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Abstract—A complete maximal subgraph of a graph H is
designated as a clique. A set S ⊆ V is clique free if ⟨S⟩, the
subgraph induced by the set S does not induce any clique of H .
The clique free number βvc = βvc(H) is the maximum order
of a clique free set of H . In this present work, we have deduced
few bounds for cilque free number and have substantiated the
graphs attaining the same. Also, a Gallai’s theorem type result
for clique free number is proved and Konig-Egervarey Theorem
is extended to clique free sets. An algorithm to find all the
maximal clique free sets is derived.

Index Terms—Independent sets, clique transversal sets, clique
free sets, clique independent sets.

I. INTRODUCTION

FOR any of the unspecified terminologies refer [1], [25].
By citing a graph H, we connote a connected simple

finite graph with q edges and p vertices. A set S is a
dominating set of H if and only if, N(w)∩D ̸= ϕ for every
w ∈ V −D. The domination number γ(H) is the minimum
number of vertices in a dominating set. Comprehensive
survey of domination theory is available in [4], [11]. On the
contrary, a set S ⊆ V is said to be independent if none of
any two vertices in S are adjacent. The independence number
β0 = β0(H) (independent domination number i = i(H) ) is
the maximum (minimum) order of a maximal independent
set of H . A vertex v is a cutpoint if H − v is disjoint
(unconnected) A maximal subgraph of H with no cutpoint
is a block. A complete maximal subgraph of H is designated
as a clique. Let K(H) denote the set of all cliques in H and
|K(H)| = k. A graph H is referred to as a block graph if
any and every block of H is a clique. The minimum clique
number ϑ = ϑ(H) (maximum clique number ω = ω(H)) is
the order of a minimum (maximum) clique of H . A graph H
is t-clique regular if ω(H) = ϑ(H) = t. The properties of
clique regular graphs have been studied in [3]. Any triangle
free graph without isolates is 2-clique regular. Any wheel
graph Wn is 3-clique regular. A wind mill graph Wd(n, k)
is a graph with k copies of complete graph Kn adjacent at
a single vertex. In particular, Wd(3, k) = Fk is called the
friendship graph. Any windmill graph Wd(n, k) is n-clique
regular. A generalized star denoted S(n, k) is a windmill
graph in which each Kn has n− 1 vertices in common. The
corona of two graphs H1 and H2 is the graph H = H1 ·H2.
It is developed from one copy of H1 and |V (H1)| copies of
H2, where the ith vertex of H1 is conterminous to each and
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every vertex in ith copy of H2. Any corona Km ·Km−1 is
a m-clique regular graph.

A clique graph KH(H) of H is a graph with vertex set as
cliques of H and any two vertices in KH(H) are adjacent
if and only if the corresponding cliques in H have a vertex
in common. A graph H is called a clique path if KH(H)
is a path. Similarly, H is a clique cycle if KH(H) is a
cycle. A clique path, two different types of clique cycles
and a generalized star are shown in the Fig. 1. Further,
H is clique complete if any two cliques have atleast one
vertex in common. If H is clique complete then KH(H)
is complete. Any generalized star S(n, k) and any windmill
graph Wd(n, k) are examples of clique complete graphs.

Generalized Star S(4, 6)

Another Clique CycleA Clique CycleA Clique Path

A Corona K
3

.K
2

Fig. 1. Examples of a clique path, two different types of clique cycles, a
generalized star and a Corona

Furthermore, a comprehensive investigation into the charac-
teristics of cliques in graph structures has been conducted by
Surekha et.al [24], Sayinath Udupa N V [22] and Tana et.
al [26]. In a parallel line of research, Isabel Cristina Lopes
et. al [12] have also explored this intriguing topic.

