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Abstract—single-valued complex neutrosophic sets (SVCNSs)
expand upon the concept of neutrosophic sets, offering a frame-
work for handling uncertainty and inconsistency in periodic
data. Distance and entropy measures are pivotal tools for
managing information characterized by inherent uncertainties.
However, research on entropy in the context of single-valued
complexes is currently limited. Hence, this paper introduces
a range of distance measures and presents an entropy cal-
culation method based on these measures specifically tailored
for SVCNS. To start, we provide a definition of single-valued
complex neutrosophic sets and expound upon their set-theoretic
properties. Following this, we introduce normalized distance
formulas and propose an axiomatic definition for SVCNS
entropy. Finally, to showcase the practicality and effectiveness of
our proposed entropy measure, we include a real-world example
involving the selection of green providers. Furthermore, we con-
duct a comparative analysis with existing methods, highlighting
the valuable utility of our approach in addressing uncertainty
and inconsistency in data analysis.

Index Terms—single-valued complex neutrosophic
sets(SVCNSs); distance measure; entropy; green provider
selection.

I. INTRODUCTION

SO as to effectively cope with uncertain information,
Zadeh introduced the concept of classical fuzzy sets (FS)

in 1965 [1]. Since then, various extensions of classical fuzzy
sets have been presented, such as intuitionistic fuzzy sets
(IFS) [2], type-2 fuzzy sets (T2FS) [3], etc. Classical fuzzy
sets can handle uncertain data. However, they face limitations
when dealing with periodic data. To address this issue, Ramot
proposed the complex fuzzy set (CFS) by combining fuzzy
sets and complex numbers [4]. CFS is valuable in various
situations involving uncertainty and imprecision. Unlike tra-
ditional fuzzy membership degrees, CFS membership de-
grees are not limited to the [0, 1] range; instead, they extend
to the unit circle in the complex plane. While fuzzy sets
can handle uncertain information, they encounter challenges
when modeling data with incomplete information. To tackle
this problem, Smarandache introduced the neutrosophic set
(NS) by incorporating an uncertain membership function into
IFS [5]. NS extends IFS with completely independent truth,
indeterminacy, and falsity membership functions located in
the true criteria [0, 1] or the non-criteria interval ]0, 1[.
However, implementing NS in real-life applications can be

Manuscript received July 11, 2023; revised October 10, 2023.
Xu Dongsheng is a professor of School of Science, Southwest Petroleum

University, Chengdu 610500, China (e-mail: xudongsheng1976@163.com).
Bi Tengwu is a postgraduate student of School of Science,

Southwest Petroleum University, Chengdu 610500, China (e-mail:
bitengwu1999@163.com).

challenging. To make NS more practical, Wang et al. pre-
sented single-valued neutrosophic sets (SVNS) and interval-
valued neutrosophic sets (IVNS) as special cases of NS to
address scientific and engineering questions [6], [7]. Building
on these developments, Ali and Smarandache introduced the
complex neutrosophic set (CNS) by combining CFS and
SVNS and applied it to signal processing, demonstrating its
effectiveness in handling complex and uncertain data [8].

In engineering applications, distance and entropy measures
play a crucial role in handling uncertain, inconsistent, and
incomplete information. So far, many distance and entropy
measures for classical fuzzy sets (FS), interval-valued fuzzy
sets (IVFS), complex fuzzy sets (CFS), and complex interval-
valued fuzzy sets (CIFS) have been introduced, and they
are widely utilized across various domains, including cluster
analysis, pattern identification, and multi-criteria decision-
making applications [9], [10], [11]. Furthermore, Zhang [12]
presented some entropy measures based on distance for
IVIFS and explored the interaction between the entropy, dis-
tance, and similarity metric. Bi and Zeng [13] introduced two
new methods for calculating entropy in the context of cubic
fuzzy sets (CFS) and investigated their rotational invariance
properties. For single-valued neutrosophic sets (SVNS) and
interval-valued neutrosophic sets (IVNS), several similarity
and distance measures have been proposed for SVNS [14]
and IVNS [15], [16]. Additionally, the concept of information
entropy for neutrosophic sets (NS) has been thoroughly
examined from multiple perspectives [17], [18], [19], [20],
[21], [22]. Subsequently, Ye [23] presented several distance-
based entropy measure formulas for IVNS, enhancing our
understanding of this framework. Thao and Smarandache
[24] introduced a novel concept of entropy for single-valued
neutrosophic sets (SVNS) and explored similarity measures
derived from this entropy measure. Şahin [25] provided
two different definitions of cross-entropy for interval-valued
neutrosophic sets (IVNS) by transforming them into fuzzy
sets (FS) and SVNS, respectively. Tan and Zhang [26]
defined a novel axiomatic definition of the entropy measure
for refined single-valued neutrosophic sets (RSVNS) and
further discussed the relationship between distance measures
and entropy measures. These diverse distance and entropy
measures, along with their applications, make significant
contributions to effectively handling uncertainty and incon-
sistency in engineering and decision-making processes.

However, there has been limited research on entropy and
distance measures for single-valued complex neutrosophic
sets (SVCNS). Building on prior work, particularly the stud-
ies in references [12] and [26], this paper aims to introduce
innovative distance and entropy measures for SVCNS and
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apply them in the context of greener provider selection. The
paper’s structure is as follows: In chapter 2, we provide a
brief introduction to the definitions of both neutrosophic sets
(NS) and single-valued complex neutrosophic sets (SVCNS).
In chapter 3, we present some novel distance formulas for
SVCNS. In Chapter 4, we propose an axiomatic definition
of entropy for SVCNS and include a numerical example to
demonstrate the validity of the presented entropy measure.
In Chapter 5, a multi-decision problem is introduced, and
a comparative analysis of existing method is conducted to
verify the effectiveness of the suggested approach. The con-
clusions of the paper are provided in chapter 6. The primary
goal of this study is to expand the investigation of entropy
and distance metrics within the framework of SVCNS and
employ them in real-world decision-making scenarios, with
a specific emphasis on the selection of environmentally
friendly suppliers.

