Engineering Letters, 31:4, EL._ 31 4 56

Retinal Vessel Segmentation Algorithm Based
on U-NET Convolutional Neural Network

Yun-Hao Zhang, Jie-Sheng Wang*, Zhi-Hao Zhang

Abstract—The segmentation of retinal vessels a crucial role
in the accurate visualization, early intervention, and surgical
planning for ophthalmic disorders. There are some problems
in the process of retinal vascular imaging, such as noise, low
contrast, imbalance of vascular background pixel ratio and
distortion of capillary cutting. The retinal blood vessel images
underwent a series of preprocessing steps to optimize the
performance of image segmentation. These steps included
converting the images to grayscale, normalizing the data,
applying restricted contrast adaptive histogram equalization,
performing gamma correction, and then normalizing the data
again. The subsequent analysis utilized four segmentation
algorithms based on the U-Net model, namely the U-Net
segmentation algorithm, Res-UNet segmentation algorithm,
DU-Net segmentation algorithm, and Sa-UNet segmentation
algorithm, were selected to segment the retinal vessel images.
The fundus images from the DRIVE public database were
utilized to conduct simulation experiments in order to validate
the efficacy of the adopted algorithms. The sensitivity,
specificity, accuracy and AUC of Sa-UNet segmentation
algorithm were 0.8573, 0.9835, 0.9905 and 0.9755, respectively.

Index Terms—Retinal vessel; Image segmentation; U-Net;
Performance comparison

I. INTRODUCTION

he morphological information of retinal blood
vessels is indispensable for the early diagnosis of
ocular diseases. In addition to the detection of ocular
diseases, diabetic retinopathy can also be timely identified.
Retinal blood vessels are the sole non-invasive observable
blood vessels in the human body, and their detection and
analysis hold significant application value for predicting
and diagnosing aforementioned conditions.[1]. If not
detected in time and treated effectively, it will lead to
deterioration of the disease, blindness or even more serious
consequences. Therefore, accurate segmentation of retinal
fundus early detection of vascular abnormalities, playing a
pivotal role in the prevention and treatment of wvarious
ophthalmic diseases. With the incessant advancement of
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science and technology, the deep learming technology has
been continuously improved. Image segmentation
technology is also gradually promoted in the medical field.
Image segmentation algorithms based on deep learning can
help doctors process and analyze complex fundus images,
and further improve the speed and accuracy of computer
image segmentation. Its optimization methods have
attracted more and more attention [2].

Retinal blood vessels are of irreplaceable significance for
the medical field. In order to achieve better performance,
scholars at home and abroad have been studying retinal
segmentation for many vyears. Computerization of the
fundus was first proposed in 1982, and Chaudhun
published the first paper on retinal segmentation in 1989 [3].
Retinal vessel segmentation methods are commonly
classified into two categories by scholars, namely
unsupervised learning methods and supervised learning
methods. The latter can be further divided into those
involving manual feature extraction and those involving
automatic feature extractional Neural Networks (CNNs) as
dominant architectures [4]. Since CNN needs a large
number of data sets, the number of medical image data 1s
small, and the training model cannot be optimized through
a large number of training. On the basis of full CNN,
Ronneberger et al. proposed a U-shaped code structure to
make the expansion path and contraction path symmetric
[5] The network utilizes jump connections to establish links
between the up-sampled output and the output of the
sub-module at the same resolution in the encoder, which
serves as input for the subsequent submodule in the decoder.
Iglovikov et al have enhanced U-Net's encoder by
replacing it with VGG11 and proposed TernausNet. [6].

Drawing inspiration from the principles of residual
connection and dense connection, Xiao et al. incorporated a
form with residual connection and a form with dense
connection into each sub-module of UNet, respectively. [7].
Res-UNet and Dense-UNet are proposed, where Res-UNet
is used for retinal segmentation. The incorporation of the
output from a layer within a sub-module into the
subsequent layers' input, along with the derivation of a
layer's input from the amalgamation of preceding layers'
outputs, characterizes a dense connection. MultiResUNet
employs a MutiRes module in conjunction with UNet [8].
The MutiRes module enhances residual connections by
concatenating three 3x3 convolutions to generate a fused
feature map, which is subsequently added to the input
feature map through a 1x1 convolution operation. Deng et
al. [9] combined the primary and secondary paths with the
channel attention mechanism and used it to adaptively
predict the potential key features to form a dual-path
convolutional neural network DPCA-Net, which improved
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the accuracy of segmentation. Atli et al. [10] proposed a
segmented deep learning model, Sine-Net, which firstly
used up-sampling to capture thin vessel features, and then
used down-sampling vessel features to capture thin vessel
features and thick vessel features respectively, and added
residuals to the model to assume deeper contextual
information.

