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Abstract—This paper, based on the M/M/1 queueing system,
discusses two types of failures with standby service station and
start-up time. In this system, two types of failures could occur
in a normal working service station: complete failures and
incomplete failures. During the incomplete failure, the service
station serves the customer at a lower rate, and during the
complete failure, the service station loses service capability. It
leads to a standby service station, which does not fail and
is immediately available, needs to be activated to continue
service. In this paper, the steady-state state transfer diagram of
this system is drawn firstly, then the steady-state equilibrium
condition and the steady-state probability vector of the system
are derived using the matrix geometry solution method, and the
steady-state queueing length of the system is obtained. Finally,
the conclusions are analyzed numerically by Matlab.

Index Terms—standby service station; start-up time; failure;
matrix geometric solution.

I. INTRODUCTION

IN our daily life, the queueing problems are very com-
mon where congestion problems are likely to occur if a

server fails, especially in hospitals, restaurants, scenic spots,
airports, supermarkets, and other public places. Therefore,
many scholars paid much attention to the situation that the
server station may fail in the queueing system. Choudhury
and Deka [1] studied a two-stage queueing system containing
server failures and Bernoulli vacation, which obtained some
reliability indices for the model by methods such as proba-
bilistic generating functions and Laplace Stieltjes transform.
Karthick and Suvitha [2] studied a queuing system in which
the servers had vacation and service rates were different.
Yu et al. [3] studied a service station with complete and
incomplete failures. They considered both fully observable
and fully unobservable cases. Xu and Wang [4] analyzed the
queuing model containing two types of parallel customers
through reasonable utility function. The model will com-
pletely fail and the start-up time is interruptible, and they
analyzed the influence of system parameters on customer
behavior strategy through numerical simulation. Yang [5]
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introduced the start-up time, the working vacation and the
working breakdown in the repairable M/M/1/N queueing
system by using matrix geometry, the elementary array and
the covariance matrix theory, the system performance metrics
were derived. Vijayashree and Anjuka [6] analyzed a fluid
queue with catastrophes, server failures and repairs. Jing
and Tao [7] studied a queueing system with server failures,
working vacations and Bernoulli vacation interruption. He
obtained the probability production function of the queue
and the queue length by matrix analysis and supplementary
variable method. Finally, the cost analysis of the model are
presented.

In many cases the system cannot be stopped, otherwise
it will cause serious property damage or even dangerous
conditions, such as the electrical system in hospitals, the
cashier in supermarkets, and the machines in factories. So in
case of machine failure, it is necessary to start the standby
station to maintain the normal operation. Klimenok [8]
studied multi-server queuing systems with backup servers.
Xu et al. [9] added a standby server station based on
the Geom/Geom/1 queueing model, and derived expressions
for the performance metrics. Huang and Ye [10] further
studied the service capacity supplement strategy based on
the existing customer queueing behavior decision model,
and the simulation results showed that the probability of
customer retention was reduced and the queueing length was
maintained at a low and steady level after the standby service
station was turned on. Hu et al. [11] considered an M/M/1
queueing systems of vacation that with the start-up time,
the standby attendants, and the customers with positive and
negative. Ma et al. [12] added a standby attendant to the
repairable queuing system with vacation.

In this paper, the standby service station is added based
on two types of failures that can occur in the system, and
the system can still maintain normal operation in the case
of complete failure of the service station to avoid security
accidents and property losses.

II. MODEL DESCRIPTION

1) The process of customer arrival to the system follows
the Poisson process with λ. Customers service is according
to the first-come, first-served mechanism.

2) There is one standard service station and one standby
service station in the system. The service times both obey
negative exponential distribution with parameters µ1 and µ2

(µ2 < µ1) respectively, and the standard service station
provides service first.

3) The complete failure and incomplete failure may occur
in the standard service station. In the event of incomplete
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failure of the standard service station, the system still retains
part of the service capacity and continues to serve customers
at a low rate µv (µv < µ2 < µ1). The standard service station
loses its service capacity in the event of complete failure and
activates the standby service station for service immediately.
The process of incomplete fault occurrence and the process
of complete fault occurrence are both Poisson processes, and
the parameters are ϵ1 and ϵ2 respectively. For the standard
service station where an incomplete failure occurs, the time
spend on the repair process is an exponential distribution
with ζ.