II. PRELIMINARIES

A. Single-valued Neutrosophic Set

Definition 2.1 [5] Suppose θ is a fixed limited space that
has a universal object over θ indicated by µ . A NS Ψ is
indicated by Ψ = {< µ, TΨ(µ), IΨ(µ), FΨ(µ) > |µ ∈ θ}
where T , F , and I are truth, indeterminacy, and falsity
membership functions, all of which are real criteria or
noncriteria subsets of ]0−, 1+[. That is to say T →]0−, 1+[,
I →]0−, 1+[, F →]0−, 1+[. Hence, the condition 0− ≤
supTΨ(µ) + sup IΨ(µ) + supFΨ(µ) ≤ 3+ is satisfied for
every point µ ∈ θ.

Definition 2.2 [6] Suppose θ is a fixed limited space, with
a universal object over θ indicated by µ . A SVNS τ can be
represented as follows:

τ = {< µ, Tτ (µ), Iτ (µ), Fτ (µ) > |µ ∈ θ}

where Tτ (µ) , Iτ (µ) , Fτ (µ) are three mapping functions
from the real numbers to the interval [0, 1] . They indi-
cate truth, indeterminacy and falsity membership degrees of
τ , respectively. Therefore, τ fulfills the following addition
0 ≤ T (µ) + I(µ) + F (µ) ≤ 3 for every point µ ∈ θ. A
SVNS τ can take different forms for different sets:

If θ is continuous, a SVNS τ for every µ ∈ θ has the form
below:

τ =

∫
θ

⟨Tτ (µ) , Iτ (µ) , Fτ (µ)⟩/µ

If θ is a crisp set, a SVNS τ for every µ ∈ θ has the form
below:

τ =
∑
θ

⟨Tτ (µ) , Iτ (µ) , Fτ (µ)⟩/µ

Definition 2.3 [6] Suppose k1 and k2 are two SVNSs,
which follow the following operational laws.

(1) k1 ⊂ k2 iff Tk1(µ) ≤ Tk2(µ), Ik1(µ) ≥ Ik2(µ), and
Fk1(µ) ≥ Fk2(µ) for every point µ ∈ θ.

(2) k1 = k2 iff k1 ⊂ k2, k2 ⊂ k1.
(3) k1c = {< µ,Fk1(µ), 1 − Ik1(µ), Tk1(µ) > |µ ∈ θ},

k1
c is the complement of k1.
(4) k1∪k2 =< max(Tk1(µ)), Tk2(µ)),min(Ik1(µ), Ik2(µ)),

min(Fk1(µ), Fk2(µ)) > for every object µ ∈ θ.
(5) k1∩k2 =< min(Tk1(µ)), Tk2(µ)),max(Ik1(µ), Ik2(µ)),

max(Fk1(µ), Fk2(µ)) > for every object µ ∈ θ.

B. Single-valued Complex Neutrosophic Set

Definition 2.4 [8] Suppose θ is a fixed limited space ,
with a universal element in θ indicated by µ. A single-
valued complex neutrosophic set (SVCNS) Υ over θ is
constituted by TΥ(µ), IΥ(µ), and FΥ(µ). They represent
the truth membership degree, the indeterminacy membership
degree, and the falsity membership degree of Υ, respectively.
FΥ(µ) assigns a compound value to the rank of TΥ(µ),
IΥ(µ), and FΥ(µ) for every µ ∈ θ. Hence, a SVCNS Υ
can be constructed in the following form:

Υ = {⟨µ, TΥ(µ), IΥ(µ), FΥ(µ)⟩ |µ ∈ θ}

where both the numerical values of TΥ(µ), IΥ(µ), FΥ(µ)
and their total are in the complex plane of the unit circle.
Hence, the former has the form below:

TΥ(µ) = tΥ(µ).e
jωΥ(µ), IΥ(µ) = iΥ(µ).e

jψΥ(µ)

FΥ(µ) = fΥ(µ).e
jϕΥ(µ)

where
√
j = −1, tΥ(µ), iΥ(µ), fΥ(µ) and ωΥ(µ), ψΥ(µ),

ϕΥ(µ) are real-value functions, and tΥ(µ), iΥ(µ), fΥ(µ) are
three mapping functions from the real numbers to the interval
[0, 1]. Therefore, 0 ≤ tΥ(µ) + iΥ(µ) + fΥ(µ) ≤ 3.

From the present, the collection of all SVCNSs over the
universe of discourse θ will be denoted by γ (θ).

Definition 2.5 [8] Let Υc be the complement of a SVCNS
Υ. Then, Υc can be indicated as follows:

Υc = {⟨µ, TΥc(µ), IΥc(µ), FΥc(µ)⟩ |µ ∈ θ}

where
TΥc(µ) = tΥc(µ).e

jωΥc (µ)

IΥc(µ) = iΥc(µ).e
jψΥc (µ)

FΥ(µ) = fΥc(µ).e
jϕΥc (µ)

here, the transformation functions are defined as:

tΥc(µ) = fΥ(µ)

ωΥc(µ) = 2π − ωΥ(µ)

iΥc(µ) = 1− iΥ(µ)

ψΥc(µ) = 2π − ψΥ(µ)

fΥc(µ) = ωΥ(µ)

ϕΥc(µ) = 2π − ϕΥ(µ)

These transformations are applied to the components of
the SVCNS Υ to derive the components of its complement
Υc.