The retinal segmentation method based on deep learning
1s conclusively demonstrated to be superior and more
reliable compared to the traditional segmentation approach.
In this study, four segmentation algorithms based on U-Net,
Res-UNet, DU-Net and Sa-UNet were selected to segment
retinal vessel images. The fundus images from the DRIVE
public database were utilized for conducting simulation
experiments, and the evaluation metrics were compared
against the reference images to derive the final conclusion.

II. RETINAL VESSEL IMAGE SEGMENTATION
ALGORITHM BASED ON U-NET CONVOLUTIONAL
NEURAL NETWORK

The segmentation of retinal vessels plays a pivotal role
in the field of medicine. Manual segmentation is laborious
and difficult for clinical application. With the first paper on
retinal vessel segmentation proposed in the late 1980s, and
the emergence of AlexNet network n 2012, this technology
has gradually improved from traditional segmentation
scheme to deep learning. This section focuses on
convolutional neural network (CNN), and introduces U-Net
model, Res-UNet model, DU-UNet model and SA-UNet
model in details. It lays the foundation for subsequent
image segmentation.

A. Convolutional Neural Network

The Convolutional Neural Networks (CNN) is a deep
learning model that has gained sigmficant traction in the
field of image processing. The CNN architecture primarily
comprises an mput laver, convolutional layers, RelL.U

activation layers, pooling layers, and fully connected layers.

The complete convolutional neural network is formed by
superimposing all layers.

{1) Convolutional Layer

The convolutional layer is the core layer of the CNN,
which generates the computational amount in the network
and contains multiple convolution kemels. By calculating
the dot product between the area of the input image and the
weight matrix of the filter, the result is processed by
nonlinear activation function, and the output map is finally
obtained. The deeper the network 1s, the more edges and
feature detection was obtamed. The input was selected as
4*4 and the convolution kernel as 3*3 for the calculation.
The convolution calculation form and results are illustrated
in Fig. 1, while the disassembled calculation process is
presented in Fig. 2. In the fist step shown in Fig. 2(a), the
3x3 network positioned in the upper left corner of the
convolution kernel is selected for performing dot product
calculations with the convolution kernel and the first output
result is obtained by accumulating the dot multiplication
data. Slide one step to the right in Fig. 2(b) to get the
second output. Slide the step down in Fig. 2(c) to get the
third output result. Fig. 2(d) takes the 2*2 input network in

the lower right comer as the last output result and serves as
the final output.

(2) Pooling Layer
The conventional approach involves the periodic
mnsertion of a pooling layer between successive

convolutional layers, gradually reducing the spatial
dimensions of the data volume. This reduction facilitates
parameter count minimization and computational resource
conservation within the network, effectively mitigating
overfitting. However, it does not affect network depth. The
most common pooling operations are Average pooling and
Max pooling, in which the effect of maximum pooling 1s
generally better than that of average pooling. This paper
describes the maximum pooling in details. The maximum
pooling method retains the most salient features of the
feature map. As shown in Fig. 3, the maximum pooling is
resolved. In Fig. 3(a), within the 2%2 pooling layer, the
maximum value is 6, and the output result is 6. The step
size for rightward movement is 2, as illustrated in Figure
3(b), while the maximum output value reaches 8. Similarly,
the output results of Fig. 3(c) and Fig. 3(d) are 9 and 7
respectively. The whole output result is shown in Fig. 3(d).

(3) Activation Layer

The main function of activation function in activation
layer 1s to further deepen the stacking of network layers and
enhance the expression of network speed.
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Fig. 1 Results of convolution calculation.
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Fig. 2 Dismantling calculation process.
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Commonly used activation functions are Sigmoid, Rel.U,
LeakyReLU, and Tanh functions. In the neural network
architecture, ReLU activation functions are generally used
instead of traditional Sigmoid or Tanh activation functions.
As shown in Fig. 4, The Rectified Linear Unit (Rel.U)
activation function assigns a value of 0 to each negative
input pixel, while it preserves the same value for each
positive input pixel.