4) When there are no customers in this system, the
standard service station enters the shutdown period, at which
the arriving customer cannot be served immediately and
needs to go through a start-up period. The start-up time obeys
an exponential distribution with parameter s. After the start-
up time, the service station enters a regular busy period.

5) Assume that the waiting process of customers, the
service process of the service station, the process of incom-
plete failure occurrence, and the process of complete failure
occurrence and repair time are independent with each other.{

Q(t), J(t)
}

refers to the state of system at moment t, Q(t)

refers to the number of customers in the system at moment
t, J(t) is defined as the service state of the standard service
station.

J(t) =


0, Closing or start− up period,
1, Normal working period,
2, Total failure period

(The standby service station is activated),
3, Incomplete failure period.

The state transition space for {Q(t), J(t)} is

Ω = { (0, 0), (0, 3)} ∪ { (k, j), k ≥ 1, j = 0, 1, 2, 3} .

By ordering the states of the model in lexicographical
order, the state transition of the system is shown in Figure
1.

In lexicographical order, the infinitesimal generating ma-
trix Q can be written as the following partitioned tridiagonal

matrix.

Q =


A0 C0

B1 A C
B A C

B A C
. . . . . . . . .

,

where

A0 =

(
−λ 0
ξ −(λ+ξ)

)
, C0 =

(
λ 0 0 0
0 0 0 λ

)
,

B1 =


0 0
µ1 0
µ2 0
0 µv

 , B =


0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µυ

 ,

A =


−(λ+ s) s 0 0

0 A21 ε2 ε1
0 0 −(λ+ µ2) 0
0 0 0 −(λ+µυ)

 ,

C =


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

 ,

where
A21 = −(λ+ ε1 + ε2 + µ1).

By observing the matrix Q, we can see that
{
Q(t), J(t)

}
is a quasi-birth-and-death (QBD). Therefore, the minimum
non-negative solution of the matrix equation

R2B +RA+ C = 0 (1)

will be obtained. This solution R is called rate matrix
commonly.

Theorem 1. When ρ2 = λ
µ2

< 1, ρv = λ
µv

< 1, the
minimum non-negative solution of the matrix equation (1) is

R =


λ

λ+s
sr

λ+s−µ1r
r13 r14

0 r ε2r
µ2(1−r)

ε1r
µv(1−r)

0 0 λ
µ2

0

0 0 0 λ
µv

 , (2)

0，3 1，3 2，3 3，3 n，3... ...
λ λ λ λ λ λ 

μv μv μv μv μv μv 

1，1 2，1 3，1 n，1... ...
λ λ λ λ λ 

μ1 μ1 μ1 μ1 μ1

ε1 ε1 ε1 ε1

1，2 2，2 3，2 n，2... ...
λ λ λ λ λ 

μ2 μ2 μ2 μ2 μ2

ε2 ε2 ε2 ε2

0，0 1，0 2，0 3，0 n，0... ...
λ λ λ λ λ λ 

ξ

s s s s

Fig. 1. State transfer diagram.
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where

r13 =
(λ+ s)ε2r

µ2(1− r)(λ+ s− µ1r)
,

r14 =
(λ+ s)ε1r

µv(1− r)(λ+ s− µ1r)
.

Among them 0 < r < 1, and

r =
1

2µ1
(λ+ε1+ε2+µ1−

√
(λ+ ε1 + ε2 + µ1)

2 − 4λµ1).

Proof The matrices A, B and C in Eq. (1) are all upper
triangular matrices, so set R be an upper triangular matrix,
i.e.

R =


r11 r12 r13 r14
0 r22 r23 r24
0 0 r33 r34
0 0 0 r44

 .

Taking R2 and R into the Eq. (1), the following system
of equations can be obtained

λ− r11(λ+ s) = 0,

µ1(r11r12 + r12r22) + sr11 − r12(λ+ ε1 + ε2 + µ1) = 0,

µ2(r11r13 + r12r23 + r13r33) + ε2r12 − r13(λ+ µ2) = 0,

µv(r11r14 + r12r24 + r13r34 + r14r44) + ε1r12

− r14(λ+ µv) = 0,

µ1r22
2 − r22(λ+ ε1 + ε2 + µ1) + λ = 0,

µ2(r22r23 + r23r33) + ε2r22 − r23(λ+ µ2) = 0,

µv(r22r24 + r23r34 + r24r44) + ε1r22 − r24(λ+ µv) = 0,

µ2r33
2 − r33(λ+ µ2) + λ = 0,

µv(r33r34 + r34r44)− r34(λ+ µv) = 0,

µvr44
2 − r44(λ+ µv) + λ = 0.