Definition 2.6 [27] Suppose k1 and k2 are two SVCNSs.
Then, the SVCNS operating rules are listed below:

(1) The sum of k1 and k2, indicated as k1 + k2, is listed
below:

Tk1+k2 (µ) = (tk1 (µ) + tk2 (µ)− tk1(µ)tk2 (µ))

×e
j2π

(
ω
k1

(µ)

2π +
ωk2

(µ)

2π −
ωk1

(µ)ωk2
(µ)

(2π)2

)

Ik1+k2 (µ) = (ik1 (µ) ik2 (µ)) .e
j2π

(
ψk1

(µ)

2π .
ψk2

(µ)

2π

)

Fk1+k2 (µ) = (fk1 (µ) fk2 (µ)) .e
j2π

(
ϕk1

(µ)

2π .
ϕk2

(µ)

2π

)
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(2) The product of k1 and k2, indicated as k1×k2, is listed
below:

Tk1×k2 (µ) = (tk1 (µ) tk2 (µ)) .e
j2π

(
ωk1

(µ)

2π .
ωk2

(µ)

2π

)

Ik1×k2 (µ) = (ik1 (µ) + ik2 (µ)− ik1 (µ) ik2 (µ))

×e
j2π

(
ψk1

(µ)

2π +
ψk2

(µ)

2π −
ψk1(µ)ψk2

(µ)

(2π)2

)

Fk1×k2 (µ) = (fk1 (µ) + fk2 (µ)− fk1 (µ) fk2 (µ))

×e
j2π

(
ϕk1

(µ)

2π +
ϕk2

(µ)

2π −
ϕk1(µ)ϕk2

(µ)

(2π)2

)

(3) The scalar multiplication of k1 is a SVCNS indicated
as k3 = λk1(λ > 0) and is listed below:

Tk3 (µ) =
(
1− (1− tk1 (µ))

λ
)
.e
j2π

(
1−(1−

ωk1
(µ)

2π

)λ

Ik3 (µ) =
(
(ik1 (µ))

λ
)
.e
j2π

(
ψk1

(µ)

2π

)λ

Fk3 (µ) =
(
(fk1 (µ))

λ
)
.e
j2π

(
ϕk1

(µ)

2π

)λ

(4) The power of k1 is indicated as k4 = (k1)
λ
(λ > 0),

and is listed below:

Tk4 (µ) =
(
(tk1 (µ))

λ
)
.e
j2π

(
ωk1

(µ)

2π

)λ

Ik4 (µ) =
(
1− (1− ik1 (µ))

λ
)
.e
j2π

(
1−
(
1−

ψk1
(µ)

2π

)λ)

Fk4 (µ) =
(
1− (1− fk1 (µ))

λ
)
.e
j2π

(
1−
(
1−

ϕk1
(µ)

2π

)λ)

Definition 2.7 [27] Suppose that k1 is a SVCNN. Then,
the score function S(k1) and the accuracy function T (k1) of
k1 are designated by the functions:

S(k1) =
1

6
((2 + Tk1 − Ik1 − Fk1)

+
1

2π
(4π + ωk1 − ψk1 − ϕk1))

T (k1) =
1

2

(
(Tk1 − Fk1) +

1

2π
(ωk1 − ϕk1)

)
Definition 2.8 [27] Suppose α and β are two SVCNNs.

S is the score function, and T is the accuracy function. If
S(α) < S(β), this implies that α < β; if S(α) = S(β), then

(1) If T (α) < T (β), this implies that α < β;
(2) If T (α) = T (β), this implies that α = β.
Definition 2.9 Suppose bl =

(
tl.e

jωl , il.e
jψl , fl.e

jϕl
)

is
a collection of SVCNNs, the single-valued complex neu-
trosophic weighted averaging (SVCNWA) operator is des-
ignated by the function:

SV CNWAw (b1, b2, ..., bm) =
m∑
l=1

wlbl

where w = (w1, w2, w3, ..., wm) is the weight vector of

bl (l = 1, 2, 3, ...,m), with 0 ≤ wl ≤ 1 and
n∑
l=1

wl = 1.

The SVCNWA operator is denoted as:

SV CNWAw (b1, b2, ..., bm)

=



1−
m∏
l=1

(1− tl)
wl .e

j2π

(
1−

m∏
l=1

(1− ωl
2π )

wl

)
,

m∏
l=1

(il)
wl .e

j2π

(
m∏
l=1

(
ψl
2π

)wl)
,

m∏
l=1

(fl)
wl .e

j2π

(
m∏
l=1

(
ϕl
2π

)wl)


(1)

When the weight vector is w =
(

1
m ,

1
m , ...,

1
m

)
, the

SVCNWA operator shall be simplified to a single-valued
complex neutrosophic average (SVCNA) operator.

III. DISTANCE MEASURES BETWEEN SVCNSS

Definition 3.1 [28] Suppose θ is a fixed limited space. A
distance measure of the single-valued complex neutrosophic
set is a function d : γ (θ)× γ (θ) → [0, 1], which fulfills the
four properties below: for any k1, k2, k3 ∈ γ (θ)

(1) 0 ≤ d (k1, k2) ≤ 1;
(2) d (k1, k2) = 0 if and only if k1 = k2;
(3) d (k1, k2) = d (k2, k1);
(4) d (k1, k3) ≤ d (k1, k2) + d (k2, k3);
In the following we will introduce some normalized dis-

tance formulas for single-valued complex neutrosophic sets.
Suppose that k1 and k2 are two SVCNSs in θ =

{µ1, µ2, ..., µm}. The four normalized distance formulas for
k1 and k2 are as follows:

Definition 3.2 The normalized Hamming distance:

dHm(k1, k2) =
1

6m

m∑
j=1

{∣∣tk1(µj)− tk2(µj)
∣∣

+
∣∣ik1(µj)− ik2(µj)

∣∣+ ∣∣fk1(µj)− fk2(µj)
∣∣

+
1

2π

∣∣ω̂k1(µj)− ω̂k2(µj)
∣∣+ ∣∣ψ̂k1(µj)− ψ̂k2(µj)

∣∣
+

1

2π

∣∣ϕ̂k1(µj)− ϕ̂k2(µj)
∣∣} (2)

