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Abstract—Credit cards play an important role in today’s
economy, but they also provide fraud conditions for outlaws.
Often, the data for fraud detection is extremely imbalanced,
which seriously affects the detection effect of classification
models. The KCSMOTE (Kmeans Center Synthetic Minority
Oversampling Technique) model is proposed to address the
problem of imbalance in credit card fraud data affecting the
effectiveness of model detection. The K-means algorithm is
used to cluster the samples to find safe clusters with different
sparsity, and then K-means++ is used to find a few class cen-
troids of the safe clusters, using the centroid as the base points
to improve the SMOTE algorithm. XGBoost and Random
Forest algorithms were used to validate the effectiveness of the
KCSMOTE model. ADASYN, k-means-SMOTE, borderline-
SMOTE, SMOTETomek, SMOTEEnn, and SMOTEWB as well
as the original data were selected for comparison experiments,
and several metrics, F1-score, Precision, Recall, and AUC
(area under the curve), were chosen to determine the results.
Experimental results show that the KCSMOTE model is more
effective in dealing with unbalanced fraud data than other
sampling algorithms.

Index Terms—fraud detection, imbalanced data, K-means,
K-means++, SMOTE

I. INTRODUCTION

CREDIT card fraud has become a pressing issue, ex-
acerbated by advancements in technology. In 2022,

global fraudulent transactions reached an even more alarming
peak. To address this challenge, traditional algorithms have
been augmented with machine learning and deep learning
networks[1]. In the field of fraud detection, contemporary
techniques heavily depend on machine learning to extract
invaluable insights from complex and diverse data[2].Various
machine learning algorithms, such as neural networks, Naive
Bayes, K-nearest neighbor (KNN), Support Vector Machine
(SVM), and others, are commonly used for fraud detection
and have shown satisfactory results[3-5]. However, these
models are not immune to the impact of data imbalance, par-
ticularly when dealing with significantly unbalanced credit
card fraud data. Therefore, effectively handling imbalanced
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fraud data is crucial for consistent and accurate fraud detec-
tion. Currently, the most commonly used approach to address
class imbalances is data resampling[6]. Resampling tech-
niques include over-sampling algorithms and under-sampling
algorithms. The former increases the number of minority
classes, while the latter decreases the number of majority
classes. Many scholars have further refined the sampling
algorithms[7]. In 2017, Farshid et al[8] introduced an un-
dersampling technique that employs a clustering algorithm
aimed at balancing the distribution of the sample data.
The approach involves initially clustering the majority class
and then randomly selecting some of its samples in each
cluster. This effectively balances the sample datasets of the
two classes. Lin et al[9] proposed two new undersampling
algorithms, based on research by Farshid et al. The first
algorithm draws a majority class sample by taking the mean
of samples in each cluster. The second algorithm selects the
sample in each cluster with the smallest difference from the
mean of the cluster samples as the majority class sample.
Chawla et al[10] introduced the SMOTE algorithm (Syn-
thetic Minority Oversampling Technique) which is widely
used to perform random linear interpolation through each
minority class sample and its nearest neighbor samples. The
algorithm effectively avoids the overfitting phenomenon by
synthesizing new minority class samples for oversampling.
However, it still exhibits shortcomings. In 2022, F Sathurlam
et al[11] proposed combining the novel noise detection
method with the SMOTE algorithm to create the SMOTEWB
model. This model used the information to ascertain the
optimal number of neighbors for each observation value in
the SMOTE algorithm. In 2018, Felix et al[12] introduced
an oversampling algorithm that combines K-means clustering
with SMOTE. This approach utilizes the SMOTE algorithm
and identifies secure clusters through clustering. The number
of samples is then assigned based on the minority class’s
sparsity before application, thus avoiding SMOTE’s suscep-
tibility to noisy data. This algorithm helps to prevent the
impact of noisy data on the SMOTE algorithm and resolves
the issue of small intra-class separation in the initial data[13].
However, it cannot address the issues of data marginalization
and fuzzy boundaries caused by the SMOTE algorithm, and
it will also change the distribution structure of the original
data, causing difficulties in the classification of the detection
model and the possibility of misclassification.

