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Abstract—In this study, we investigate a system of coupled
nonlinear Lane-Emden equations that arise from catalytic
diffusion reactions. A highly effective algorithm, which heavily
relies on the differential transform method, is proposed to solve
this system. The algorithm produces a convergent series solution
with components that can be easily computed. The Adomian
polynomials corresponding to the given system are utilized for
calculating the differential transforms of its nonlinearities with
multiple variables. A practical numerical example is provided
to validate the effectiveness and accuracy of the present scheme.
The numerical results obtained by our developed approach
show a significantly lower error rate compared to other existing
approaches.

Index Terms—Catalytic diffusion reactions, Lane-Emden
equations, Differential transform method, Adomian polynomi-
als.

I. INTRODUCTION

IN this work, we consider a system of Lane-Emden
singular equations with the form

u′′(x) +
2

x
u′(x) + f(u(x), v(x)) = 0,

v′′(x) +
2

x
v′(x) + g(u(x), v(x)) = 0,

(1)

subject to the Neumann boundary conditions

u′(0) = v′(0) = 0, (2)

and the Dirichlet boundary conditions

u(1) = k1, v(1) = k2, (3)

where k1 and k2 are finite real constants. This issue fre-
quently arises in the modeling of various real-world phenom-
ena, such as chemical reactions, population evolution, pattern
formation, and others [1], [2], [3], [4]. Various numerical
methods have been proposed for solving the system (1)-(3).
To name a few, the Adomian decomposition method was
applied by Rach et al. in [5] to solve this issue, resulting in a
series solution with easily computable components. In [6], an
approximate solution of the system (1)-(3) was derived using
a matrix method. In [7], Singh and Wazwaz transformed
the given problem into an equivalent Fredholm integral
equation to overcome its singular behavior at the origin.
They then solved the integral equation using the homotopy
analysis method (HAM). In [8], a fast-converging iterative
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scheme based on the optimized homotopy analysis method
(OHAM) was discussed for solving problem (1)-(3). In [9],
a new algorithm was developed to obtain numerical results
for this problem by constructing Green’s function before
establishing the recursive scheme for the Adomian series
solution. Furthermore, in [10], the Kansa collocation method
based on radial basis functions was applied to approximate
the solution of problem (1)-(3).

The differential transform method (DTM) was first in-
troduced by Pukhov [11], [12], [13], and has since be-
come a widely utilized semi-numerical-analytic approach
for tackling various scientific problems. With this effective
technique, nonlinear problems can be solved explicitly and
numerically with minimal calculations, without the need for
linearization, discretization or perturbation. The use of DTM
and its modifications has proven successful in obtaining
solutions for a wide range of scientific problems nowadays
[14], [15], [16], [17], [18]. The technique is highly effective,
yet it encounters certain challenges when tackling diverse
equations. The main challenge lies in formulating a direct
yet efficient approach to acquire the differential transforms
of nonlinearities, such as f(u(x), v(x)) and g(u(x), v(x)),
in system (1). There are several works [16], [19], [20], [21],
[22] that pertain to this topic. However, the utilization of the
scheme in references [19] and [20] for handling differential
equations with two or more nonlinearities will inevitably
lead to an increase in computational budget. On the other
hand, the effective technique utilizing Adomian polynomials
as presented in references [21] and [22] is only applicable
to nonlinearities with a single variable instead of multiple
variables. Excitingly, Xie et al. [16] have recently estab-
lished a connection between the Adomian polynomials and
differential transforms of multi-variables. The mathematical
structures of both the Adomian polynomials and differential
transforms for these nonlinearities have been demonstrated
to be identical, differing only in their constant components
rather than variable ones.

Inspired by the work of [16], our objective in this study
is to employ the DTM combined with the Adomian polyno-
mials for solving the mixed boundary value problem (1)-(3).
The differential transforms of nonlinearities f(u(x), v(x))
and g(u(x), v(x)) in equations (1) will be computed utilizing
the formula given in [16].