Definition 3.3 The normalized Euclidean distance:

dEu(k1, k2) =
1

6m

m∑
j=1

{∣∣∣∣tk1(µj)− tk2(µj)

∣∣∣∣2
+

∣∣∣∣ik1(µj)− ik2(µj)

∣∣∣∣2 + ∣∣∣∣fk1(µj)− fk2(µj)

∣∣∣∣2
+

1

2π

(∣∣∣∣ω̂k1(µj)− ω̂k2(µj)

∣∣∣∣2 + ∣∣∣∣ψ̂k1(µj)− ψ̂k2(µj)

∣∣∣∣2
+

∣∣∣∣ϕ̂k1(µj)− ϕ̂k2(µj)

∣∣∣∣2)} 1
2

(3)
Definition 3.4 The normalized Hausdorff distance:

dHa(k1, k2) =
1

m

m∑
j=1

max

{
max

{∣∣tk1(µj)− tk2(µj)
∣∣,

∣∣ik1(µj)− ik2(µj)
∣∣, ∣∣fk1(µj)− fk2(µj)

∣∣},
1

2π
max

{∣∣ω̂k1(µj)− ω̂k2(µj)
∣∣, ∣∣ψ̂k1 (µj)− ψ̂k2 (µj)

∣∣,∣∣ϕ̂k1 (µj)− ϕ̂k2 (µj)
∣∣}} (4)
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Definition 3.5 The normalized Fifth distance measure:

dFd(k1, k2) =
1

4m

m∑
j=1

{(∣∣tk1(µj)− tk2(µj)
∣∣

+
∣∣ik1(µj)− ik2(µj)

∣∣+ ∣∣fk1(µj)− fk2(µj)
∣∣)/3

+ max

(∣∣tk1(µj)− tk2(µj)
∣∣, ∣∣ik1(µj)− ik2(µj)

∣∣,∣∣fk1(µj)− fk2(µj)
∣∣)+

1

2π

{(∣∣ω̂k1(µj)− ω̂k2(µj)
∣∣

+
∣∣ψ̂k1 (µj)− ψ̂k2 (µj)

∣∣+ ∣∣ϕ̂k1 (µj)− ϕ̂k2 (µj)
∣∣)/3

+ max

(∣∣ω̂k1(µj)− ω̂k2(µj)
∣∣, ∣∣ψ̂k1 (µj)− ψ̂k2 (µj)

∣∣,∣∣ϕ̂k1 (µj)− ϕ̂k2 (µj)
∣∣)}

(5)

where 0 ≤ ω̂ ≤ 2π and

{
ω̂ = ω + 2 (c+ 1)π ω ≺ 0

ω̂ = ω − 2cπ ω ≻ 2π
in

which c is a positive integer and c =
[∣∣ ω

2π

∣∣]. Similarly, ψ̂
and ϕ̂ satisfy the same conditions, respectively. We shall now
prove that dHm, dEu, dHa, dFd fulfill the four conditions
mentioned above.

Proof: Taking Hamming distance dHm(k1, k2) as an ex-
ample, we could easy to see that dHm(k1, k2) fulfills the
conditions (1) and (3). Thus, we just go to justify the
condition (2) and (4).

For the condition (2), k1 = k2 ⇒ dHm(k1, k2) = 0 is
easy to see.

We shall prove below that dHm(k1, k2) = 0 ⇒ k1 =
k2. Firstly, by dHm(k1, k2) = 0, we can conclude that:
tk1 (µj) = tk2 (µj), ik1 (µj) = ik2 (µj), fk1 (µj) =

fk2 (µj), ω̂k1 (µj) = ω̂k2 (µj), ψ̂k1 (µj) = ψ̂k2 (µj) and
ϕ̂k1 (µj) = ϕ̂k2 (µj) (j = 1, 2, ...,m).

Then, we can obtain: ωk1 = ωk2 ± 2cπ in which c is an
integer.

Obviously, ejωk1 = ej(ωk2±2cπ) = ejωk2 , hence, ejωk1 =
ejωk2 . Similarly, ψ and ϕ satisfy the same conditions, re-
spectively.

Thus, k1 = k2.
For the condition (4), let k1, k2, k3 ∈ γ (θ). By the

triangular inequality, we can obtain:

|tk1 (µj)− tk2 (µj)|+ |tk2 (µj)− tk3 (µj)|

≥ |tk1 (µj)− tk3 (µj)|

|ik1 (µj)− ik2 (µj)|+ |ik2 (µj)− ik3 (µj)|

≥ |ik1 (µj)− ik3 (µj)|

|fk1 (µj)− fk2 (µj)|+ |fk2 (µj)− fk3 (µj)|

≥ |fk1 (µj)− fk3 (µj)|

|ω̂k1 (µj)− ω̂k2 (µj)|+ |ω̂k2 (µj)− ω̂k3 (µj)|

≥ |ω̂k1 (µj)− ω̂k3 (µj)|∣∣∣ψ̂k1 (µj)− ψ̂k2 (µj)
∣∣∣+ ∣∣∣ψ̂k2 (µj)− ψ̂k3 (µj)

∣∣∣
≥
∣∣∣ψ̂k1 (µj)− ψ̂k3 (µj)

∣∣∣

∣∣∣ϕ̂k1 (µj)− ϕ̂k2 (µj)
∣∣∣+ ∣∣∣ϕ̂k2 (µj)− ϕ̂k3 (µj)

∣∣∣
≥
∣∣∣ϕ̂k1 (µj)− ϕ̂k3 (µj)

∣∣∣
Hence, we can obtain d (k1, k2) + d (k2, k3) ≥ d (k1, k3).

The proof of the Definition 3.1. is completed.

IV. ENTROPY OF A SVCNS

A. Axiomatic Definition of the Entropy for SVCNS

This chapter introduced the definition of SVCNS entropy,
drawing inspiration from previous works [12] and [26].