A minority class composition algorithm is utilized to
balance the dataset and overcome the issue of minority class
classification[14]. This paper proposes a KCSMOTE model
based on the k-means-SMOTE algorithm with enhancements
to the SMOTE over-sampling algorithm. The idea of the k-
means-SMOTE algorithm is first used to cluster around the
original data by the K-means algorithm and to determine the
number of samples for each secure cluster, addressing the
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influence of noisy samples and the problem of small intra-
class separation. The minority class samples in each secure
cluster are then clustered using the K-means++ algorithm
to find the central sample of the minority class samples.
The SMOTE oversampling algorithm is improved by using
the central sample point as the base point, and the points
generated by the linear interpolation of the algorithm will
be centered on the cluster centroid and lie in the central
region of the minority class within the secure cluster. The
newly generated samples from the minority class in edge
regions and classification boundaries will be closer to the
centers of the minority class. This will resolve issues of data
marginalization and blurred classification boundaries and will
avoid the need to change the distribution structure of the
original data, thus ensuring the authenticity and reliability of
the data.

II. BASIC ALGORITHM ANALYSIS

A. K-means and K-means++

K-means is a traditional unsupervised clustering algorithm
and one of the most extensively used clustering algorithms
based on distance division[15]. The algorithm consists of the
division of data points into K clusters, where K represents
the number of clusters. The hyperparameter K and the initial
cluster centroids heavily influence the algorithm, and the
proper selection of K is essential. The K-means clustering
algorithm includes the following basic steps:

1) K initial clustering centroids were randomly selected in
the dataset.

2) The distance between each data point and the centroid
of each cluster is calculated separately, usually using the
Euclidean distance, before being allocated to the cluster
containing the centroid with the closest distance.

3) Replacing the cluster centroids for each cluster.
4) Repeat step 2) to determine whether the categories to

which all data belong before and after the change of cluster
centroids have changed, and if so, repeat step 3) until the
cluster centroids no longer change.

5) Determining the clustering results.
The K-means++ clustering algorithm is an improved algo-

rithm of the K-means clustering algorithm, which improves
the way the K-means algorithm selects the initial clustering
centroids. The basic principle of the K-means++ algorithm
for selecting the initial clustering centers is that the clus-
tering centers should be as far away from each other as
possible[16]. The K initial clustering centroids were selected
as follows:

1) A randomly selected point from the dataset is used as
the first cluster centre.

2) The shorter the distance between each sample and the
existing centroid, the greater the distance, the greater the
probability of selecting the centre of the cluster.

B. SMOTE Oversampling Algorithm

The SMOTE algorithm is an improved oversampling tech-
nique based on the random oversampling algorithm and is
currently the most widely used sampling method. Chawla
et al[7] proposed the SMOTE algorithm in 2002, which
enhances the sampling method of the random oversampling
algorithm and mitigates the risk of overfitting associated

with random oversampling. This technique goes beyond mere
replication of existing observations. Essentially, it involves
selecting a minority class sample from an imbalanced dataset,
identifying its K-nearest neighbor minority class sample, and
introducing a new synthetic sample to the dataset through
random linear interpolation between the minority class sam-
ple and its closest neighbor[17]. The method surpasses the
mere duplication of existing observations. The fundamental
steps of the SMOTE oversampling algorithm are as follows:

1) For all selected minority class samples Xi, the distance
between each minority class sample and it in the dataset
is calculated (Euclidean distance is generally chosen as the
calculation criterion) to obtain it like K nearest neighbor
samples.

2) Calculate the imbalance ratio of the data set and
determine the sampling multiplier N .

3) For each minority class sample Xi, a number of K
nearest-neighbor samples are randomly selected, assuming
that the selection isXn.

4) A new minority class sample Xnew is generated based
on linear interpolation of Xi and Xn according to Equation
(1) until the data reach equilibrium, where λ ∈ (0, 1).

Xnew = Xi + λ ∗ (Xn −Xi) (1)

The SMOTE oversampling algorithm effectively mitigates
the risk of overfitting associated with random oversampling
and effectively addresses class-to-class imbalance. However,
it encounters challenges in handling intra-class imbalance
and noise points, as it tends to overlook the intra-class
imbalance issue. Sparse regions remain sparse, while dense
regions become even denser. Furthermore, if the selected
samples contain noise, the generated synthetic data by the
algorithm may still contain noise. The algorithm lacks the
ability to determine the distribution area for generating new
samples, which can result in new samples being generated in
the classification boundary area. This blurs the classification
boundary and increases the likelihood of misclassification
by the detection model. When faced with two randomly
selected samples, the newly generated sample from the
sample located in the edge region remains in the edge region,
leading to data marginalization. This alteration of the overall
distribution structure of a few classes of samples in the
original data makes it more challenging for the detection
model to recognize patterns. Figure 1 illustrates the behavior
of the SMOTE oversampling algorithm with respect to noise,
boundary, and classification boundaries.