B. UNet Model

U-Net has emerged as a prominent network among
various methodologies employed for medical image
segmentation in recent years. Since CNN cannot accurately
segment the fine parts of the object, full convolutional
neural network (FCN) 1s introduced to realize image pixel
level segmentation. The advancement of FCN has led to the
persistence of a substantial number of channels in U-Net
during up-sampling, thereby facilitating the propagation of
contextual information within the network at a deeper
resolution. The middle connection part is changed to jump
connection, and the encoder (down-sampling) and decoder
{up-sampling) symmetry forms a U-shaped network. The
U-Net architecture diagram is depicted in Fig. 5 [5].

According to the structural diagram, the left side of the
model constitutes the encoder, while the right side
constitutes the decoder. The encoder consists of four
submodules, each of which contains two convelutional
layers, and the maximum pooling method 1s used to realize
subsampling. The resolution of the input image is 572 x
572 pixels, while the resolution of modules 1 to 5 is
gradually reduced to 572 x 572, 284 x 284, 140 x 140, 68 x
68 and 32 x 32, respectively. As valid mode 1s employed
for convolution, the resolution of each subsequent
sub-module is halved compared to its preceding
sub-module's resolution. Finally, a 1x1 convolution kernel
1s utilized in the last layer to reduce channel dimensions to
a predetermined number. The decoder comprises of f{our
sub-modules that progressively enhance the resolution of
the output image through a step-by-step upsampling
operation until it matches the same resolution as the input
image. Consequently, due to the utilization of convolution
operations, the effective mode results in a smaller actual
output size compared to that of the input image. The
network also employs jump connections to establish links
between the up-sampling results and the outputs of
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Fig. 5 U-Net structure.

sub-modules 1n the encoder that possess identical
resolutions, serving as inputs to lower sub-modules within
the decoder.

The U-Net network can be trained with a limited number
of models, and data augmentation techniques can be
incorporated into the network. This enables effective
resolution of the challenge posed by small training datasets
in the medical domain that necessitate extensive data
detection. The network achieves high segmentation
accuracy by segmenting each pixel individually. During the
training process, self-regulation of the learning rate is
achieved through utilization of a high Momentum value
(0.99). To account for varying pixel probabilities within an
image, weights are assigned to pixels to enhance their
distinctiveness, which can be defined as:
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where, W, represents the balanced category frequency
weight map;, dh represents the distance from the nearest
cell boundary; d: represents the distance from the
boundary of the second near cell; In general, w, =10 and
o=5 are set. The network weights are initialized by
following a Gaussian distribution, where the standard
deviation is determined as 2 divided by the total number of
incoming nodes (N).

C. Res-UNet Model

In 2018, the Res-UNet model was released, which makes
important improvements to U-Net[7]. It is difficult for the
human eye to distinguish small blood vessels, the optic disc
area 1s bright, the contrast is low, the thin-walled blood
vessel detection and the boundary is not clear due to
reflection are improved. Firstly, Contrast Limited Adaptive
Histgram Equalization (CLAHE) [11] was used for
prepossessing to increase the image contrast, adjust the
fundus image to grayscale image, and adjust the size to
512*512. The gray-scale image was standardized by the
following formula.

=4 ®

where, # and © represent the mean and standard
deviation of the gray-scale image I .

Due to the small number of samples, it was not enough
to support the training demand. 500 overlapping 64%64
patches after image enhancement were randomly extracted
from the training image to expand the number of training,
and then the segmented images were obtained. The overall
architecture of this network is roughly the same as that of
UU-Net, and a new scheme is added on the basis of the
original weighted attention mechanism and jump
connection. Hach sub-module of U-Net is replaced by a
form with residual connection and dense connection
respectively.

{1) Attention unit

The circular region (ROI) and dark background were
extracted, and the circular template ROI mask M was
binarized as weighted attention by using Eq. (3). However,
this weighted attention mechanism only focuses on the
target model area of the ROI and ignores the noise
background.

L Fx M0 (e y)eM

ST n 00 (eyeh

(3)
where, F'(x, ¥) denotes the feature at (X, ¥) .
(2) Skip connection unit

The skip connection 1s added to the network according to
the idea of Res-Net[12]. This operation increases the depth
of the network, and according to the explanation in Res-Net,
it can effectively mitigate over-fitting issues and enhance
the model's accuracy.