Definition 4.1: A real-value function E : γ(θ) → [0, 1]
is known as an entropy measure for a SVCNS M over the
universe of discourse θ, if E fulfills the following conditions:

(1) E(M) = 0 if M is a crisp set;
(2) E(M) = 1 if and only if M = N ={〈

µi, 0.5e
jπ, 0.5ejπ, 0.5ejπ

〉
|µi ∈ θ

}
;

(3) If d(M,N) ≥ d(P,N), this means that E(M) ≤
E(P ) for every point M,P ∈ γ(θ), where d is one of the
four proposed distance formulas for SVCNS;

(4) E(M) = E(M c). The calculated entropy value of the
complement of M is the same as the calculated entropy value
of M .

In the following, we shall present some new entropy
measure formulas for SVCNS that are consistent with all
the conditions mentioned above.

Theorem 1: Given the four distance measures for SVCNSs,
denoted as dHm, dE , dHa, dFd, for any M ∈ γ (θ), the
entropy measures of M can be expressed as Ek (M) =
1 − 2dk (M,N), where k takes values from the set k =
Hm,Eu,Ha, Fd.

Based on Theorem 1 and the four proposed distance
formulas for SVCNS, we can derive four entropy value
calculation formulas, denoted as (EHm, EHu, EHa, EFd)
for a SVCNS M in θ = {µ1, µ2, ..., µm}. These entropy
formulas take the following form:

EHm(M) = 1− 2dHm(M,N) =

1− 1

3m

m∑
j=1

{
|tM (µj)− 0.5|+ |iM (µj)− 0.5|

+ |fM (µj)− 0.5|

}
+

1

2π

m∑
j=1

{
|ω̂M (µj)− π|

+
∣∣∣ψ̂M (µj)− π

∣∣∣+ ∣∣∣ϕ̂M (µj)− π
∣∣∣}

(6)

EEu(M) = 1− 2dE(M,N) =

1− 1

3m

m∑
j=1

{
|tM (µj)− 0.5|2 + |iM (µj)− 0.5|2

+ |fM (µj)− 0.5|2 + 1

(2π)2
|ω̂M (µj)− π|2

+
∣∣∣ψ̂M (µj)− π

∣∣∣2 + ∣∣∣ϕ̂M (µj)− π
∣∣∣2}1/2

(7)
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EHa(M) = 1− 2dHa(M,N) =

1− 2

m

m∑
j=1

max

{
max

{
|tM (µj)− 0.5| , |iM (µj)− 0.5| ,

|fM (µj)− 0.5|

}
,
1

2π
max

{
|ω̂M (µj)− π| ,

∣∣∣ψ̂M (µj)− π
∣∣∣ , ∣∣∣ϕ̂M (µj)− π

∣∣∣}}
(8)

EFd(M) = 1− 2dFd(M,N) =

1−
m∑
j=1

{(∣∣tM (µj)− 1
2

∣∣+ ∣∣iM (µj)− 1
2

∣∣+ ∣∣fM (µj)− 1
2

∣∣)
6m

+
max (|tM (µj)− 0.5| , |iM (µj)− 0.5| , |fM (µj)− 0.5|)

2m

+

(
|ω̂M (µj)− π|+

∣∣∣ψ̂M (µj)− π
∣∣∣+ ∣∣∣ϕ̂M (µj)− π

∣∣∣)
6mπ

+
max

(
|ω̂M (µj)− π| ,

∣∣∣ψ̂M (µj)− π
∣∣∣ , ∣∣∣ϕ̂M (µj)− π

∣∣∣)
2mπ

}
(9)

We shall prove below that EHm, EHu, EHa, EFd fulfill
the four conditions mentioned above.

Proof: We will take EHm (M) as an example and prove
that EHm fulfills the four criteria in Definition 4.1.

For condition (1), if M is a crisp set, i.e., M ={〈
µj , e

j2π, 0, 0
〉
|µj ∈ θ

}
or
{〈
µj , 0, 0, e

j2π
〉
|µj ∈ θ

}
, by

equation (6), we can obtain:

EHm(M) = 1− 2dHm(M,N) = 0.

For condition (2), M = N ⇒ EHm (M) = 1 is easy to
see.

Now, we prove below that EHm (M) = 1 ⇒M = N .
First of all, by E (M) = 1, we can obtain: dHm = 0.

Then, by equation (6), we can obtain:

ω̂M (µj) = π

ψ̂M (µj) = π

ϕ̂M (µj) = π

since
ωM (µj) = ω̂M (µj)± 2c1π

ψM (µj) = ψ̂M (µj)± 2c2π

ϕM (µj) = ϕ̂M (µj)± 2c3π

where c1, c2 and c3 are integers.
Hence, M = N .
In conclusion, M =

{〈
µj ,

1
2e
jπ, 12e

jπ, 12e
jπ
〉
|µj ∈ θ

}
.

For condition (3), if d (M,N) ≥ d (P,N), since E (M) =
1− 2d (M,N), we can obtain: E (M) ≤ E (P ).

For condition (4), by ωM (µj) = ω̂M (µj) ± 2c1π and
ωMc (µj) = ω̂Mc (µj) ± 2c2π, where c1, c2 are integer,
and since ωM (µj) + ωMc (µj) = 2π, we can deduce that
ω̂M (µj) + ω̂Mc (µj) = 2c3π where c3 is an integer.

Considering that 0 ≤ ω̂ ≤ 2π, we can conclude that:

ω̂M (µj) + ω̂Mc (µj) = 0/2π/4π

When ω̂M (µj)+ω̂Mc (µj) = 0, it implies that ω̂M (µj) =

ω̂Mc (µj) = 0. Similarly, ψ̂ and ϕ̂ satisfy the same condi-
tions, respectively. Hence, E (M) = E (M c)

When ω̂M (µj) + ω̂Mc (µj) = 2π, we can deduce:

|ω̂M (µj)− π| = |2π − ω̂Mc (µj)− π| = |ω̂Mc (µj)− π|

In a similar manner, ψ̂ and ϕ̂ satisfy the same conditions,
respectively. Hence, in this case as well, we have E (M) =
E (M c).