The rest of the paper is organized as follows: in the next
section, we describe the relation between the differential
transform of nonlinearities with multiple variables and its
corresponding Adomian polynomials. Section 3 provides
an algorithm for solving problem (1)-(3), while Section 4
discusses a practical problem to test the effectiveness of our
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TABLE I
THE BASIC OPERATIONS OF THE DTM.

Original function Transformed function

af(x)± bg(x) aF (k)± bG(k)

f(x)g(x)
∑k

n=0 F (n)G(k − n)

dnf(x)/dxn (k+n)!
k!

F (k + n)

xn δ(k − n) =

 1, if k = n,

0, if k ̸= n.

exp(x) 1/k!

sin(ax+ b) ak/k! sin(kπ/2 + b)

cos(ax+ b) ak/k! cos(kπ/2 + b)

proposed scheme. Finally, we conclude this paper with a brief
summary in Section 5.

II. DIFFERENTIAL TRANSFORM OF NONLINEARITIES
WITH MULTIPLE VARIABLES

A. Definition of differential transform

The function f(x) is assumed to be differentiable, and its
differential transform at x = 0 is generally defined as

F (k) =
1

k!

(
dkf(x)

dxk

)∣∣∣∣
x=0

. (4)

Meanwhile, the differential inverse transform of F (k) is
described as

f(x) =
∞∑
k=0

F (k)xk. (5)

The function f(x) is commonly represented as a truncated
series in practical applications. It can be approximated as

f(x) ≈ fN (x) =
N∑

k=0

F (k)xk. (6)

For the sake of convenience, we have listed the fundamen-
tal operations in Table I, where f(x) and g(x) represent the
original functions, while F (k) and G(k) correspond to their
respective transformed functions, n is a nonnegative integer,
and a, b are two real numbers.

B. Differential transform of nonlinearities with multiple vari-
ables

The Adomian decomposition method (ADM) has been
widely acknowledged as a highly effective tool for solving
various scientific problems, both linear and nonlinear. In
this approach, the solution to the given problem is typically
expressed as a series defined by

u =
∞∑

m=0

um, v =
∞∑

m=0

vm,

with the infinite series of polynomials

fi(u, v) =
∞∑

m=0

Am,i, i = 1, 2.

for nonlinearities fi(u, v), i = 1, 2. The coefficients
Am,i, i = 1, 2 are determined based on the solution com-
ponents u0, u1, . . . ; v0, v1, . . ., and are referred to as Ado-
mian polynomials. The Adomian polynomials of two vari-
ables were given in references [23], [24] and [25] via the
parametrization:

u(λ) =
∞∑

m=0

umλm, v(λ) =
∞∑

m=0

vmλm,

and

fi
(
u(λ), v(λ)

)
=

∞∑
m=0

Am,iλ
m, i = 1, 2. (7)

For the left side of (7), we apply the Taylor expansion at the
point λ = 0 such that it yields

An,i =
1

n!

dn

dλn
fi

( ∞∑
m=0

umλm,
∞∑

m=0

vmλm

)∣∣∣∣
λ=0

, i = 1, 2.

Recently, Xie et al. [16] established a connection between
the Adomian polynomials and differential transforms of
multi-variables. Their findings are summarized as follows:

Lemma 1. Given a nonlinear function f(u(x), v(x)) cou-
pled with the differential transform F (k) and the Adomian
polynomials Ak(k = 0, 1, 2, . . .), it holds that

F (k) = Ak

(
U(0), . . . , U(k);V (0), . . . , V (k)

)
, (8)

where U(k) and V (k) are the transformed functions of u(x)
and v(x), respectively.

This result demonstrates that the mathematical structure
of Adomian polynomials and differential transforms for
nonlinear functions is identical. Consequently, we can derive
the differential transform of any nonlinearity by evaluating
its corresponding Adomian polynomial using constant values
instead of variable components.