A. Clique Transversal number
A vertex v ∈ V and an edge x ∈ E are said to cover

each other if v is incident on the edge x. Minimum number
of vertices that cover all the edges of a graph is called the
vertex covering number α0 = α0(H). In 1990, the concept
of vertex covering is extended as clique transversal number,
defined and studied by Tuza [27], and later by Erdos et.al
[9] in 1992. A vertex v ∈ V and a clique h ∈ K(H) are said
to cover each other if v is incident on the clique h. Minimum
number of verices that cover all the cliques of H is called
clique transversal number τc = τc(H). We immediately note
that for any triangle free graph, α0(H) = τc(H).

For any v ∈ V the open neighborhood N(v) = {u ∈ V |u
is adjacent to v} and the closed neighborhood N [v] =
N(v) ∪ {v}. Then degree d(v) = |N(v)|. Let ∆(H) and
δ(H) denote the maximum and minimum degree of H
respectively. If H denote the complement of H then it is
well known that

∆(H) + δ(H) = ∆(H) + δ(H) = p− 1. (∗)
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II. CLIQUE FREE NUMBER

We recall the definition of VB independent sets defined
in [2]. A set D ⊆ V is said to be VB independent if ⟨D⟩ the
induced subgraph induced by the set D, does not contain any
block of H . The VB independence number βvb = βvb(H)
is the order of a maximum VB independent set of H . On
the similar lines we define clique free number of a graph as
follows. A set S ⊆ V is said to be clique free set if ⟨S⟩ the
subgraph induced by the set S does not induce any clique of
H . The clique free number βvc = βvc(H) is the maximum
order of a clique free set of H .

As every independent set is clique free, β0(H) ≤ βvc(H).
Note that if ⟨S⟩ is free from edges we get independent sets.
If H is any triangle free graph, then every edge is a clique of
H and hence we have βvc(H) = βo(H). Let C(H) denote
the set of cut points of H and |C(H)| = n. If H is any
block graph, then the set of non-cut points V −C(H) does
not induce any clique of H and hence βvc ≥ p−n. For any
windmill graph H = Wd(n, k), has (n−1)k non-cut points
and only one cut point. Therefore βvc(H) = (n − 1)k =
|V − C(H)|.

A property satisfied by set S ⊆ V is called hereditary if
every subset of S obeys the same property and is called
superhereditary if every superset of S obeys the same
property. We observe that the property of clique freeness
is a hereditary property and clique transversal property is
superhereditary in the sense that every subset of a clique
free set is also clique free and every superset of a clique
transversal set is also a clique transversal set of H .

Properties of n-independent sets are studied by the same
authors see [23]. We say that a vertex v ∈ V , n-covers
an edge x ∈ E, if x ∈ ⟨N [v]⟩. A set S ⊆ V is said to
be n-independent if every edge in ⟨S⟩ is n-covered by a
vertex in V − S. The n-independence number βn = βn(H)
is the maximum order of n-independent set. It is proved that
β0(H) ≤ βn(H), We prove that clique free number βvc fits
best in between the two.

Proposition II.1. For any graph H ,

β0(H) ≤ βvc(H) ≤ βn(H) (1)

.

Proof: Since every independent set is a clique free set,
and every clique free set is n-independent set the result
follows.

Example 2.1
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Fig. 2. A graph H with βvc=5

For the graph H in Fig. 2, S1 = {v1, v8, v9, v6} is a
β0-set, S2 = {v1, v8, v9, v6, v3} is a βvc-set and S3 =

{v1, v8, v9, v6, v3, v4} is a βn-set of H , Thus β0(H) =
4 < βvc(H) = 5 < βn(H) = 6 and hence for the
graph H strict inequality in equation (1) holds. Equality
in equation (1) holds for any triangle free graph J as,
β0(J) = βvc(J) = βn(J).

A. An algorithm to find maximal clique free sets

An algorithm to find all maximal independent sets of a
graph is developed (see [18]) using boolean arithmetic. We
extend the same algorithm with few modifications to find
all maximal clique free sets in any graph. Let us treat each
vertex in the graph as a boolean variable. Let a + b denote
the logical (or boolean) sum which indicates the process of
including vertex a or b or both. Let ab denote the logical
multiplication of operation of including both vertices a and
b, and let the boolean complement a′ denote that vertex a
is not included. We make use of the following identities of
boolean Algebra.