When ω̂M (µj) + ω̂Mc (µj) = 4π, since 0 ≤ ω̂ ≤ 2π,
we can conclude that ω̂M (µj) = ω̂Mc (µj) = 2π. Similarly,
ψ̂ and ϕ̂ satisfy the same conditions, respectively. Thus, we
also have E (M) = E (M c).

Summarizing, we can deduce E (M) = E (M c). The
proof is completed.

B. Numerical Example

Suppose δ =
〈
µ, tδ(µ)e

jωδ(µ), iδ(µ)e
jψδ(µ), fδ(µ)e

jϕδ(µ)
〉
.

For any positive real number m, the SVCNS η = δm can
be derived as follows:

Tη(µ) = ((tδ(µ))
m
) ·ej2π

(
ωδ(µ)

2π

)m
Iη(µ) = (1− (1− iδ(µ))

m
) ·ej2π

(
1−
(
1−ψδ(µ)

2π

)m)

Fη(µ) = (1− (1− fδ(µ))
m
) ·ej2π

(
1−
(
1−ϕδ(µ)

2π

)m) (10)

Now we consider the SVCNS δ on θ = {1, 2, 3, 4, 5} as
follows:

δ =

〈
1, 0.1ej2π(0.35), 0.7ej2π(0.45), 0.6ej2π(0.55)

〉
〈
2, 0.3ej2π(0.4), 0.6ej2π(0.45), 0.5ej2π(0.45)

〉
〈
3, 0.6ej2π(0.5), 0.5ej2π(0.4), 0.5ej2π(0.45)

〉
〈
4, 0.8ej2π(0.55), 0.4ej2π(0.35), 0.3ej2π(0.35)

〉〈
5, 0.9ej2π(0.6), 0.2ej2π(0.4), 0.1ej2π(0.3)

〉


Taking into account the quality of the linguistic variables,

we classify the variables δ in as ”GOOD”.
δ2 can be considered as “Very GOOD”;
δ3 can be considered as “Quite very GOOD”;
δ4 can be considered as “Very very GOOD”.
By Equation (10), we can generate the following SVCNSs:

δ2 =

〈
1, 0.01ej2π(0.1225), 0.91ej2π(0.6975), 0.84ej2π(0.75)

〉
〈
2, 0.09ej2π(0.16), 0.84ej2π(0.6975), 0.75ej2π(0.6975)

〉
〈
3, 0.36ej2π(0.25), 0.75ej2π(0.64), 0.75ej2π(0.6975)

〉
〈
4, 0.64ej2π(0.3025), 0.64ej2π(0.5775), 0.51ej2π(0.5775)

〉〈
5, 0.81ej2π(0.36), 0.36ej2π(0.64), 0.19ej2π(0.51)

〉


δ3 =
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TABLE I
AMBIGUITY COMPARISON WITH VARIOUS ENTROPY MEASUREMENTS

FOR SVCNS

SVCNS EHm EEu EHa EFd

δ 0.7267 0.6385 0.4400 0.6533
δ2 0.5520 0.4947 0.3370 0.4855
δ3 0.3720 0.3272 0.2140 0.3114
δ4 0.2580 0.2230 0.1167 0.2159



〈
1, 0.001ej2π(0.0429), 0.973ej2π(0.8336), 0.936ej2π(0.875)

〉
〈
2, 0.027ej2π(0.064), 0.936ej2π(0.8336), 0.875ej2π(0.8336)

〉
〈
3, 0.216ej2π(0.125), 0.875ej2π(0.784), 0.875ej2π(0.8336)

〉
〈
4, 0.512ej2π(0.1664), 0.784ej2π(0.7254), 0.657ej2π(0.7254)

〉
〈
5, 0.729ej2π(0.216), 0.488ej2π(0.784), 0.271ej2π(0.657)

〉


δ4 =

〈
1, 0.0001ej2π(0.015), 0.9919ej2π(0.9085), 0.9744ej2π(0.9375)

〉
〈
2, 0.081ej2π(0.0256), 0.9744ej2π(0.9085), 0.9375ej2π(0.9085)

〉
〈
3, 0.1296ej2π(0.0625), 0.9375ej2π(0.8704), 0.9375ej2π(0.9085)

〉
〈
4, 0.4096ej2π(0.0915), 0.8704ej2π(0.8215), 0.7599ej2π(0.8215)

〉
〈
5, 0.6561ej2π(0.1296), 0.5904ej2π(0.8704), 0.3439ej2π(0.7599)

〉


We can calculate the values of Ek (k = Hm,Eu,Ha, Fd)

using equations (6-9), as shown in Table I.
From both a human intuition and mathematical operations

perspective, these entropy measurements for SVCNS should
be sorted as follows: Ek (δ) ≻ Ek

(
δ2
)

≻ Ek
(
δ3
)

≻
Ek
(
δ4
)
. Therefore, the entropy values computed in Table

I demonstrate that Ek (k = Hm,Eu,Ha, Fd) exhibit favor-
able properties with respect to structured linguistic variables.

V. DECISION-MAKING EXAMPLE

A. An Approach for MAGDM

In this section, we utilize the operational guidelines and the
previously defined entropy measures for SVCNS to present a
multi-attribute group decision-making (MAGDM) approach.

Let’s consider a scenario where there is a committee of
l1 experts (Eh, h = 1, 2, ..., l1) tasked with evaluating l2
alternatives (Ap, p = 1, 2, ..., l2) across l3 selection criteria
(Cq, q = 1, 2, ..., l3). In this evaluation, the performance rat-
ings for these alternatives are represented as single-valued
complex neutrosophic numbers (SVCNNs). The process for
the MAGDM method is outlined as follows:

Step 1: Constructing the evaluation matrix Mλ for expert
Eh.