III. KCSMOTE

The imbalanced credit card fraud detection dataset is
processed using the KCSMOTE model proposed in this
paper. Firstly, K-means clustering is applied to the training
set data without categorical labels. Each obtained cluster
is then filtered to identify safe clusters, addressing the
noise problem. Distinct sampling weights are assigned to
clusters with varying sparsity of samples in specific classes,
aiming to tackle intra-class imbalance.Next, the minority
class samples within the identified safe clusters are clustered
using the K-means++ clustering algorithm to determine the
cluster centroids representing these minority class samples.
To increase the number of minority class samples and achieve
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Fig. 1. Possible behaviour of the SMOTE algorithm in the presence of
noise and edges and classification boundaries

data balancing on the dataset, the resulting minority class
clustering centroids are randomly linearly interpolated with
a randomly selected K-nearest neighbor sample of the same
class.The KCSMOTE algorithm generates new minority class
samples by equalizing the dataset. These new samples are
centered around the cluster centroids and are generated in a
more logical manner, ensuring that there are no blurred clas-
sification boundaries or data marginalization. Importantly,
this process preserves the overall distribution structure of the
minority class samples in the original data.

A. Construction of the KCSMOTE Model

The basic algorithmic flow of the KCSMOTE model is as
follows:

1) The training set of the original data was clustered, and
the K-means algorithm was used to divide the data into
c clusters, C = {C1, C2, C3, ..., Cc}. The selection of the
hyperparametric clustering number c values was completed
by the control variables’ method. c values of 5, 10, 25,
50, 100, 125, 150, 200, 250, and 300 were taken for the
experiments.

2) The clusters obtained by step 1) are filtered for safe
clusters. For each cluster, Ci is filtered using Equation (2)
and the selection criteria are based on the ratio between
the number of minority classes, and the number of majority
of classes unbalanced. To prevent the situation where most
classes in a cluster are 0 or a few classes are 0, the numerator
and denominator are each added by 1 when calculating
unbalanced. The default value of unbalanced is 1. If the
result is greater than or equal to 1 then it is a safe cluster
S = {S1, S2, S3, ..., Sn}(n < c), otherwise, it is a dangerous
cluster.

unbalanced =
(minoritySum(Ci) + 1)

(majoritySum(Ci) + 1)
(2)

3) Calculate the mean distance d(Si) for each safety
cluster that requires oversampling. To obtain the Euclidean
distance matrix D for each security cluster, calculate the
Euclidean distance between each minority class sample.
Add up the remaining elements of the matrix excluding the
diagonal elements, and divide by the number of non-diagonal
elements to obtain the average distance d(Si).

4) The density metric is computed following Equation (3),
which utilizes the number of minority classes present in the
security cluster, the average distance d(Si), and the number
of features m to derive the density metric density(Si).

density(Si) =
minoritySum(Si)

d(Si)m
(3)

5) Based on the density metric, the sparsity of the minority
class samples in the security cluster is calculated using
Equation (4). The sparsity(Si) of each cluster is obtained by
taking the reciprocal of the density measure obtained in step
4). The smaller the density measure, the sparser the minority
class of samples within the safety cluster, and the larger the
value of sparsity(Si).

sparsity(Si) =
1

density(Si)
(4)

6) The sampling weights for each security cluster are
calculated as shown in Equation (5). The cluster weight is
obtained by dividing the sparsity of each cluster by the sum
of the sparsity of all clusters, and the sampling weight values
for each security cluster are summed to 1. Larger values
of sparsity(Si), i.e. clusters with sparser samples in a few
classes, will be assigned larger sampling weights.

r(Si) =
sparsity(Si)

n∑
j=1

sparsity(Sj)
(5)

7) The number of new minority class samples that need
to be generated is calculated for each security cluster using
Equation (6). The imbalance ratio N is calculated from the
number of minority class samples to the number of majority
of class samples in the original data, and then the total
number of samples n is calculated from the imbalance ratio
N. According to the sampling weight of each security cluster
obtained in step 6). The number of samples for each security
cluster is calculated, and the larger the weight the greater the
number of samples, solving the problem of small intra-class
separation.

number(Si) = n ∗ r(Si) (6)

8) Calculate the centroids of the minority class samples
in each security cluster. The minority class samples in each
of the clusters to be oversampled are clustered using the
K-means++ clustering algorithm to find the cluster centroid
center(Si) of the minority class samples in the safe cluster.