(3) Loss function

Binary cross-entropy is used as the loss function of the
training model, which is shown in Eq. (4).

Lip.q)= —%iqk logp, +(1-g)logll-p,) (4

k=1

where, # represents the number of pixels per image, and the
background values corresponding to the predicted pixel
values are denoted by p and g.

D. DU-Net Model

Basedo on local features of blood vessels, retinal vessel
segmentation was performed in an end-to-end manner.
Inspired by U-Net[5] and Deformable Convolutional
Network[13], the deformable convolutional network is
integrated into the proposed network. The DU-Net utilizes
an up-sampling operator for enhancing output resolution,
with the objective of extracting contextual information and
achieving accurate positioning through the synergistic
integration of low-level and high-level feature maps [14].
In addition, by adaptively adjusting the receptive field
according to the distinctive features of each vessels,
DU-Net proficiently captures retinal vessels with diverse
shapes and sizes. The network exhibits a U-shaped
architecture, flanked by encoders and decoders, wherein the
original convolutional layers are substituted with
deformable convolutional blocks. Training the novel model
synergistically integrates low-level and high-level features,
while adapting receptive fields and sampling locations to
accommodate the size and shape of blood vessels for
precise segmentation. The DU-Net, an exquisite extension
of the U-Net framework, showcases its prowess by
employing deformable convolutional blocks encoding and
decoding units.  The illustrious network architecture is
depicted in Fig. 6 [14].

The deformable convolutional block's detailed design 1s
presented within the specified region. In the U-Net
architecture, it consists of a convoelutional encoder on the
left and a decoder on the right Complex details and
changes of retinal blood vessels are captured using
deformable convolutional blocks at various stages of
encoding and decoding, which enable efficient acquisition
of local, dense and adaptable receptive field information.
Each deformable convolution block contains a convolution
offset layer, a convolution layer, a normalization layer and
an activation layer, which constitute the core of the
deformable convolution. During the decoding phase,
another standard convolution layer after the merge is also
nserted to adjust the number of filters in the convolution
offset layer. With this structure, DU-Net 1s able to learn key
features and generate detailed retinal vessel segmentation
results.

The onginal goal of introducing deformable
convolutional neural networks is to determine whether
pixels in an image belong to blood vessels. This task can be
viewed as a pixel-level classification problem, where the
classification of pixels 1s determined based on information
about their surrounding neighborhoods. The neighborhood
refers to a small image block defined at the center of the
target pixel. To classify the target pixel, we extract the
pixel values from a small image block centered on that
pixel, obtaining highly localized information. In order to
maximize local feature capture while reducing
computational complexity, we set the size of these small
mmage blocks to 29 X 29 pixels. Fig. 7 illustrates the
structure of a deformable convolutional neural network.
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E. SA-UNet Model

Based on U-Net network architecture, a hghtweight
spatial attention network (SA-UNet) is proposed by
introducing the improvement of spatial attention module.
[15]. This method does not require a large number of
labeled traiming samples and can effectively leverage the
available annotated data in an enhanced manner. This
module generates attention maps across spatial dimensions
and applies them to the input feature maps for adaptive
feature refinement Additionally, in order to address the
issue of overfitting, this approach incorporates a structured

Dropout convolutional block as a replacement for the
original convolutional block in U-Net. To maintain network
simplicity, SA-UNet introduces a structured Dropout
convolutional block that integrates DropBlock and Batch
Nommalization (BN) to substitute U-Nets initial
convolutional block The specific network structure is
shown in Fig. 8[15], where the structured Dropout
convolution blocks and 2*2 maximum convolutions are
included in each step of the encoder. After each fast
convolutional layer, DropBlock, batch normalization, and a
ReLU activation function are incorporated.
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The most important part of convolutional attention
module is the introduction of spatial attention module,
which is used for detection and classification. To generate a
spatial attention graph, spatial attention (SA) constructs an
effective feature descriptor by applying maximum pooling
and average pooling operations along the channel axis on
the feature graph, respectively. Subsequently, these
descriptors are concatenated together to form a
comprehensive representation, as illustrated in Fig. 9. [15].

After maximum pooling and average pooling, the output
features FeR™™ and F: eR™™"™ F: e R""" are
obtained. Then the above convolutional layer and Sigmod
activation function are used to generate the spatial attention
map F,cR™™" _ In conclusion, the spatial attention
formula is expressed as follows.