In this step, we construct the evaluation matrix Mλ

represented as Mλ =
[
mλ
ij

]
l2×l3

, where i = 1, 2, ..., l2,
j = 1, 2, ..., l3, and λ = 1, 2, ..., l1. Each element mλ

ij is
defined as:

mλ
ij =

〈
Tλij , I

λ
ij , F

λ
ij

〉
=
〈
tλij .e

jωλij , iλij .e
jψλij , fλij .e

jϕλij

〉
where mλ

ij is represented by a single-valued complex neu-
trosophic number (SVCNN) and contains the single-valued
complex neutrosophic message for alternative AP regarding
attribute Cq as assessed by expert Eh.

Step 2: Normalization of the decision matrix.

mλ
ij =

{
mλ
ij j ∈ benefit attributes(
mλ
ij

)c
j ∈ cos t attributes

Step 3: Aggregation of information for alternatives and
criteria

Using the decision-making matrix Mλ =
[
mλ
ij

]
l2×l3

,
we can obtain the comprehensive decision matrix M =
[mij ]l2×l3 = ⟨Tij , Iij , Fij⟩, which contains aggregated in-
formation. Here, mij is defined as follows:

mij =

l1∑
λ=1

1

l1
mλ
ij

=
1

l1
m1
ij +

1

l1
m2
ij + . . .+

1

l1
ml1
ij

=
1

l1

(
m1
ij +m2

ij + . . .+ml1
ij

)
(11)

where

Tij =

(
1−

l1∏
λ=1

(
1− tλij

) 1
l1

)
.e
j2π

1−
l1∏
λ=1

(
1−

ωλij
2π

) 1
l1



Iij =

(
l1∏
λ=1

(
iλij
) 1
l1

)
.e
j2π

 l1∏
λ=1

(
ψλij
2π

) 1
l1



Fij =

(
l1∏
λ=1

(
fλij
) 1
l1

)
.e
j2π

 l1∏
λ=1

(
ϕλij
2π

) 1
l1



Step 4: Calculating the entropy of alternatives in the
aggregated decision matrix M = [mij ]l2×l3 .

In this step, we compute the entropy values for each
alternative in the aggregated decision matrix M = [mij ]l2×l3
by equation(6-9).

Step 5: Ranking the alternatives
By applying the proposed entropy measures in a multi-

attribute decision problem, we can effectively rank the al-
ternatives. When the entropy value of one alternative is
lower than that of others, it indicates that the decision maker
can obtain more valuable information from that alternative.
Consequently, we can establish the priority and identify the
optimal solution by sorting all alternatives in ascending order
based on the proposed entropy values for SVCNSs.

B. Numerical Example

In this section, we will illustrate the application of the
presented MAGDM method with a numerical example for
optimal target selection. We have adapted a multi-criteria
decision problem from Xu [27] for this demonstration.

A small printing and transportation company is in the
process of selecting a green supplier to purchase a new
vehicle for its aftermarket business. The company intends to
evaluate three potential suppliers, denoted as S1, S2, S3. A
management committee comprising three decision makers,
namely D1, D2, and D3, each with different expertise, is
responsible for conducting the evaluation. In the selection
process, five attributes are taken into consideration: price/cost
(Q1), quality (Q2), delivery (Q3), relationship closeness
(Q4), and environmental management systems (Q5). It’s
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important to note that all these attributes are of benefit type.
The three decision makers assess the suitability of the three
potential suppliers in relation to these attributes using a
linguistic rating set R = {C,B, F,G, T}, where:

C = Catastrophic =
(
0.2ej2π(0.4), 0.8ej2π(0.5), 0.7ej2π(0.55)

)
B = Bad =

(
0.4ej2π(0.45), 0.6ej2π(0.45), 0.6ej2π(0.5)

)
F = Fair =

(
0.6ej2π(0.5), 0.5ej2π(0.4), 0.5ej2π(0.45)

)
G = Good =

(
0.8ej2π(0.55), 0.4ej2π(0.35), 0.4ej2π(0.4)

)
T = Terrific =

(
0.9ej2π(0.6), 0.2ej2π(0.3), 0.1ej2π(0.35)

)
The entire green supplier selection process is outlined in

the following steps:
Step 1: Constructing the evaluation matrix Mλ.
Three decision makers (D1, D2, D3) will access

three potential suppliers (S1, S2, S3) based on five
attributes (Q1, Q2, Q3, Q4, Q5). The evaluation matrix
Mλ (λ = 1, 2, 3) is constructed as follows:

M1 =

G F B G B

F T G F G

T T F G G



M2 =

F F F F F

F G G F G

G G G T F



M3 =

G F B G B

G G G F T

T G F G G


Step 2: Because all criteria are benefit attributes, they do

not need to be standardized.
Step 3: Aggregation of information for alternatives and

criteria.
We may derive the aggregated decision matrix M by

equation (11) and show it in Table II.
Step 4: Calculating the entropy values of alternatives, as

displayed in Table III.
Step 5: Ranking the alternatives.
If an alternative has a relatively small entropy value com-

pared to all other alternatives, it is considered a better choice.
Therefore, the alternative with the lowest entropy value is
given significant priority and importance. In this case, when
we examine the entropy values for all alternatives in Table III
using the presented entropy measures for SVCNS (Ek where
k = Hm,Eu,Ha, Fd), we observe that the order of entropy
values for all alternatives is Ek (S1) ≻ Ek (S2) ≻ Ek (S3).
As a result, we can determine the priority order of all
potential providers to be S3 ≻ S2 ≻ S1, with S3 being
the top-ranked provider. This aligns with the findings in
[27], demonstrating the validity and reasonableness of the
proposed entropy measures for SVCNS in decision-making
applications.

C. Comparative Analysis

To further validate the proposed method, we compare it
with seven existing methods from Xu[29], Ye[30], Cui et
al.[31], and Peng et al.[32] to rank the examples mentioned
above.