9) For a small number of classes of samples in each
security cluster find their like K nearest neighbor samples.
A minority class sample Xi is arbitrarily selected in a safe
cluster, and the Euclidean distance between Xi and each
minority class sample in the same cluster is calculated to
obtain the K nearest neighbor samples X1, X2, ..., XK , and
the sample Xn is randomly selected from the K nearest
neighbor samples.

10) An oversampling algorithm for generating a small
number of classes of new samples within a safe cluster. To
rationalize the synthesis of new samples of minority classes,
the newly generated minority classes were allowed to move
closer to the central region. For this purpose, the original
SMOTE model is improved using the safety cluster clustering
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centroids obtained in step 8) as base points. A new minority
class sample is synthesized using the modified Equation
(7), and a new sample point is generated by random linear
interpolation of the cluster center(Si) with similar nearest
neighbors Xn, where λ ∈ (0, 1).

Xnew = center(Si) + λ ∗ (Xn − center(Si)) (7)

The clusters chosen by the KCSMOTE model for clus-
tering are designated as secure zones, which predominantly
consist of minority classes. This categorization effectively
mitigates the impact of noise data from the selected minority
classes. By assigning varying weights to the secure clusters
based on their degree of sparsity, the algorithm prioritizes
sparser clusters by assigning them higher sampling weights.
Consequently, a greater number of new samples are gen-
erated to address the issue of small intra-class separation
observed in a few classes within the dataset. To generate
new samples for minority classes, the KCSMOTE algorithm
utilizes the centroids of the minority class clusters within
the secure zones as reference points for random linear
interpolation. The newly generated minority class samples
are derived from these centroid samples and are clustered
within the proximity of the respective minority class centroid
region. This approach ensures that the classification boundary
remains clear and avoids potential difficulties that may arise
from blurring the boundary due to sample generation in the
boundary region. Moreover, new samples generated from the
edge regions are adjusted to move closer to the centroid
of the respective minority class, effectively addressing the
marginalization issue encountered with newly generated mi-
nority class samples. The use of the KCSMOTE algorithm
for oversampling operations effectively avoids the problem
of new samples being generated in different regions causing
changes to the overall distribution structure of the few classes
of samples in the original data. The schematic diagram of the
KCSMOTE model is shown in Figure 2:

Fig. 2. Schematic diagram of the KCSMOTE model for generating minority
class samples

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To investigate whether the KCSMOTE model can enhance
the effectiveness of the detection algorithm in identifying un-
balanced credit card fraud data, the XGBoost algorithm and

Random Forest algorithm are chosen as classifiers. Train the
classifier using the training set processed by the KCSMOTE
model and apply it to predict the original test set that was not
treated with KCSMOTE. To verify its validity, the ADASYN
algorithm and other most commonly used SMOTE improved
algorithms, including k-means- SMOTE, borderline-SMOTE,
SMOTETomek, SMOTEEnn, and SMOTEWB algorithms
were used to process training set data and unbalanced raw
data as controls.

A. Data Set Selection and Splitting

In selecting the dataset, this paper utilizes the credit card
fraud detection dataset published on the Kaggle platform[18],
as manually generated fraud data lacks the information
diversity, complexity, and other characteristics of genuine
transaction data. This dataset is a real transaction record
from a European credit card company, and it contains data
on transactions made by European cardholders via credit
cards over two days, guaranteeing the authenticity and
validity of the dataset. The dataset comprises a total of
284,807 data points, with a mere 492 instances of fraudulent
transactions, resulting in a highly imbalanced dataset. The
dataset consists of 31 features. Because of the need to
keep customer information confidential, V1, V2, ......, V28 are
anonymous features, the Time feature represents the time
when the transaction occurred, the Amount feature represents
the amount of the transaction, and the Class feature is the
transaction attribute. A Class of 1 is a minority class of
positive samples for fraudulent transactions, and a Class
of 0 is a majority class of negative samples for normal
transactions.

The dataset was split using the train test split function
in sklearn to distribute the training and test sets in a ratio
of 8:2, and the distribution of the obtained training and
test sets is shown in Table I below. The KCSMOTE model
exclusively operates on the training set data, keeping the test
set unaltered.