(i) a+ a = a and aa = a (Idempotent Laws)
(ii) a+ (ab) = a and a(a+ b) = a (Absorbtion Identity)

For a given graph H we must find a maximal subset of
vertices that doesnot include all the vertices of any clique in
H . Let us express a clique k = (v1, v2, . . . , vt) as a boolean
product, (v1v2.......vt). Let us sum all products in H to get
a boolean expression

ϕ =
∑

(v1v2.......vt) for all (v1, v2, . . . , vt) in H

Let us further take the boolean complement ϕ′ of this
expression, and express it as a sum of boolean products:

ϕ′ = f1 + f2 + · · ·+ fn

A vertex set is a maximal clique free set if and only if
ϕ = 0 (logically false) which is possible if and only if ϕ′ =
1(true), which is possible if and only if at least one fi = 1,
which is possible if and only if each vertex appearing in fi
(in complement form) is excluded from the vertex set of H .
Thus, each fi will yeild a maximal clique free set and every
maximal clique free set will be produced by this method.
This procedure can be best explained by an example.

Example 2.2

a
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c f h

d g

Fig. 3. A clique path H1 with 7 maximal clique free sets

Consider the clique path graph H1 shown in the Fig. 3.
Let us sum all the cliques in H1 to get

ϕ = ab+ bcd+ dfg + gh.
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Then the boolean complement ϕ′ is given by

ϕ′ = (a′ + b′)(b′ + c′ + d′)(d′ + f ′ + g′)(g′ + h′)

= (a′b′ + a′c′ + a′d′ + b′ + b′c′ + b′d′)

(d′ + f ′ + g′)(g′ + h′)

= (b′ + a′c′ + a′d′)(d′ + f ′ + g′)(g′ + h′)

= (b′d′ + b′f ′ + b′g′ + a′c′d′ + a′c′f ′ + a′c′g′

+ a′d′ + a′d′f ′ + a′d′g′)(g′ + h′)

= (a′d′ + b′g′ + b′d′ + b′f ′ + a′c′f ′ + a′c′g′)

(g′ + h′)

= a′c′g′ + a′c′f ′h′ + b′g′ + a′d′g′ + a′d′h′

+ b′d′h′ + b′f ′h′.

Now if we exclude from the vertex set of H1, vertices
appearing in any one of these seven terms, we get a maximal
clique free set. Thus, the seven maximal clique free sets of
the graph H1 are

{bdfh}, {bdg}, {acdfh}, {bcfh}, {bcfg}, {acfg}, {acdg}

Once all the maximal clique free sets of H have been
obtained, we find the order of the one with the largest
number of vertices to get the clique free number. Therefore
βvc(H1) = 5.

B. Independent set Transeversal number and Indepen-
dence free number

The above discussion leads to define the following. Mini-
mum number of vertices that cover all the maximal indepen-
dent sets of H is called independent set transversal number
τi = τi(H). On the otherhand a set S ⊆ V is independent
set free if no maximal independent set is contained in S.
The independence free number βi = βi(H) is the maximum
order of an independent set free set.

Proposition II.2. For any graph H,

τi(H) = τc(H)

βi(H) = βvc(H)

Proof: The result follows from the fact that independent
sets and cliques exchange their properties on complementa-
tion.

We now proceed to find a lower bound for clique free
number.

Proposition II.3. For any graph H,

∆ ≤ βvc

Equality holds iff N(v) is a maximum clique free set of H
for every v ∈ V∆ where V∆ = {u ∈ V |deg(v) = ∆}

Proof: If v is a vertex of maximum degree ∆, then
⟨N(v)⟩ is clique free. Therefore S = N(v) is a clique free
set. Thus βvc ≥ |S| = |N(v)| = ∆

If N(v) is a maximum clique free set of H for every
v ∈ V∆ then βvc(H) = |N(v)| = ∆.

