]2

, τ∗n1 = 0.2785τn1,

φ̄n2 = φn2 ◦ ν−1
1 (2r) +

n−1∑
j=1

|∂αn−1/∂xj |φj2 ◦ ν−1
1 (2r),

τ∗n2 = 0.2785τ2.
Substituting (73) and (74) into (71), it yields

V̇n =− k1ζ
2 −

n−1∑
j=2

kjz
2
j −

n−1∑
j=1

µjbm
γj

θ̃2n − Λ

λ0
r

+ zn (gnu+ Fn (Zn))−
1

2
z2n + τ∗n1 + τ∗n2

+ dn(t) +
d0
λ0

− Λ

λ0
r − bm

γn
θ̃n

˙̂
θn +Υ

(77)

where Fn (zn) = 1
2zn + fn + zn−1gn−1 − Γn−1 + φ∗

n1 +

φ∗
n2 +

zn
4

[
1 +

∑n−1
j=1

(
∂αn−1

∂xn

)2
]
.

Similarly, the unknown nonlinear function Fn (Zn) can be
approximated by the RBF neural network W ∗

nSn (Zn), it can
get

Fn (Zn) = W ∗
nSn (Zn) + δn (Zn) , |δn (Zn)| ≤ δ̄n (78)

Applying Young’s inequality again to obtain

znFn (Zn) =zn
(
W ∗T

n Sn (Zn) + δn (Zn)
)

≤zn
(
∥W ∗

n∥ ∥Sn (Zn)∥+ δ̄n
)

≤ bm
2a2n

z2nθnS
T
n Sn +

1

2
a2n +

1

2
z2n +

1

2
δ̄2n

(79)
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where θn = ∥W ∗
n∥

2
/bm is unknown constant.

Therefore, the virtual controller law αn is defined as
follows

αn = −cnzn − 1

2a2n
znθ̂nS

T
n Sn (80)

where cn > 0 is design parameter, and the adaptive updating
law ˙̂

θn as
˙̂
θn =

γn
2a2n

z2nS
T
n Sn − µnθ̂n (81)

where γn, µn are design positive parameters.
Substituting (79) - (81) into (77), it follows that

V̇n =− k1ζ
2 −

n−1∑
j=2

kjz
2
j −

n−1∑
j=1

µjbm
γj

θ̃2j +
n−1∑
j=1

Bj

+ zngn (u− αn)− cnbmz2n + τ∗n1 + τ∗n2 + dn(t)

+
1

2
a2n +

1

2
δ̄2n +

µnbm
γn

θ̃nθ̂n +
d0
λ0

− Λ

λ0
r +Υ

(82)
Applying the Young’s inequality, it follows that

µnbm
γn

θ̃nθ̂n ≤µnbm
γn

θ̃n

(
θi − θ̃n

)
≤− µnbm

2γn
θ̃2n +

µnbm
2γn

θ2n

(83)

Finally, V̇n is written as follows

V̇n =− k1ζ
2 −

n∑
j=2

kjz
2
j −

n∑
j=1

µjbm
2γj

θ̃2i +
n∑

j=1

Bj

+ zngn (u− αn) +
d0
λ0

− Λ

λ0
r +Υ

(84)

where kn = cnbm, Bn = τ∗n1 + τ∗n2 + dn(t) +
a2
n

2 +
δ̄2n
2 +

µnbm
2γn

θ2n.
In order to reduce the waste of computing and commu-

nication resources, this paper introduces an event-triggered
controller as follows

w(t)
= −(1 + κ) [αn tanh (znαn/ε) + m̄ tanh (znm̄/ε)]
u(t) = w (tk) ∀t ∈ [tk, tk+1)
tk+1 = inf {t ∈ R||e(t)| ≥ κ|u(t) | +m}

(85)
where tk, k ∈ Z+, ε, κ(0 < κ < 1), m̄ > m/(1 − κ)
are positive design parameters. And e (t) = ω (t) − ω (tk)
represents the measurement error.