TABLE I
DATA SPLITTING SITUATION

Normal Trading Fraudulent Trading Total

Training Sets 227454 391 227845

Test Sets 56861 101 56962

Total 284315 492 284807

B. Evaluation Indicator Selection

To ensure a comprehensive evaluation, this paper selects
multiple indicators, including F1-score, Precision, Recall,
and AUC, to assess the experimental data, thereby avoiding
reliance on a single evaluation metric. Precision refers to the
proportion of true positive class samples that are predicted
to be positive class samples from a prediction perspective,
as shown in Equation (8). Recall refers to the proportion
of true positive class samples in the test set that are pre-
dicted to be positive from a true perspective, as shown in
Equation (9). The model indicates good and stable detection
only when both Precision and Recall exhibit high values
simultaneously. F1-score is one of the important evaluation
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metrics to measure the classification problem of unbalanced
data, taking into account both the accuracy and recall of the
classification model, and can be seen as a kind of weighted
average of Precision and Recall. It can be seen from Equation
(10) that the value of F1 is only large when both precision
and recall are large. AUC represents the area under the
ROC curve, serving as a metric to evaluate the effectiveness
of a dichotomous classification model by considering its
classification ability for both positive and negative samples.
The calculation of AUC is based on TPR (True Positive Rate)
and FPR (False Positive Rate), as provided in Equations (11)
and (12) respectively.

Precision =
TP

(TP + FP )
(8)

Recall =
TP

(TP + FN)
(9)

F1 =
2 ∗ Precision ∗Recall

(Precision+Recall)
(10)

TPR =
TP

(TP + FN)
(11)

FPR =
FP

(FP + TN)
(12)

The evaluation indicators mentioned above are all derived
from formulae that are based on a confusion matrix. This
matrix serves as the foundation for the calculation and is
displayed in Table II.

TABLE II
CONFUSION MATRIX

True Positive True Negative

Test is Positive TP FP

Test is Negative FN TN

C. Comparison of the Experimental Results

The training dataset underwent processing using the KC-
SMOTE technique. The clustering parameter, c, was deter-
mined using the control variable method, employing values
of 5, 10, 25, 50, 100, 125, 150, 200, 250, and 300 in
the experiments. The results indicate that a c value of 25
achieves optimal performance when utilizing XGBoost as the
detection model, whereas a c value of 125 is most suitable
for Random Forest.

The XGBoost algorithm and the Random Forest algorithm
are trained using the training set that has been equalised by
the KCSMOTE model data, and then the trained detection
model is used to detect fraud on the test set of the original
data. The training set data processed by other sampling
algorithms and the original training set data are compared
with the training set obtained from the KCSMOTE model.
The results show a significant improvement in credit card
fraud detection obtained by the detection model trained on
the training set processed by the KCSMOTE model, and the
experimental results are detailed in Tables III and IV:

The presented analysis of the experimental results in-
dicates that employing XGBoost as a credit card fraud

TABLE III
EXPERIMENTAL RESULTS OF THE XGBOOST ALGORITHM AS A FRAUD

DETECTION MODEL

F1 Precision Recall AUC

KCSMOTE 0.871 0.871 0.871 0.936

Original Training Set 0.869 0.922 0.822 0.911

ADASYN 0.804 0.761 0.851 0.926

k-means-SMOTE 0.811 0.775 0.851 0.926

borderline-SMOTE 0.860 0.869 0.851 0.926

SMOTETomek 0.835 0.819 0.851 0.925

SMOTEEnn 0.816 0.777 0.861 0.930

SMOTEWB 0.866 0.870 0.861 0.931

detection model, KCSMOTE has elevated the AUC value by
approximately 1% when compared to other techniques. The
KCSMOTE model resulted in an AUC value 2.5% higher
than that of the original training set, 1% higher than the
ADASYN, k-means-SMOTE, and borderline-SMOTE algo-
rithms, and 1.1% higher than the SMOTETomek algorithm.
This is an improvement of 0.6% compared to the SMOTEEnn
and 0.5% compared to the SMOTEWB algorithms. The
enhancement of the F1 result value is considerably notable,
exhibiting a 0.2% improvement over the Original Training
Set, a 6.7% advancement over the ADASYN algorithm,
a 6% increase over the k-means-SMOTE algorithm, and
a 1.1% progression over the borderline-SMOTE algorithm.
Furthermore, it exemplifies a 3.6% augmentation over the
SMOTETomek algorithm, a 5.5% boost over the SMOTEEnn
algorithm, and a 0.5% elevation over the SMOTEWB algo-
rithm.