F*=F -M*(F)
=F -o(f"([MaxPool(F ), AvgPool(F)]))  (5)
= F-a(f™([F ;D)

where, [ represents the convolution operation with a
convolution kemel of 7x7.

III. SIMULATION AND RESULT ANALYSIS
A. Public Datasets

The retinal blood vessels were trained and tested by
using the fundus images in the DRIVE dataset. The DRIVE
dataset was screened and established by the leadership team
of Niemeijer in the Netherlands[16]. The dataset contains
40 1mages, 20 color mages for training and 20 color
images for testing. All images included in the dataset were
collected and selected by more than 400 people who
participated in the experiments. Participants were between
25 and 90 years of age, which includes the majority of
patients at risk for disease. The image size was 564%584
and was taken at 45°. Among the 40 images, there were 33
healthy fundus images without eye diseases and 7 fundus
images with early diabetic lesions. Each fundus image was
segmented by two experts. There were two vascular
structure maps and one mask For manual segmentation
results, the first expert marking was 12.7% and the second
expert marking was 12.3%. The image segmentation results
are used as the standard to test the segmentation algorithm
performance, so this paper uses the segmentation results of
the first expert as the standard segmentation image.

B. Evaluation Indexes of Retinal Vessel

Segmentation

Image

The purpose of retinal vessel segmentation is to segment
every pixel in the image. In order to test the segmentation

H*W*]
HHC Average
_— BE |
Pooling
.
Pooling

H*WH2

performance, the confusion matrix evaluation model is used
to test the walidity. The following four performance
measures were employed in this study: sensitivity,
specificity, accuracy and area under the curve (AUC) under
the Receiver Operating Characteristic (ROC).  Their
expressions are defined as follows:

TP+ IN
Aceuracy = (6)
TP+ FN+TN +FFP
N
Specificity = (7
FP+IN
TP+ IN
Sensitivity = ®)
TP+ FN+TN+FP

where, TP is the number of vessels in correct segmentation;
TN 1s the number of background in correct segmentation;
F'N represents the number of pixels that misclassified blood
vessels into background; FP represents the number of
pixels that missegmented the background into vessels.

The working characteristic curve is crucial for assessing
the overall performance of binary vessel segmentation, as it
illustrates the relationship between false positive rate (FPR)
and true positive rate (TPR). A larger area under the ROC
curve (AUC) indicates superior performance of the
segmentation algorithm and greater robustness. Herein lie
the mathematical definitions of these metrics.

Fr

TPR = (9)
TP+ FN
P
FPR = (10)
FP+TIN

C. Image Preprocessing and Image Enhancement
(1) Image Preprocessing

Due to the manual shooting process, the fundus images
in the dataset exhibited uneven illumination and low
contrast in both vascular pixels and background pixels. The
detection of small blood vessel features is improved to
optimize the segmentation performance of the neural
network, we implemented a preprocessing step on the
fundus 1mage prior to segmentation.

Gray transformation. The data values of the red, green
and blue channels of the color fundus image were
converted to Gray level by the gray level conversion
strategy shown in Hq. {11), In this context, Gray denotes
the grayscale value, while R, G and B respectively denote,
green and blue color channels.

Gray =R *0.209 + G #0587 +B*0.114  (11)

H*W*C
H*W*1

7*7

H*W*]

>+l

@ Concatenation

Fig. 9 Spatial attention module.
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® Element-wise multiplication
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Data standardization. The mean and standard deviation
of fundus images, after being transformed into grayscale,
are normalized to ensure that the data exhibits
characteristics consistent with a normal distribution. This

process of standardization can be mathematically
represented by the following formula:
X -
x = H (12)
‘ o

where, X, is the grayscale image sample data, # is the
sample data mean, O is the data standard deviation, and
X, is the normalized image data.

Because the contrast is still very low after grayscale
processing, the complete vascular information in the image
cannot be extracted. Contrast Limited Adaptive Histogram
Equalization (CLAHE) [11] can be used to reallocate the
brightness and change the image contrast, which can
significantly enhance the local contrast and image details.
CLAHE is used to normalize the image contrast
enhancement data, which can not only effectively eliminate
the amplification problem of noise, but also enhance the
contrast and the distinction between blood vessel pixels and
background pixels, and obtain complete blood vessel
information.