According to (85), in the interval [tk, tk+1), it can be get

ω (t) = u+ ς1 (t)κu (t) + ς2 (t)m (86)

where the time-varying parameter ς1 (t) , ς2 (t), and |ς1 (t)| ≤
1, |ς2 (t)| ≤ 1.

Thus, it can be obtained that

u (t) = ω (t) / (1 + ς1 (t)κ)− ς2 (t)m/ (1 + ς1 (t)κ) (87)

Then, one has

zngn (u− αn) = zngn

(
ω − ς2m

1 + ς1κ
− αn

)
(88)

Since ∀m ∈ R, ε > 0, −m tanh (m/ε) ≤ 0, it follows that
znω < 0. As mentioned earlier, ς1,2 (t) ∈ [−1, 1], we have

znω/ (1 + ς1κ) ≤ znω/ (1 + κ), and |ς2m/ (1 + ς1κ)| ≤
|m/ (1− κ)|, it yields

zngn (u− αn) ≤ gn

(
znω

1 + κ
−

∣∣∣∣ znm1− κ

∣∣∣∣− znαn

)
(89)

Based on Lemma 2, and bring (85) into (89), it follows
that

zngn (u− αn) ≤gn

[
|znαn| − znαn tanh

(znαn

ε

)]
+ gn

[
|znm̄| − |znm̄| tanh

(
|znm̄1|

ε

)]
≤0.557bmε

(90)
Then, (84) can be rewritten by

V̇n =− k1ζ
2 −

n∑
j=2

kjz
2
j −

n∑
j=1

µjbm
2γj

θ̃2i

+
n∑

j=1

Bj +
d0
λ0

− Λ

λ0
r + 0.557bmϵ+Υ

(91)

IV. STABILITY ANALYSIS

Theorem 1: Consider a strict-feedback nonlinear system
(1) satisfying Assumption 1-4, with the virtual control law
(34), (48), (64), (80), the adaptive updating law (35), (49),
(65), (81), and the event-triggered controller (85), then the
following properties are hold:
(1) All signals of the closed-loop control system are

SGUUB.
(2) The tracking error can converge to the bounded range

during settling time and always be within it.
(3) There exists a time t∗ > 0 satisfying tk+1 − tk >

t∗,∀k ∈ z+ such that Zeno-behavior can be avoided.
Proof: (1) Let a0 = min {2ki,Λ, µi; i = 1, 2, . . . , n},

b0 = d0/λ0 +
n∑

j=1

Bj + 0.557bmε.

Then, (91) can be rewritten as

V̇ ≤ −a0V + b0 +

(
1− 2tanh2

(
ζ

ℓ

))
x2
1η0

(
x2
1

)
λ0

(92)

Due to the sign of
[
1− 2tanh2 (ζ/ℓ)

] [
x2
1η0

(
x2
1

)
/λ0

]
is

unknown, so it needs to be discussed in different cases.
Case 1: When ζ ∈ Ωζ = {ζ| |ζ| < 0.8814ℓ} for ∀ℓ

in (30). According to (14), the reason why x1 is bounded
is that z1 and yd are bounded. Due to η0

(
x2
1

)
≥ 0 is

a smooth function,
[
1− 2tanh2 (ζ/ℓ)

] [
x2
1η0

(
x2
1

)
/λ0

]
is

bounded and its boundary is defined as c0. By (92), we have

V̇ (t) ≤ −a0V + h0 (93)

where h0 = b0 + c0. Then, (92) satisfies

0 ≤ Vn ≤
(
V (0)− h0

a0

)
e−a0t +

h0

a0
(94)

Case 2: When ζ /∈ Ωζ , According to Lemma 2 and
η0

(
x2
1

)
≥ 0, it follows that(

1− 2tanh2
(
ζ

ℓ

))
x2
1η0

(
x2
1

)
λ0

≤ 0 (95)

Therefore, (92) can be written as

V̇n (t) ≤ −a0V + b0 (96)
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According to (96), one obtains

0 ≤ Vn (t) ≤
(
V (0)− b0

a0

)
e−a0t +

b0
a0

(97)

Finally, by comparing (94) and (97), it yields

0 ≤ Vn ≤ V (0) +
h0

a0
(98)

Therefore, all signals of the closed-loop control system are
SGUUB.