TABLE IV
EXPERIMENTAL RESULTS OF THE RANDOM FOREST ALGORITHM AS A

FRAUD DETECTION MODEL

F1 Precision Recall AUC

KCSMOTE 0.879 0.897 0.861 0.931

Original Training Set 0.856 0.930 0.792 0.896

ADASYN 0.846 0.850 0.842 0.921

k-means-SMOTE 0.851 0.851 0.851 0.926

borderline-SMOTE 0.850 0.891 0.812 0.906

SMOTETomek 0.851 0.851 0.851 0.926

SMOTEEnn 0.851 0.851 0.851 0.926

SMOTEWB 0.869 0.922 0.822 0.911

When utilizing the Random Forest algorithm as the model
for detecting fraud, it is observed that the KCSMOTE model
attains the greatest F1 and AUC values with noteworthy
enhancement. The AUC achieved is 3.5% higher than the
Original Training Set, 1% higher than ADASYN, 2.5%
higher than borderline-SMOTE, 2% higher than SMOTEWB,
and 0.5% higher than the remaining methods. The F1 value
obtained is 2.3% greater than that of the Original Train-
ing Set, 3.3% greater than ADASYN, 2.9% greater than
borderline-SMOTE, 1% greater than SMOTEWB, and 2.8%
greater than the remaining three.

The results indicate that the training set, after being
subjected to the KCSMOTE treatment, displays the best and

Engineering Letters, 31:4, EL_31_4_48

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



most stable fraud detection performance. Conversely, in the
absence of data balancing, this model exhibits the worst fraud
detection effectiveness. To summarize, the KCSMOTE model
proposed in this paper offers an effective solution to address
the problem of data imbalance in credit card fraud detection.

V. CONCLUSION

As technology and the economy developed, the number of
credit card fraud cases is increasing, and fraudulent methods
are emerging, so how to efficiently and accurately identify
fraudulent transactions in highly unbalanced fraud data is
a key area of research. Therefore, based on the k-means-
SMOTE algorithm, this paper proposes a SMOTE algorithm
with a few classes of clustering centers as the base point
improvement to achieve data balancing. The results show that
the KCSMOTE model is significantly effective in dealing
with the credit card fraud data imbalance problem, and
the new fraud samples generated by the KCSMOTE model
are more reasonable when compared with other sampling
algorithms. The fuzzy boundary and data marginalization
problems of newly generated fraud sample data are greatly
reduced, the risk of original data distribution structure
changes is reduced, and the detection efficiency and stability
of the fraud detection model are improved to a certain extent.

REFERENCES

[1] N. Liu, J. Che, and Y. Ye, “Wind turbine fault diagnosis based on
feature selection and stacking model fusion with small-scale data,”
Engineering Letters, vol. 30, no. 4, pp. 1588–1595, 2022.

[2] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learn-
ing: a review of classification and combining techniques,” Artificial
Intelligence Review, vol. 26, no. 3, pp. 159–190, 2006.

[3] M. Eshtay, H. Faris, and N. Obeid, “Improving extreme learning
machine by competitive swarm optimization and its application for
medical diagnosis problems,” Expert Systems with Applications, vol.
104, pp. 134–152, 2018.

[4] S. V. Kovalchuk, E. Krotov, P. A. Smirnov, D. A. Nasonov, and A. N.
Yakovlev, “Distributed data-driven platform for urgent decision making
in cardiological ambulance control,” Future Generation Computer
Systems, vol. 79, pp. 144–154, 2018.

[5] R. Nagarajan and M. Upreti, “An ensemble predictive modeling
framework for breast cancer classification,” Methods, vol. 131, pp.
128–134, 2017.

[6] M. Kumari and N. Subbarao, “A hybrid resampling algorithms smote
and enn based deep learning models for identification of marburg virus
inhibitors,” Future Medicinal Chemistry, vol. 14, no. 10, pp. 701–715,
2022.

[7] D. L. Weller, T. M. Love, and M. Wiedmann, “Comparison of
resampling algorithms to address class imbalance when developing
machine learning models to predict foodborne pathogen presence in
agricultural water,” Frontiers in Environmental Science, vol. 9, p.
701288, 2021.

[8] F. Rayhan, S. Ahmed, A. Mahbub, R. Jani, S. Shatabda, and D. M.
Farid, “Cusboost: Cluster-based under-sampling with boosting for
imbalanced classification,” in 2017 2nd International Conference on
Computational Systems and Information Technology for Sustainable
Solution (CSITSS). IEEE, 2017, pp. 1–5.

[9] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, “Clustering-based
undersampling in class-imbalanced data,” Information Sciences, vol.
409, pp. 17–26, 2017.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of arti-
ficial intelligence research, vol. 16, pp. 321–357, 2002.
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