Gamma correction. Gamma correction is a nonlinear
operation that can enhance the fundus image and change
the brightness of the dark areas without affecting the areas
with strong brightness. The formula is described as follows:

fiH=r (13)

where, [ is the input image data, 7 is the correction
parameter, and f(/) is the output image data.

Data normalization is performed, whereby the image
data is standardized and the pixel values of the image are
adjusted within the range of [0, 1]. The advantages of data
normalization are that it makes data processing easier,
allows us to control the training gradient and train our
model faster. The normalization formula is described in Eq.

(14).

X —min
= (14)

out .
max—min

where, X,  represents the pixel value of the input
image, min denotes the minimum value of the data, max
signifies the maximum value of the data, and X,
indicates the pixel value of the normalized image data.

The overall pre-processed image results are shown in Fig.

11. After pre-processing, it can be seen that the contrast of
the image is significantly enhanced, and the vascular
information is more prominent, which lays the foundation
for the next segmentation.

(2) Image Enhancement

Because there are too few fundus images in the public
dataset, it cannot meet the needs of image training.
Although the problem of image over-fitting can be solved
by shallow training or optimizing the loss function, it
cannot solve the fundamental problem. In view of too few
images, this problem can be solved by image sectioning.
The adoption of random slicing enables the augmentation

of image samples, which is crucial for deep learning due to
its requirement for a large training dataset. ~This method
offers the advantage of generating a proportional number of
slice samples regardless of factors such as original image
size, slice step, or slice size. Consequently, it effectively
expands the training data and enhances the performance of
deep learning models. The number can be set manually, and
a large number of picture data can be cut out. In this paper,
in order to prevent the loss of details by amplifying the data,
the number of up and down sampling is reduced so as to
reduce the occurrence of over-fitting problem. The image
block size used in this paper is 48*48, the total number of
images collected was 25,000. Fig. 12 shows the randomly
extracted images.

(a) Original image (b) Standard segmented  (c) Mask diagram

Image

Fig. 10 Images in the DRIVE dataset.

(a) Original Image (b) Grey Processing (c) Standardization

(d) CLAHE (e) Gamma Correction

Fig. 11 Overall preprocessed images.

(a) Crop the Image Blocks (b) Standard segmented image

Fig. 12 Random extracted images.
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D. FExperimental Results and Analysis

In a controlled experimental setting, we trained and
tested the dataset using four distinct segmentation
algorithms, namely U-Net model, Res-UNet model,
DU-Net model, and SA-UNet model. Subsequently, we
conducted a comparative analysis of the generated
segmentation images produced by these diverse algorithms
while evaluating their respective performance indicators.
(1) Segmentation Results

We evaluated four distinct retinal segmentation
algorithms using the DRIVE dataset and presented the
corresponding experimental results in FIG. 13, 14, 15, and

16 respectively. Each algorithm performed two datasets in
each DRIVE database.

(2) Comparative Experimental Analysis

In order to compare the segmentation effect of different
segmentation methods more intuitively, the images in the
DRIVE dataset were selected and segmented by the above
methods. The U-Net model, Res-UNet model, DU-Net
model and SA-Net model were compared with the manual
segmentation method. The second column is the standard
image of manual segmentation, the third column is
segmented by U-Net model, the fourth column is
segmented by Res-UNet model, the fifth column is
segmented by DU-Net model, and the sixth column is
segmented by SA-UNet model. The segmentation results
have been specifically presented in Fig. 17.

(3) Comparison of Segmentation Performance Indexes
under Different Algorithms

In order to reflect the differences in performance of the
five algorithms more intuitively, the effectiveness and
feasibility of the methods are summarized. Based on the
DRIVE dataset, the segmentation was performed by the
methods described above. The accuracy, specificity,
sensitivity, and AUC of the segmentation results were
analyzed and are presented in Table 1. Based on the DRIVE
dataset, a comparison of the four algorithms can be
observed from the data in Table 1. For the segmentation
accuracy and sensitivity, SA-UNet model was the highest,
reaching 0.9905 and 0.8573. The highest specificity was the
Res-UNet model (0.9892). The highest AUC was 0.9856
for DU-Net model. From the comprehensive analysis,
SA-UNet model is Dbetterr The advantages and
disadvantages of various algorithms are elaborated in
details below.