III. ALGORITHM TO SOLVE PROBLEM (1)-(3)

In this section, we give a simple and effective algorithm to
solve the problem (1)-(3) based on the DTM combined with
the Adomian polynomials. We want to find the approximate
solutions with the form of

uN (x) =
N∑

k=0

U(k)xk, vN (x) =
N∑

k=0

V (k)xk, (9)

where the coefficients

U(0), U(1), . . . , U(N) and V (0), V (1), . . . , V (N)

are to be determined by using the following steps:
• Firstly, by combining the definition of the differential

transform in (4) and the boundary value condition in (2), it
reads

U(1) = V (1) = 0. (10)

Suppose that

U(0) = α and V (0) = β, (11)

where α, β are two real parameters to be determined.
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• Secondly, we multiply both sides of (1) by the variable
x in order to obtain{

xu′′(x) + 2u′(x) + xf(u(x), v(x)) = 0,

xv′′(x) + 2v′(x) + xg(u(x), v(x)) = 0.
(12)

Furthermore, the following recurrence relation can be derived
by applying the differential transform (4) to (12) .

U(k + 1) = − F (k − 1)

(k + 1)(k + 2)
, k = 1, 2, . . . , N − 1, (13)

V (k + 1) = − G(k − 1)

(k + 1)(k + 2)
, k = 1, 2, . . . , N − 1, (14)

where F (k) and G(k) are the differential transforms of the
nonlinear functions f(u, v) and g(u, v), respectively.
• Thirdly, we use Lemma 1 to compute F (k) and G(k) by

means of their corresponding Adomian polynomials denoted
by AF

k and AG
k , respectively.

F (k) = AF
k , G(k) = AG

k , k = 0, 1, 2, . . . , N. (15)

Furthermore, by substituting (15) into (13) and (14), and then
combining relations (9)-(11), we can obtain the truncated
series solutions of problem (1)-(3), namely,

uN (x) = α−
N−1∑
k=1

AF
k−1

(k + 1)(k + 2)
xk+1, (16)

vN (x) = β −
N−1∑
k=1

AG
k−1

(k + 1)(k + 2)
xk+1. (17)

• Finally, by applying the truncated series solutions (16)
and (17) to the boundary conditions (3), a system of nonlin-
ear algebraic equation with unknown parameters α and β is
obtained:

h1(α, β) = 0, h2(α, β) = 0. (18)

Solving this system, and substituting the values of α and β
into (16) and (17), we get the final result.

IV. A PRACTICAL MODEL FROM CATALYTIC DIFFUSION
REACTIONS

To demonstrate the accuracy and efficiency of our pro-
posed scheme, we consider a boundary value problem that
arises in catalytic diffusion reactions:{

u′′(x) + 2
xu

′(x)− k11u
2(x)− k12u(x)v(x) = 0,

v′′(x) + 2
xv

′(x)− k21u
2(x)− k22u(x)v(x) = 0,

(19)

subject to the Neumann boundary conditions

u′(0) = v′(0) = 0, (20)

and the Dirichlet boundary conditions

u(1) = k1, v(1) = k2. (21)

Those parameters k1, k2, k11, k12, k21 and k22 can be de-
scribed for the real chemical reactions. Flocherzi and Sund-
macher [4] have shown the existence of a solution to problem
(19)-(21).

In the following, we will solve it by taking k1 = 1, k2 =
2, k11 = 1, k12 = 2/5, k21 = 1/2 and k22 = 1 with the
proposed algorithm given in Section III.

Firstly, as mentioned in (10) and (11), we set

U(0) = α, V (0) = β, and U(1) = V (1) = 0. (22)

The Adomian polynomials of nonlinearities f(u(x), v(x)) =
−u2(x) − 2/5u(x)v(x) and g(u(x), v(x)) = −1/2u2(x) −
u(x)v(x) in this problem are computed as

AF
0 = −U2(0)− 2

5U(0)V (0),

AF
1 = −2U(0)U(1)− 2

5U(1)V (0)− 2
5U(0)V (1),

AF
2 = −U2(1)− 2U(0)U(2)− 2

5U(2)V (0)− 2
5U(1)V (1)