(3)
To obtain the minimum non-negative solution of Eq. (1),

in the fifth equation of the Eq.(3), take r22 = r (the other
root is greater than 1). The following proves that 0 < r < 1,
letting

f(r22) = µ1r22
2 − (λ+ ε1 + ε2 + µ1)r22 + λ,

f is a quadratic continuous function, and f(0) = λ >
0, f(1) = −ε1 − ε2 < 0. By the zero point theorem there
must exist 0 < r < 1 such that f(r) = 0. By solving the
Eq. (3) we get

r11 =
λ

λ+ s
, r12 =

sr

λ+ s− µ1r
,

r13 =
ε2r(λ+ s)

µ2(λ+ s− µ1r)(1− r)
,

r14 =
ε1r(λ+ s)

µv(λ+ s− µ1r)(1− r)
, r23 =

ε2r

µ2(1− r)
,

r24 =
ε1r

µv(1− r)
, r33 =

λ

µ2
, r34 = 0, r44 =

λ

µv
.

(4)

Since r satisfies the equation µ1r22
2 − r22(λ + ε1 + ε2 +

µ1) + λ = 0, dividing both sides of the equation by r gives

λ

r
= λ+ ε1 + ε2 + µ1(1− r). (5)

Theorem 2. QBD process
{
Q(t), J(t)

}
is positive re-

current if and only if ρ < 1.

Proof According to the literature [13], QBD process{
Q(t), J(t)

}
is positive recurrent when the spectral radius

of R that SP (R) < 1, and the system of equations
(x0, x1, x2, x3, x4, x5)B [R] = 0 has a positive solution, and
from equation (3), we know that

B [R] =

(
A0 C0

B1 RB +A

)
=

−λ 0 λ 0 0 0
ξ −(λ+ ξ) 0 0 0 λ

0 0 −(λ+ s) s(λ+s)
λ+s−µ1r

B35 B36

µ1 0 0 −λ
r

ε2
1−r

ε1
1−r

µ2 0 0 0 −µ2 0
0 µv 0 0 0 −µv


, (6)

where

B35 =
ε2r(λ+ s)

(λ+ s− µ1r)(1− r)
, B36 =

ε1r(λ+ s)

(λ+ s− µ1r)(1− r)
.

B[R] is an irreducible, aperiodic, finite state generator, so
(x0,x1,x2,x3,x4,x5,)B[R] = 0 has a positive solution and
the process

{
Q(t), J(t)

}
is positive recurrent if and only if

SP (R) = max

{
λ

λ+ s
, r,

λ

µ2
,
λ

µv

}
< 1 .

Since 0 < λ
λ+s < 1 and 0 < r < 1, we have λ

µ2
< 1 and

λ
µv

< 1.

III. STEADY-STATE PROBABILITY DISTRIBUTION

Define the steady-state probability as

πkj = lim
t→∞

P {Q(t) = k, J(t) = j} , (k, j) ∈ Ω.

When λ
µ2

< 1 and λ
µv

< 1, let Π be the steady-state
probability vector of

{
Q(t), J(t)

}
, then

Π = (π0, π1, π2, · · · ),

where

πk =

{
(π00, π01), k = 0,

(πk0, πk1, πk2, πk3), k ≥ 1.

By means of matrix geometry solution{
(π00,π03,π10,π11,π12,π13)B[R] = 0,

π0e+ π1(I −R)−1e = 1.
(7)

Substituting the Eq. (2), Eq. (5) and Eq. (6) into the Eq. (7),
we have

− λπ00 + ξπ03 + µ1π11 + µ2π12 = 0,

− (λ+ ξ)π03 + µvπ13 = 0,

λπ00 − (λ+ s)π10 = 0,

s(λ+ s)

λ+ s− µ1r
π10 −

λ

r
π11 = 0,

ε2r(λ+ s)

(λ+ s− µ1r)(1− r)
π10 +

ε2
1− r

π11 − µ2π12 = 0,

λπ03 +
ε1r(λ+ s)

(λ+ s− µ1r)(1− r)
π10 +

ε1
1− r

π11

− µvπ13 = 0.