(2) In order to prove the tracking error z1 is bounded by
prescribed performance, bring V1 to (98), it can get

1

2
ζ2 =

1

2
tan2

(
πz1
2ρ

)
≤ V (0) +

h0

a0
(99)

Finally, the boundary of z1 is restricted by

|z1| ≤
2ρ

π
arctan

√
2

(
V (0) +

h0

a0

)
< ρ (100)

Therefore, the tracking error can converge to the bounded
range during settling time and always be within it.

(3) In order to prove there exists a time t∗ > 0 satisfying
tk+1 − tk > t∗,∀k ∈ z+, let e (t) = ω (t) − u (t) ,∀tk ∈
[tk, tk+1), one has

d

dt
|e| = d

dt
|e ∗ e|

1
2 = sign (e) ė ≤ |ω̇| (101)

From (86), all signals included by ω̇ are SGUUB. Hence,
there exists a positive constant s satisfying |ω̇| < s. From
e(tk) = 0 and lim

t→tk
e (t) = κ |u (t)| + m, the lower bound

of interval time t∗ ≥ (κ |u (t)|+m) /s can be obtained. In
addition, the Zeno-behavior can be avoided.

V. SIMULATION RESULTS

Consider the following second-order strict-feedback non-
linear system with unmodeled dynamics as follows

ξ̇ = −ξ + x2
1 + 0.5

ẋ1 = x2
1e

−0.1x1 +
(
1 + x2

1

)
x2 + ξ sin

(
x2
1

)
ẋ2 = x1x

2
2 +

(
1 +

x2
2

x2
1+x2

2

)
x2 + ξx2

1

y = x1

(102)

Since Assumptions 1-3 is easy to establish, we focus on
checking Assumption 4 holds for ξ-subsystem in (102). We
select Lyapunov function Vξ (ξ) = ξ2, then it follows that

V̇ξ (ξ) =2ξ
(
−ξ + x2

1 + 0.5
)

≤− 2ξ2 +
1

4ι
(2ξ)

2
+ ιx4

1 +
ι

4
+

ξ2

ι

(103)

Then, by selecting ι = 2.5, it yields

V̇ξ (ξ) ≤ −1.2ξ2 + 2.5x4
1 + 0.625 (104)

By selecting v1 (|ξ|) = 0.5ξ2, v2 (|ξ|) = 2ξ2, Λ0 = 1.2,
b0 = 0.625, and η (|x1|) = 2.5x4

1, Assumption can be
satisfied. Then we define Λ = 1 ∈ (0,Λ0) and dynamic
signal r is as

ṙ = −ξ2 + 2.5x4
1 + 0.625 (105)

To verify the tracking performance of the designed con-
troller, the reference signal is selected as yr = sin (t).
The design parameters are taken as follows: c1 = 15, c2 =

10, a1 = 1, a2 = 1, γ1 = 0.15, γ2 = 0.1, µ1 = 1, µ2 = 1,
m = 0.3, m̄1 = 1, ϵ = 10, κ = 0.15. The initial condition of
system

[
ξ(0), x1(0), x2(0), θ̂1(0), θ̂2(0), r(0)

]
are chose as

[0, 0.5, 0.2, 0, 0, 0].
The finite-time performance function is selected as

ρ (t) =

{ (
1− t

2

)
e−

2t
2−t + 0.045 t ∈ [0, 2)

0.045 t ∈ [2,+∞)
(106)

In Fig.1, ’PM’ is the proposed method, ’FTPF’ is the
finite-time performance functiom method in [18], ’PPC’
is traditional prescribed perfoemance method. The system
tracking errors are shown by Fig.1. The system tracking
signal are shown by Fig.2. And Fig.3 shows the system state
x2. Fig.4 displays event-triggered control signal and adaptive
signal. Triggering instant is shown by Fig.5, and triggering
time interval is displayed by Fig.6.
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Fig. 1. Tracking errors in the proposed method (PM), FTPC and PPC.