− 2
5U(0)V (2),

· · ·

and

AG
0 = − 1

2U
2(0)− U(0)V (0),

AG
1 = −U(0)U(1)− U(1)V (0)− U(0)V (1),

AG
2 = − 1

2U
2(1)− U(0)U(2)− U(2)V (0)− U(1)V (1)

−U(0)V (2),
· · ·

respectively. Furthermore, we obtain the differential trans-
forms U(k) in the form of

U(2) = 1
6α

2 + 1
15αβ,

U(4) = 11
600α

3 + 1
75α

2β + 1
750αβ

2,

U(6) = 1
560α

4 + 349
189000α

3β + 41
94500α

2β2 + 1
78750αβ

3,
· · ·
U(k) = 0, if k is odd and k ≥ 3,

and V (k) in the form of

V (2) = 1
12α

2 + 1
6αβ,

V (4) = 1
80α

3 + 1
50α

2β + 1
300αβ

2,

V (6) = 211
151200α

4 + 173
75600α

3β + 47
63000α

2β2 + 1
31500αβ

3,
· · ·
V (k) = 0, if k is odd and k ≥ 3,

by applying relations (13), (14), and (15). Therefore, the
truncated series solutions for N = 6 can be derived with
the help of relations (16) and (17). Specifically,

u6(x) = α+ ( 16α
2 + 1

15αβ)x
2

+( 11
600α

3 + 1
75α

2β + 1
750αβ

2)x4

+( 1
560α

4 + 349
189000α

3β + 41
94500α

2β2

+ 1
78750αβ

3)x6

(23)

and

v6(x) = β + ( 1
12α

2 + 1
6αβ)x

2

+( 1
80α

3 + 1
50α

2β + 1
300αβ

2)x4

+( 211
151200α

4 + 173
75600α

3β + 47
63000α

2β2

+ 1
31500αβ

3)x6.

(24)

Secondly, by imposing the truncated series solutions (23)
and (24) on the Dirichlet boundary conditions (21), we obtain
a nonlinear algebraic equation. Solving it yields the unknown
parameters α and β as

α = 0.7816027253 and β = 1.690947017. (25)

Finally, by substituting (25) into (23) and (24), we can
get the approximate solutions of problem (19)-(21) with a

Engineering Letters, 31:4, EL_31_4_51

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



TABLE II
NUMERICAL VALUES OF α = u(0) AND β = v(0).

6 0.7816027253 1.690947017

8 0.7813963345 1.690695454

10 0.7813752563 1.690670401

12 0.7813731705 1.690667967

14 0.7813729689 1.690667735

16 0.7813729497 1.690667713

18 0.7813729479 1.690667711

20 0.7813729478 1.690667711

22 0.7813729478 1.690667711

24 0.7813729478 1.690667711

degree of six as follows:

u6(x) =0.7816027253 + 0.1899270565x2

+ 0.02550703547x4 + 0.002963182759x6,

v6(x) =1.690947017 + 0.2711833678x2

+ 0.03407808768x4 + 0.003791527200x6.

Proceeding as before, we have also computed the approx-
imate solutions for N = 8 through 24 by a step size of
2. In Table II, we have listed the values of α and β for
different N . It can be observed that when sufficiently large N
is taken into account, α is almost identical to 0.7813729478
and β is almost identical to 1.690667711. This implies that
the unknown solutions u(x) and v(x) of problem (19)-(21)
satisfy u(0) = 0.7813729478 and v(0) = 1.690667711. This
performance demonstrates the effectiveness of our present
scheme.

Furthermore, as an exact solution for problem (19)-(21)
is lacking, we instead assess accuracy by examining the ab-
solute residual error functions and maximal error remainder
parameters. The absolute residual error functions are defined
as

|ER
u(x)
N (x)| = |u′′

N (x)+
2

x
u′
N (x)−u2

N (x)− 2

5
uN (x)vN (x)|

and

|ER
v(x)
N (x)| = |v′′N (x)+

2

x
v′N (x)− 1

2
u2
N (x)−uN (x)vN (x)|,

while the maximal error remainder parameters are

MER
u(x)
N = max

0≤x≤1
|ER

u(x)
N (x)|

and
MER

v(x)
N = max

0≤x≤1
|ER

v(x)
N (x)|.