(8)
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Setting π00 = K, we obtain

(π00,π03,π10,π11,π12,π13) = K(1,
ε1r(λ+ s)

ξ(1− r)(λ+ s− µ1r)
,

λ

λ+ s
,

sr

λ+ s− µ1r
,

ε2r(λ+ s)

µ2(1− r)(λ+ s− µ1r)
,

ε1r(λ+ s)(λ+ ξ)

ξµv(1− r)(λ+ s− µ1r)

)
,

(9)
where

K =

[
λ+ s

s
+

(
ε1

µv − λ
+

ε2
µ2 − λ

)
s2r2 + λr(λ+ sr − λr)

s(1− r)
2
(λ+ s− µ1r)

+
λ+ s

(1− r)(λ+ s− µ1r)(
r +

ε1r(λ+ ξ)

ξ(µv − λ)
+

ε2r

µ2 − λ
+

ε1r

ξ

)]−1

.

(10)
When k ≥ 1,

(πk0,πk1,πk2,πk3) = (π10,π11,π12,π13)R
k−1.

IV. PERFORMANCE INDICATORS OF THE SYSTEM IN
STEADY-STATE

1) The mean queueing length

E(L) =
∞∑

n=1

nπne = π1e+ 2π2e+ 3π3e+ · · ·

=
∞∑

n=1

nπ1eR
n−1e = π1

1

(I −R)
2 e

=
r2b

(1− r)
3
(s+ λ− µ1r)

+
rc(s+ λ)

(1− r)(s+ λ− µ1r)

+
(s+ λ− rλ)(arλ+ sd+ λd)

s2(1− r)
2
(s+ λ− µ1r)

.

2) The mean sojourn time

E(W ) =E(L)/λ

=
r2b

λ(1− r)
3
(s+ λ− µ1r)

+
rc(s+ λ)

λ(1− r)(s+ λ− µ1r)

+
(s+ λ− rλ)(arλ+ sd+ λd)

λs2(1− r)
2
(s+ λ− µ1r)

,

where

a =
ε1 [(s+ λ)(µv − λ) + µvs]

(µv − λ)
2

+
ε2 [(s+ λ)(µ2 − λ) + µ2s]

(µ2 − λ)
2 ,

b =
ε1 [µv(λ+ 2s− rs)− λ(λ+ s)]

(µv − λ)
2

+
ε2 [µ2(λ+ 2s− rs)− λ(λ+ s)]

(µ2 − λ)
2 ,

c =
µvε1(λ+ ξ)

ξ(µv − λ)
2 +

µ2ε2

(µ2 − λ)
2 ,

d =λ(1− r)2 + sr.

3) The availability of the system

A = π00 +
∞∑
k=1

πkη1

= π00 + π1(I −R)−1η1

=

[
1 +

λ

s
+

r(s+ λ)

(s+ λ− µ1r)(1− r)

]
K,

where η1 =
(
1 1 0 0

)T
.

4) The probability that the service station is in a complete
fault state

P2 = P (Y = 2) =
∞∑
k=1

πk2

=
∞∑
k=1

π1R
k−1η2 = π1(I −R)−1η2

=
ε2r[λ(s+ λ− λr) + s2r + s(s+ λ)(1− r)]

s(1− r)
2
(µ2 − λ)(s+ λ− µ1r)

K,

where η2 =
(
0 0 1 0

)T
.

5) The probability that the service station is in an incom-
plete fault state

P3 = (Y = 3) =
∞∑
k=0

πk3

= π03 +
∞∑
k=1

π1R
k−1η3 = π03 + π1(I −R)−1η3

=
ε1r(λ+ s)[ξ(sr − λr + λ) + s(1− r)(µv + ξ)]

sξ(1− r)
2
(µv − λ)(s+ λ− µ1r)

K,

where η3 =
(
0 0 0 1

)T
.

V. NUMERICAL ANALYSIS

In this section, numerical simulation experiments are used
to observe the impact of system parameters on each perfor-
mance indexes.