Since there are limited studies on single-valued complex
neutrosophic decision-making in academia at present, we
adapt the decision-making method for single-valued neutro-
sophic sets by incorporating the distance formula and score
function proposed earlier. We apply this adapted method
to solve the single-valued complex neutrosophic decision-
making problem. For instance, in the case of SVCNSWA, we
first obtain indicator weights using the maximum discretiza-
tion difference method. Then, we aggregate the decision
matrix using WA operator. Finally, we utilize the similarity
equation S(x, y) = 1 − d(x, y) for final ranking, where d
represents the distance equation presented earlier. Similar
procedures are followed for the remaining methods. The
sorting results from all methods are obtained and displayed in
Table IV. It is evident from the results that different methods
yield consistent rankings and optimal choices, underscoring
the effectiveness and practicality of the proposed methodol-
ogy.

VI. CONCLUSION

Compared to general neutrosophic sets, SVCNS offers
the advantage of effectively handling periodic data. While
entropy plays a crucial role in fuzzy set theory, there has
been relatively little research on entropy measures specifi-
cally designed for SVCNS. Therefore, the objective of this
paper is to introduce innovative methods for computing
entropy values tailored to SVCNS. In this regard, we first
present novel normalized distance formulas for SVCNS by
incorporating phase term transformations. Subsequently, we
introduce entropy formulas that are based on these distance
metrics. Finally, we validate and demonstrate the applica-
bility of the proposed entropy measure within the context
of green supplier selection through an illustrative example
and comparison with existing methods. The entropy measure
introduced in this paper exhibits the following strengths and
weaknesses:

Advantages:
(1) Since {⟨0.5ejπ, 0.5ejπ, 0.5ejπ⟩} represents the fuzzi-

est balance point, the entropy value of SVCNS is higher
when the distance between SVCNS and equilibrium points
is smaller. This alignment with human cognitive perception
makes the proposed axiomatic definition of entropy for
SVCNS intuitively consistent.

(2) The simplicity of the entropy formula , which relies on
straightforward distance metrics, makes it highly computa-
tionally efficient. Furthermore, its adaptability allows for the
straightforward derivation of new entropy formulas should
novel distance metrics be introduced in the future. This
flexibility enhances the utility and versatility of the entropy
measures for SVCNS proposed in this study.

Disadvantages:
(1) The proposed SVCNS entropy is based on distance

measurements, which implies that the effectiveness of the
entropy formula is highly sensitive to the appropriate selec-
tion of distance metrics.
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TABLE II
THE AGGREGATED DECISION MATRIX M .

Attribute Alternative Aggregated Values

Q1
S1 (0.748ej2π(0.5339), 0.4309ej2π(0.3659), 0.4309ej2π(0.416))

S2 (0.6825ej2π(0.5173), 0.4642ej2π(0.3826), 0.4642ej2π(0.4327))

S3 (0.874ej2π(0.584), 0.252ej2π(0.3158), 0.1587ej2π(0.3659))

Q2
S1 (0.60ej2π(0.50), 0.50ej2π(0.40), 0.50ej2π(0.45))

S2 (0.8413ej2π(0.5673), 0.3175ej2π(0.3325), 0.252ej2π(0.3826))

S3 (0.8413ej2π(0.5673), 0.3175ej2π(0.3325), 0.252ej2π(0.3826))

Q3
S1 (0.4759ej2π(0.4672), 0.5646ej2π(0.4327), 0.5646ej2π(0.4827))

S2 (0.80ej2π(0.55), 0.40ej2π(0.35), 0.40ej2π(0.40))

S3 (0.6825ej2π(0.5173), 0.4642ej2π(0.3826), 0.4642ej2π(0.4327))

Q4
S1 (0.748ej2π(0.5339), 0.4309ej2π(0.3659), 0.4309ej2π(0.416))

S2 (0.60ej2π(0.50), 0.50ej2π(0.40), 0.50ej2π(0.45))

S3 (0.8413ej2π(0.5673), 0.3175ej2π(0.3325), 0.252ej2π(0.3826))

Q5
S1 (0.4759ej2π(0.4672), 0.5646ej2π(0.4327), 0.5646ej2π(0.4827))

S2 (0.8413ej2π(0.5673), 0.3175ej2π(0.3325), 0.252ej2π(0.3826))

S3 (0.748ej2π(0.5339), 0.4309ej2π(0.3659), 0.4309ej2π(0.416))

TABLE III
THE ENTROPY VALUES OF ALTERNATIVES

SVCNS EHm EEu EHa EFd

S1 0.8621 0.8186 0.7077 0.8083
S2 0.7497 0.6865 0.4940 0.6781
S3 0.5100 0.6269 0.4052 0.6173

TABLE IV
COMPARISON OF DIFFERENT METHODS

Methods Rinking Optimal Option
SVCNSWA[30] S3 ≻ S2 ≻ S1 S3

SVCNSWG[30] S3 ≻ S2 ≻ S1 S3

TOPSIS[29] S3 ≻ S2 ≻ S1 S3

MABAC[29] S3 ≻ S2 ≻ S1 S3

TOPSIS-MABAC[31] S3 ≻ S2 ≻ S1 S3

Similarity Measure 1[29] S3 ≻ S2 ≻ S1 S3

Similarity Measure 2 [32] S3 ≻ S2 ≻ S1 S3

Our Method S3 ≻ S2 ≻ S1 S3

(2) The construction of cross-entropy measures for
SVCNS, often used in practical applications such as multi-
attribute decision making and pattern recognition, is not
easily achieved using the provided entropy equation for
SVCNS.

(3) The presented entropy measures for SVCNS do not
take into account the significance or importance of individual
elements or objects, which may limit their applicability in
scenarios where this information is crucial.

Overall, the introduced entropy measures for SVCNS
offer valuable insights and computational simplicity but may
require careful consideration of distance metric selection and
may not cover all aspects of the complexity of real-world
decision-making processes. Further research and refinement
are needed to address these limitations.
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