Conversely, suppose βvc(H) = ∆. If possible N(v) is not
a maximum clique free set of H for some v ∈ V∆, then there
exists at least one vertex u ∈ V such that N(v) ∪ {u} is a
clique free set of H . Hence βvc ≥ N(v)∪{u} = ∆+1 > ∆
a contradiction.

Applying Proposition II.2 in the above proposition and and
using the result (∗), we have the following

Corollary II.3.1. For any graph H,

p− δ − 1 ≤ βi

III. GALLAI’S THEOREM TYPE RESULTS

In 1959, the graph parameters vertex covering number
and independence number are related by the well known,
now classical Gallai’s Theorem [10], α0(H) + β0(H) = p.
Since then, the study of Gallai’s type results took momentum
and sveral authors got interested and gave similar results, for
example see [5], [15], [20], [21]. We now prove another result
similar to Gallai’s Theorem. We need following lemma.

Lemma III.1. Let H be a (p, q) graph. Then a set S ⊆ V
is a clique transversal set of H if and only if V − S is a
clique free set of H .

Proof: Let S be a clique transversal set of H . Since
every clique is covered by some vertex in S, atleast one
vertex of every clique is in S. Hence ⟨V −S⟩ cannot induce
any clique of H . Thus V − S is clique free set.

Conversely, let S be a clique free set of H . Suppose that
V −S is not a clique transversal-set. Then there exists atleast
one clique h ∈ K(H) which is not covered by any vertex in
V −S. This implies all the vertices of h are in S. Then ⟨S⟩
contains the clique h - a contradiction.

Theorem III.2. For any graph H with p vertices,

τc(H) + βvc(H) = p (2)
τi(H) + βi(H) = p (3)

Proof: Let S be a τc-set of H . Then from Lemma III.1,
V −S is a clique free set of H . Hence βvc ≥ |V −S| = p−τc.
Therefore τc + βvc ≥ p...... .....(i)

On the otherhand let D be a βvc-set of H . Then again
from Lemma III.1, we have V −D is clique transversal set
of H . Hence τc ≤ |V −D| = p−βvc. Therefore τc+βvc ≤ p
...... ......... ......(ii)

Then the result (2) follows from (i) and (ii). On comple-
menting the equation (2) and applying Proposition II.2, the
result (3) follows.

A. cc-independent sets
A set of cliques are said to be clique-clique indepen-

dent (cc-independent) if no two cliques have a vertex in
common. Similarly, a set of maximal independent sets are
said to be ii-independent if they are pairwise disjoint. The
cc-independence number βcc = βcc(H) (ii-independence
number βii = βii(H) ) is the maximum order of a cc-
independent (ii-independent) set of H. It is immediate that
βcc(H) = βii(H). For any triagle free graph βcc(H) =
β1(H) and τc(H) = α0(H). It is proved that α0(H) ≥
β1(H) (see [17]). Similarly, we now show that βcc(H) and
τc(H) are comparable.

Proposition III.3. For any graph H,

τc(H) ≥ βcc(H)

τi(H) ≥ βii(H)
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Proof: Let {k1, k2, . . . , kt} be the βcc-set of H . Choose
vi ∈ ki, i = 1, 2, ......t such that the d(vi) is as big as
possible. Let S = {v1, v2, . . . , vt} be the set of vertices so
obtained. If S covers all the cliques of H then S is τc-set of
H and βcc(H) = τc(H). If not, we consider another set S1

of minimum number of vertices that cover all those cliques
not coverd by the set S. Then S ∪ S1 forms a τc set of H.
Therefore τc(H) = |S ∪ S1| ≥ |S| = βcc(H). The second
result follows on complementation.

B. Extended Konig-Egervary Theorem
A min-max relation is a theorem stating equality between

the answers to a minimization problem and a maximization
problem over a class of instances. The Konig- Egervary
Theorem [16], [8] is such a relation for matching and vertex
covering which states that if H is a bipartite graph then
β1(H) = α0(H). We extend this theorem to the newly
defined parameters clique free number and clique transev-
ersal number. We need the following definitions before we
proceed.