0 5 10 15 20 25 30

T(sec)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

T
ra

c
k
in

g
 S

ig
n
a
l

y
r
(t)

y(t)

0 0.5
0

0.5

y
r
(t)

y(t)

Fig. 2. Tracking signal in the proposed method.

Form Fig.1, it can be seen that the tracking error of
proposed method can faster convergence to the bounded
range than FTPF [18] and PPC, it is greatly meaningful
for some high-precision control systems. After the control
signal is processed by an event-triggered controller, it is
transformed a discrete signal, thereby improving resource
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0 5 10 15 20 25 30

T(sec)

0

0.5

1

1.5

2

t k

Triggering instant

3 3.5 4
0

1

2

Fig. 5. Triggering instant tk .

0 5 10 15 20 25 30

T(sec)

0

0.2

0.4

0.6

0.8

1

1.2

t k
-t

k
-1

Triggering interval

Fig. 6. Triggering interval tk − tk−1.

utilization, in addition, the transformed control signal can
also ensure the performance of the control system.

VI. CONCLUSION
The problem of prescribed performance adaptive NNs

event-triggered control for a class of nonlinear systems with
unmodeled dynamics has been solved. Dynamic disturbances
have been suppressed by dynamic signal and the finite-
time prescribed performance method has been applied which
guarantees the boundedness of the tracking error and also
improves the control accuracy. In order to simplify the
calculation, the unknown nonlinear functions have been
approximated by NNs. Then, a novel finite-time prescribed
performance event-triggered adaptive NNs controller has
been designed, which ensures that all signals of the close-
loop control system are SGUUB, and the Zeno-behavior has
been avoided. In the future, we can consider more complex
systems, e.g. MIMO or multiagent systems, etc.

REFERENCES

[1] Zhang T, Xia M, Yi Y. “Adaptive Neural Dynamic Surface Control
of Strict-feedback Nonlinear Systems with Full State Constraints and
Unmodeled Dynamics,” Automatica, vol.81, pp.232-239, 2017.

[2] Yin S, Yang H, Gao H, et al. “An Adaptive NN-based Approach for
Fault-tolerant Control of Nonlinear Time-varying Delay Systems with
Unmodeled Dynamics,” IEEE Transactions on Neural Networks and
Learning Systems, vol.28, no.8, pp.1902-1913, 2016.

[3] Zhang W, Shang Y, Sun Q, et al. “Finite-Time Stabilization of
General Stochastic Nonlinear Systems with Application to a Liquid-
Level System,” IAENG International Journal of Applied Mathematics,
vol.51, no.2, pp.295-299, 2021.

[4] Wang H, Zou Y, Liu PX, et al. “Robust Fuzzy Adaptive Funnel Control
of Nonlinear Systems with Dynamic Uncertainties,” Neurocomputing,
vol.314, pp.299-309, 2018.

[5] Jiang ZP, Praly L. “Design of Robust Adaptive Controllers for Nonlin-
ear Systems with Dynamic Uncertainties,” Automatica, vol.34, no.7,
pp.825-840, 1998.

[6] Ma L, Xu N, Zhao X, et al. “Small-gain Technique-based Adaptive
Neural Output-feedback Fault-tolerant Control of Switched Nonlinear
Systems with Unmodeled Dynamics,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol.51 no.11, pp.7051–7062, 2020.