In Figures 1 and 2, we have plotted the absolute error
remainder functions |ER

u(x)
N (x)| and |ER

v(x)
N (x)| for N

values ranging from 10 to 20 in increments of 2. Tables
III and IV compare the maximal error remainder param-
eters obtained by the present method with those obtained
using other existing approaches, which include Adomian
decomposition method (ADM) [5], modified Adomian de-
composition method (MADM) [5], and optimized homotopy
analysis method (OHAM) [8]. From the two tables, it is
evident that our computational results have an advantage over
those obtained by the aforementioned methods. In addition,

TABLE III
COMPARISON OF THE MAXIMAL ERROR REMAINDER PARAMETERS

MER
u(x)
N .

N ADM [5] MADM [5] OHAM [8] Present method

6 2.3094e-1 6.4341e-1 1.2697e-2 2.5843e-2

8 1.2671e-1 4.7917e-2 5.6250e-3 4.0190e-3

12 4.1605e-2 1.0941e-2 1.6953e-4 7.2909e-5

18 9.1302e-2 1.7990e-3 2.5134e-6 1.2008e-7

24 2.2402e-3 2.7100e-4 3.9764e-8 3.2820e-10

logarithmic plots of the maximal error remainder parameters
MER

u(x)
N and MER

v(x)
N for N = 6 to 24 with a step size of

2 are presented in Figures 3 and 4. The points on both graphs
lie on a straight line, indicating an approximately exponential
rate of convergence.

Fig. 1. The curves of absolute residual error functions |ERu(x)
N (x)| for

N = 10, 12, 14 (up) and N = 16, 18, 20 (down).

V. CONCLUSION

The improved DTM, which combines the DTM with
Adomian polynomials to handle nonlinear functions, has
been successfully employed in this study to solve the system
of Lane-Emden equations derived from catalytic diffusion
reactions. The proposed method effectively addresses the

Engineering Letters, 31:4, EL_31_4_51

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



Fig. 2. The curves of absolute residual error functions |ERv(x)
N (x)| for

N = 10, 12, 14 (up) and N = 16, 18, 20 (down).

TABLE IV
COMPARISON OF THE MAXIMAL ERROR REMAINDER PARAMETERS

MER
v(x)
N .

N ADM [5] MADM [5] OHAM [8] Present method

6 2.9383e-1 8.5109e-1 1.2606e-2 3.2094e-2

8 1.5989e-1 6.0905e-2 7.7651e-3 4.9121e-3

12 5.2026e-2 1.3647e-2 1.1949e-4 8.7319e-5

18 1.1343e-2 2.0949e-3 1.9772e-6 1.4070e-7

24 2.7736e-3 3.1128e-4 2.6049e-8 4.1787e-10

computational challenges associated with existing methods,
as all calculations can be performed through straightfor-
ward manipulations without the need for linearization, dis-
cretization, or perturbation. Numerical results show that our
proposed scheme works well with a satisfyingly low error
compared to other existing approaches. The precision of
the acquired solution can be enhanced by integrating addi-
tional terms. Furthermore, the Adomian polynomials have
overcome the challenge of classical DTM in dealing with
nonlinear terms involving multiple variables. The proposed
technique for evaluating the differential transform of such
functions involves only basic arithmetic calculations and the
computation of Adomian polynomials, which is anticipated

Fig. 3. The logarithmic plot for the maximal error remainder parameters
MER

u(x)
N for N = 6 through 24 by step 2.

Fig. 4. The logarithmic plot for the maximal error remainder parameters
MER

v(x)
N for N = 6 through 24 by step 2.

to expand the applications of DTM.
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