The operation of clique removal from a block graph is
defined as follows. Let H be a block graph and h be any
clique of H . Then H−{h} is a graph obtained by removing
all the unicliqual vertices and edges incident on the clique
h. A clique h is a pendant clique if h is incident on only
one cut point. Let H1 be the graph obtained by removing all
pendant cliques of H. Then a cut point v in H is said to be
an end-cut point if v is not a cut point in H1. Note that the
above operations are defined only on block graph and cannot
be defined for any general graph.

Similar to Konig-Egervery Theorem we have the follow-
ing.

Proposition III.4. If H is either a bipartite graph or a block
graph, then

τc(H) = βcc(H)

τi(H) = βii(H)

Proof: If H is a bipartite graph then it is triangle free.
Hence τc(H) = α0(H) = β1(H) = βcc(H) and the result
follows. Therefore, we assume H is any block graph. If H
has no cut points then H = ∪k

i=1Hi where each Hi is a
complete graph. In this case τc(H) = k = βcc(H) holds.
So, we need to consider any connected graph H with n cut
points. We prove the result by induction on number of cut
points n.

Suppose H is a block graph with n = 1 cut point
and m cliques. Then H must be a clique complete graph.
Consequently, τc(H) = 1 = βcc(H). Let H be a block
graph with m cliques and n = 2 cut points say, c1, c2. Then
there exists at least two pendant cliques k1 incident on c1
and k2 incident on c2. Now clearly, {c1, c2} is a τc−set of H
and {k1, k2} is a βcc−set of H and τc(H) = 2 = βcc(H).
Thus, the result hold for primary values of n = 1, 2. We
assume the result is true for all the graphs with less than n
cut points. Suppose H be a block graph with n cut points.
Consider any end-cut point v and J be the graph obtained
by removing all the cliques incident on v. Then J is a graph
with less than n cut points and by induction hypothysis, we
have τc(J) = βcc(J) = t. Let D1 be the τc−set of J and

L1 be the βcc−set of J. Since v is an end-cut point, there
exists at least one pendant clique say h incident on v. Then
D = D1∪{v} is a τc−set of H. Again, the set L = L1∪{h}
is a βcc−set of H . Thus τc(H) = |D| = |D1∪{v}| = t+1 =
|L1 ∪ {h}| = |L| = βcc(H). Hence by induction principles
the result is true for all n.
Again, the second result follows on complementation.

A factor of a graph H is a spanning subgraph of H . A k-
factor of H is a k-regular spanning subgraph of H . A clique
covering is a factor of H . A clique covering in which every
clique is of order ϑ, is a (ϑ−1)-regular spanning subgraph of
H and hence is a (ϑ−1)-factor of H . In particular a 1-factor
is a perfect matching. In the next result we obtain an upper
bound for cc-independence number in terms of minimum
clique number ϑ. In what follows, by V (J) we mean the
vertex set of the graph J .

Proposition III.5. For any graph H,

βcc ≤
p

ϑ
(4)

Further, βcc =
p

ϑ
if and only if H has a (ϑ− 1)-factor.

Proof: Let βcc = t and L = {k1, k2, . . . , kt} ⊆ K(H)
be the βcc-set of H . Let |ki| denote the order of the clique
ki. Then |ki| ≥ ϑ(H), 1 ≤ i ≤ t. Since each ki, 1 ≤ i ≤ t
is clique independent, any two cliques in L are mutually
disjoint. As there can be some vertices not incident on any
of the cliques ki ∈ L we have V (k1 ∪ k2 ∪ · · · ∪ kt) ⊆ V .
Therefore, tϑ(H) ≤ |k1|+ |k2|+ · · ·+ |kt| = |V (k1 ∪ k2 ∪
· · · ∪ kt)| ≤ |V (H)| = p proving the desired inequality.