[7] Li S, Ahn CK, Xiang Z. “Adaptive Fuzzy Control of Switched
Nonlinear Time-varying Delay Systems with Prescribed Performance
and Unmodeled Dynamics,” Fuzzy Sets and Systems, vol.371, pp.40-
60, 2019.

[8] Tong S, Wang T, Li Y, et al. “Adaptive Neural Network Output Feed-
back Control for Stochastic Nonlinear Systems with Unknown Dead-
zone and Unmodeled Dynamics,” IEEE transactions on cybernetics,
vol.44, no.6, pp.910-921, 2013.

Engineering Letters, 31:4, EL_31_4_47

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



[9] Wang L, Li H, Zhou Q, et al. “Adaptive Fuzzy Control for Nonstrict
Feedback Systems with Unmodeled Dynamics and Fuzzy Dead Zone
via Output Feedback,” IEEE Transactions on Cybernetics, vol.47, no.9,
pp.2400-2412, 2017.

[10] Wang H, Liu W, Qiu J, et al. “Adaptive Fuzzy Decentralized Control
for a Class of Strong Interconnected Nonlinear Systems with Unmod-
eled Dynamics,” IEEE Transactions on Fuzzy Systems, vol.26, no.2,
pp.836-846,2017.

[11] Hua C, Liu G, Li L, Guan X. “Adaptive Fuzzy Prescribed Performance
Control for Nonlinear Switched Time-delay Systems with Unmod-
eled Dynamics,” IEEE Transactions on Fuzzy Systems, vol.26, no.4,
pp.1934-1945, 2017.

[12] Sui S, Chen CP, Tong S. “Event-trigger-based Finite-time Fuzzy Adap-
tive Control for Stochastic Nonlinear System with Unmodeled Dynam-
ics,” IEEE Transactions on Fuzzy Systems, vol.29, no.7, pp.1914-1926,
2020.

[13] Li S, Xiang Z. “Adaptive Prescribed Performance Control for Switched
Nonlinear Systems with Input Saturation,” International Journal of
Systems Science, vol.49, no.1, pp.113-123, 2018.

[14] Bechlioulis, Charalampos P., and George A, “Robust Adaptive Control
of Feedback Linearizable Mimo Nonlinear Systems with Prescribed
Performance,” IEEE Transactions on Automatic Control, vol.53, no.9,
pp.2090-2099, 2008.

[15] Shen Z, Li F, Cao X, Guo C. “Prescribed Performance Dynamic
Surface Control for Trajectory Tracking of Quadrotor UAV with
Uncertainties and Input Constraints,” International Journal of Control,
vol.94, no.11), pp.2945-2955, 2021.

[16] Guo Q, Zhang Y, Celler BG, Su SW. “Neural Adaptive Backstepping
Control of a Robotic Manipulator with Prescribed Performance Con-
straint,” IEEE transactions on neural networks and learning systems,
vol.30, no.12, pp.3572-3583, 2018.

[17] Zhang J, Yang G. “Prescribed Performance Fault-tolerant Control
of Uncertain Nonlinear Systems with Unknown Control Directions,”
IEEE Transactions on Automatic Control, vol.62, no.12, pp.6529-6535,
2017.

[18] Y. Liu, X. Liu, and Y. Jing, “Adaptive Neural Networks Finite-time
Tracking Control for Non-strict Feedback Systems via Prescribed
Performance,” Information Sciences, vol.468, pp.29-46, 2018.

[19] Zhou T, Liu C, Liu X, et al. “Finite-time Prescribed Performance
Adaptive Fuzzy Control for Unknown Nonlinear Systems,” Fuzzy Sets
and Systems, vol.402, pp.16-34, 2021.

[20] Shi W. “Adaptive Fuzzy Output-feedback Control for Nonaffine MIMO
Nonlinear Systems with Prescribed Performance,” IEEE Transactions
on Fuzzy Systems, vol.29, no.5, pp.1107-1120, 2020.