For medical image segmentation, the role of U-Net
model is irreplaceable. It modifies the middle convolutional
layer of the full convolutional network by adding jump
structure between the encoder and decoder with symmetric
structure and connecting them. Its advantages are that it
supports a small number of training models and uses
random slices to enhance the images, which greatly reduces
the training time. By detecting the pixels, the segmentation
is more accurate. High gradient descent is utilized in
training so that the trained model is self-regulating at the
learning rate. In order to compensate for the different
probability of each image pixel, the model introduces
weight division to make the pixel more representative. The
drawback lies in the fact that incorporating effective
convolution techniques poses challenges to model design in

terms of complexity and generalizability. There is a loss of
boundary before Feature Map merging, and the extraction
of multi-scale feature information is not accurate enough.

Res-UNet makes important improvements to the U-Net
model. Fig. 17 shows that the segmentation of small vessels
at the end of blood vessels is more accurate. The problem
of high luminance and low contrast in the optic disc region
with unsatisfactory segmentation results is effectively
solved. The problems of thin-walled vessels that are easy to
break and unclear blood vessel boundaries caused by light
reflection are improved. Non-vascular regions were less
likely to be segmented as vascular regions. However, the
effect of fundus image segmentation for larger lesions is
quite different, and the lesion area is easy to be segmented
as a blood vessel. DU-Net represents an advancement over
U-Net by replacing the original convolution layer with a
deformable convolution block and incorporating an
up-sampling operator to enhance output resolution. The
primary objective is to integrate low-level and high-level
feature maps for extracting contextual information retinal
segmentation.  Furthermore, = DU-Net  demonstrates
adaptability by on blood vessel size and shape, thereby
effectively capturing diverse variations in retinal blood
vessel morphology. In the decoding stage, another normal
convolutional layer after merging was inserted to adjust the
number of filters in the convolutional offset layer. As can
be seen in the Table L, its overall performance has been
greatly improved, whose AUC was 0.9856.

(a) Original image (b) Standard picture (c) Segmented results

Fig. 13 Segmentation results of U-Net model.

(a) Original image

(b) Standard picture (c) Segmented results

Fig. 14 Segmentation results of the Res-UNet model.
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(a) Original image

(b) Standard picture (c) Segmented results

Fig. 15 Segmentation results of DU-Net model.

(a) Original image (b) Standard picture (¢) U-Net
Fig. 17 Comparison of DRIVE dataset segmentation.

TABLE . PERFORMANCE COMPARATIVE RESULTS UNDER VARIOUS

METHODS
Method ACC Sn Sp AUC
U-Net 0.9639 0.8237 0.9818 0.9250
Res-UNet 0.9742 0.7912 0.9892 0.9823
DU-Net 0.9697 0.8325 0.9341 0.9856
SA-UNet 0.9905 0.8573 0.9835 0.9755

For the SA-UNet model, the spatial attention module is
introduced to make it a lightweight network. Data
augmentation is stronger by using a small number of
training samples. The module conducts an inferred
attention force calculation across spatial dimensions and
subsequently applies element-wise multiplication with the
input feature map to achieve adaptive feature refinement.
To mitigate the risk of over-fitting, we employ a structured
Dropout convolution block that integrates DropBlock and
Batch Normalization techniques as a rapid replacement for

(a) Original image

(b) Standard picture (c) Segmented results

Fig. 16 Segmentation results of SA-UNet model.

(d) Res-UNet

(e) DU-Net (f) SA-UNet

the original convolution operation. As shown in the
segmentation results of Fig. 17, the distinction between
vessel regions and background is more obvious, and the
detection of thin-walled vessels and edges is greatly
improved. Unnecessary features are suppressed and the
expressive power of the network is improved. Among the
five segmentation methods, its comprehensive performance
was the best.

IV. CONCLUSION

In this paper, four segmentation methods were used to
segment retinal vessels. It can be seen that each
segmentation algorithm has different segmentation results,
as well as suitable segmentation range. Through continuous
improvement, the stability and applicability of the
supervised learning method for automatic feature extraction
are much stronger than those of the supervised learning
method for manual feature extraction. Through the
continuous strengthening of U-Net network, the algorithm
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can retain the integrity of blood vessels to the greatest
extent, and maintain better segmentation effect for small
vessels and thin-walled vessels. Among these four methods,
the SA-UNet model had the better comprehensive
performance, and the specificity, accuracy, sensitivity and
AUC of the segmentation results were 0.9835, 0.9905,
0.8573 and 0.9755, respectively, whose performance is
excellent.
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