Suppose that H has a (ϑ − 1)-factor. Then H has a
clique covering in which every clique is of order ϑ. Let
L = {k1, k2, . . . , kt} be such a partition of H . This partition
forms the maximum clique independent set of H . Then it is
immediate that tϑ(H) = p. Conversely, let βcc =

p

ϑ
. Then

we show that the βcc-set is the required (ϑ − 1)-factor of
H. Suppose that βcc-set doesnot form such a partition. Then
there are two possibilities.
Case (i). βcc-set doesnot cover all the vertices of H . Let
L = {k1, k2, . . . , kt} be a βcc-set of H . Then V (k1 ∪ k2 ∪
· · · ∪ kt) ⊂ V . Hence βcc(H)ϑ(H) < p, - a contradiction.
Case (ii). βcc-set forms a partition but each is not of order
ϑ(H). In this case, there exists atleast one ki such that
ϑ(H) < |ki| for some 1 ≤ i ≤ t. Then again, we get
that βcc(H)ϑ(H) < p, - a contradiction. This completes the
proof.

The bound is sharp for any complete graph Kn, for any
even cycle C2n and for any corona Km ·Kn with m ≥ n.

The following well known result for matching number is
straight forward from the above proposition.

Corollary III.5.1. For any graph H,

β1 ≤ p

2

Further, β1 =
p

2
if and only if H has a 1-factor.

Proposition III.6. For any graph H,

βcc(H) ≤ βvc

ϑ− 1
(5)

Further, the bound is sharp.
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Proof: Let βcc = t and {k1, k2, ......., kt} be the βcc-set.
Let Vi be the vertex set of ki, 1 ≤ i ≤ t. Then |Vi| ≤ ϑ for
every 1 ≤ i ≤ t. Therefore, union of (ϑ− 1) vertices taken
from each Vi form a βvc-set of H . Thus (ϑ− 1)t ≤ βvc.

For the m-clique regular graph the corona H = Km ·
Km−1, we have βcc(H) = m =

m(m− 1)

m− 1
=

βvc

ϑ− 1
and the bound is sharp in equation (5). Also, any cycle Cn

and any generalized star H = S(n, k) attain the bound in
equation (5)

Proposition III.7. For any graph H,

βcc ≤ βvc(H) ≤ p− βcc(H)

Proof: From Proposition III.6, βcc ≤
βvc

ϑ− 1
≤ βvc.......

......(A)
Then from Proposition III.3 we have τc ≥ βcc. Then using

Theorem III.2, we get p− βvc ≥ βcc. This yeilds βvc(H) ≤
p− βcc(H). ...... ......(B)

Combining (A) and (B) we get the desired result.

C. Nordhaus-Gaddum Type inequality
Relationship between graphical parameters of great inter-

est and important. Nordhaus and Gaddum [19] began the
study of sum and product of the chromatic numbers χ(H)
and χ(H). Later similar results for different parameters are
studied in [7], [13]. We provide such a relationship for clique
transversal numbers τc(H) and τc(H).

Proposition III.8. For any graph H,

τc(H) + τc(H) ≤ p+ 1 (6)
p− 1 ≤ βvc(H) + βvc(H) (7)

Further the bound is sharp.

Proof: From Theorem III.2 we have p − τc(H) =
βvc(H) ≥ ∆ . This implies τc(H) ≤ p−∆. Hence
τc(H)+ τc(H) ≤ p−∆+ p−∆ = p−∆+ p− (p− δ− 1)
using result (∗)
= p+ 1− (∆− δ) ≤ p+ 1 which yeilds the result (6)

To establish the result (7): We have p + 1 ≥ τc(H) +
τc(H) = p − βvc(H) + p − βvc(H) using Theorem III.2.
Hence βvc(H)+ βvc(H) ≥ 2p− (p+1) = p− 1 as desired.

For any complete graph, Kn, τc(Kn) + τc(Kn) = 1 + n.
Similarly, βvc(Kn) + βvc(Kn) = n − 1 + 0 = n − 1. Thus
the bound is sharp in (6) and (7) for any complete graph.
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