[21] Liu C, Wang H, Liu X, Zhou Y, Lu S. “Adaptive Prescribed Per-
formance Tracking Control for Strict-feedback Nonlinear Systems
with Zero Dynamics,” International Journal of Robust and Nonlinear
Control, vol.29, no.18, pp.6507-6521, 2019.

[22] Zhao N, Zhang A, Ouyang X, et al. “A Novel Prescribed Perfor-
mance Controller for Strict-feedback Nonlinear Systems with Input
Constraints. ISA transactions, vol.132, pp.258-266, 2023.

[23] Dimarogonas DV, Frazzoli E, Johansson KH. “Distributed Event-
triggered Control for Multi-agent Systems,” IEEE Transactions on
automatic control, vol.57, no.5, pp.1291-1297, 2011.

[24] Gao H, Song Y, Wen C. “Event-triggered Adaptive Neural Network
Controller for Uncertain Nonlinear System,” Information Sciences,
vol.506, pp.148-160, 2020.

[25] Xing L, Wen C, Liu Z, Su H, Cai J. “Event-triggered Adaptive Control
for a Class of Uncertain Nonlinear Systems,” IEEE transactions on
automatic control, vol.62, no.4, pp.2071-2076, 2016.

[26] Liu Z, Wang J, Chen CP, et al. “Event trigger Fuzzy Adaptive
Compensation Control of Uncertain Stochastic Nonlinear Systems with
Actuator Failures,” IEEE Transactions on Fuzzy Systems, vol.26, no.6,
pp.3770-3781, 2018.

[27] Lian Y, Xia J, Sun W, et al. “Adaptive Fuzzy Control for Non-strict-
feedback Stochastic Uncertain Non-linear Systems based on Event-
triggered Strategy,” IET Control Theory & Applications, vol.15, no.7,
pp.1018-1027, 2021.

[28] Deng M, Dong Y, Ding M. “Event-triggered Finite-time Stabilization
of a Class of Uncertain Nonlinear Switched Systems with Delay,”
IAENG International Journal of Applied Mathematics, vol.51, no.3,
pp.743–750, 2021.

[29] Wang X, Wang Y, Hou W. “Non-fragile Reliable Passive Control for
Switched Systems Using an Event-triggered Scheme,” IAENG Inter-
national Journal of Applied Mathematics, vol.51, no.2, pp.431–438,
2021.

[30] Ling S, Wang H, Liu PX. “Fixed-time Adaptive Event-triggered Track-
ing Control of Uncertain Nonlinear Systems,” Nonlinear Dynamics,
vol.100, pp.3381-3397, 2020.

[31] Zhu Q, Niu B, Zhang G, et al. “Adaptive Fixed-time Tracking Control
for a Class of Nonlinear Pure-feedback Systems: A Relative Thresh-

old Event-triggered Strategy,” ISA transactions, vol.122, pp.346-356,
2022.

[32] Xu B, Liu X, Wang H, Zhou Y. “Event-triggered Control for Nonlinear
Systems via Feedback Linearisation,” International Journal of Control,
vol.94, no.10, pp.2679-2689, 2021.

[33] Gao C, Liu XP, Wang H, et al. “Adaptive Neural Funnel Control
for a Class of Pure-feedback Nonlinear Systems with Event-trigger
Strategy,” International Journal of Systems Science, vol.51, no.13,
pp.2307-2325,2020.

[34] Zerari N, Chemachema M. “Event-triggered Adaptive Output-feedback
Neural-networks Control for Saturated Strict-feedback Nonlinear Sys-
tems in the Presence of External Disturbance,” Nonlinear Dynamics,
vol.104, pp.1343-1362, 2021.

[35] Ge S S, Tee K P. “Approximation-based Control of Nonlinear MIMO
Time-delay Systems,” Automatica, vol.43, no.1, pp.31-43, 2007.

Engineering Letters, 31:4, EL_31_4_47

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 