In Figure 2 and Figure 3, we study the impact of service
rate µ1 on the queueing length and sojourn time by the
change of arrival rate λ. Set parameters µ2 = 3.0, µv = 2.5,
ε1 = 0.1, ε2 = 0.08, s = 5 and ξ = 2. The mean queueing
length and sojourn time are calculated by Matlab with the
change of service rate µ1. E(L) and E(W ) increase with
the increase of arrival rate λ, as more and more customers
enter the system, the queueing length and sojourn time both
increase gradually; when λ is a fixed value, E(L) and E(W )
decrease as µ1 increases. As the service rate of the standard
service station increases, the mean queueing length and
sojourn time decreases, and the analysis results are consistent
with the real life situation.

In Figure 4, set parameters µ1 = 5.5, µ2 = 3.0, µv = 2.5,
λ = 2, ε2 = 0.01 and s = 4. We investigate the relationship
between mean queueing length E (L) and repair rate ξ by
changing the incomplete failure rate ε1. When ξ is constant,
E (L) shows an increasing trend with the increase of the
incomplete failure rate ε1, and when ε1 is fixed, E (L)
decreases with the increase of ξ.
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Fig. 2. The effect of λ on E(L) when µ1 takes different values .

0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

λ

E
(W

)

 

 

µ
1
=3.5

µ
1
=4.5

µ
1
=5.5

Fig. 3. The effect of λ on E(W ) when µ1 takes different values .

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

1.4

1.6

1.8

2

2.2

2.4

2.6

ε
1

E
(L

)

 

 

ζ=0.2

ζ=0.5

ζ=0.8

Fig. 4. The effect of ε1on E(L) when ξ takes different values .

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3
2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

µ
2

E
(L

)

 

 

ε
2
=0.02

ε
2
=0.05

ε
2
=0.08

Fig. 5. The effect of µ2 on E(L) when ε2 takes different values .

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ε
1

A

 

 

ε
2
=0.01

ε
2
=0.05

ε
2
=0.09

Fig. 6. The effect of ε1 on availability when ε2 takes different
values .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

T
h

e
 p

ro
b

a
b

ili
ty

 o
f 
th

e
 s

ys
te

m
 s

ta
te

 

 

Steady−state availability

complete failure state
incomplete failure state

0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

 

 

Fig. 7. The trend of availability and probability of two types of
failure with λ.

Engineering Letters, 31:4, EL_31_4_57

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 



In Figure 5, set parameters µ1 = 4, µv = 2.5, λ = 2, ε2 =
0.1, s = 4 and ξ = 2. We find the trend of the mean queueing
length with the change of the standby service station service
rate µ2 and the complete failure rate ε2. When ε2 is constant,
the queueing length decreases with the increase of µ2. The
greater the failure rate ε2, the more obvious the downward
trend is. Therefore, the higher the probability of complete
failure, the more necessary it is to set up a standby service
station.

In Figure 6, we observe the impact of incomplete failure
rate and complete failure rate on availability. Set parameter
µ1 = 4.0, µ2 = 3.5, µv = 3, λ = 2, s = 0.2 and ξ =
2. When the complete failure rate is constant, availability
A decreases as the the incomplete failure rate ε1 increase.
When ε1 is constant, the availability A decreases with the
increase of the complete failure rate ε2. When the failure rate
increases, the possibility of service station failure increases,
and the availability of the system decreases.

Figure 7 depicts the trend of the availability and the steady-
state probability of two faults with λ. Set parameters µ1 =
4.0, µ2 = 3.5, µv = 2.5, ε1 = 0.1, ε2 = 0.08, s = 0.2
and ξ = 2. As we can see in the figure, the setting meet
the steady-state condition. With the increase of arrival rate
λ, the availability gradually decreases, and the steady-state
probability of failure gradually increases. When 0.8 > λ >
0, the steady-state probability of complete failure is greater
than the steady-state probability of incomplete failure. When
λ > 0.8, the steady-state probability of complete failure is
less than the steady-state probability of incomplete failure,
and the gap is increasing.

VI. SUMMARY

In this paper, a standby service station is added to a service
system with two fault characteristics, so that the system can
run continuously in the event of a service station failure. This
service model is closer to the actual situation. The stationary
probability distribution is solved by matrix geometry solu-
tions, and then the performance indexes are obtained. The
impacts of system parameters on the performance index are
obtained by numerical analysis. In real life, the service rate of
the standby service station can be reasonably set according to
the actual arrival rate and the probability of machine failure,
which can reduce the waste of resources while ensuring that
too many customers are not hoarded in the system. The
obtained results are significant for optimizing supermarket
queueing systems, hospital visit systems and various other
systems.
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