
 

  

Abstract—With the continuous development of 3D data 

acquisition technology, point cloud data, an essential form of 3D 

data representation is widely used in fields such as autonomous 

driving, indoor navigation, virtual reality, and augmented 

reality. As an essential branch of point cloud data processing, 

cloud classification has important research significance and 

value. However, this task poses challenges due to the sparsity, 

irregularity, and unordered nature of point cloud data. Among 

most of the methods dealing with this problem, there are 

problems of inadequate extraction of local features, low 

accuracy of classification, and poor generalization of point 

cloud data. Therefore, this paper addresses the above issue. 

This paper presents an improved 3D point cloud classification 

network by enhancing the Dynamic Graph Convolutional 

Neural Network (DGCNN). Firstly, this paper combines 

K-Nearest Neighbors (KNN) and ball radius query for feature 

extraction to better capture the local structural information in 

cloud classification data. Secondly, a conventional convolution 

layer is incorporated between the second and third graph 

convolution layers to enhance the feature representation in the 

proposed approach. Finally, this paper uses a global pooling 

method that combines maximum pooling and average pooling 

to construct the global structure of the point cloud while 

preserving the most critical information. Realize 3D point cloud 

classification. The experimental results demonstrate a 0.9% 

improvement in accuracy on the ModelNet40 dataset using the 

proposed improved method. This validates the effectiveness of 

the enhancement process described in this paper and offers 

valuable insights for enhancing the performance and 

application of point cloud classification. 

 

Index Terms—Point cloud classification, Dynamic graph 

convolution, Feature extraction, Local structure information 

I. INTRODUCTION 

N recent years, with the improvement of 3D scanning 

technology and point cloud data acquisition, point cloud 

data has been widely used in 3D scene recognition, robot 
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navigation, and autonomous driving [1]. As the most direct 

expression of 3D information, point cloud data processing 

has always been concerned. Therefore, as a basic problem of 

point cloud data processing, point cloud classification has 

been a hot research topic. It refers to assigning a fixed point 

cloud data set and a set of labels to classify the point cloud 

data into different categories. Traditional point cloud 

classification methods usually use hand-designed feature 

extractors and classifiers. For example, HKS [2], Spin 

Images(SI) [3], 3D Shape Descriptor(3DSD) [4] and other 

methods. However, these methods have limitations that result 

in not fully exploiting the features of the point cloud data.  

Point cloud classification methods based on neural networks 

have significantly progressed in recent years. For example, 

PointNet [5] is the first completely neural network-based 

point cloud classification method. It can receive the point 

cloud directly as input without preprocessing. PointNet++ [6], 

an extended version of PointNet, proposes a multi-scale 

architecture better to capture local and global features in 

point clouds. DGCNN [7] is a point cloud classification 

method based on Graph Convolutional Neural Network 

(GCNN) [8], which can better capture the features of point 

cloud data. The development of these neural network-based 

point cloud classification methods has significantly improved 

the accuracy of point cloud classification and has played an 

important role in practical applications. 

DGCNN is a classical point cloud classification method 

based on a neural network. It extracts the features of point 

cloud data and classifies them through local feature 

aggregation and global feature coding. In local feature 

aggregation, DGCNN uses KNN query [9] to obtain local 

information of neighboring points and then aggregates these 

local features through a fully connected layer. DGCNN uses 

pooling operations in global feature coding to extract global 

features from point cloud data. Although DGCNN has 

achieved good performance in point cloud classification tasks, 

it also has some problems. First, the number of neighbor 

points of the KNN query is not enough to capture the global 

information of the point cloud data, resulting in low 

classification accuracy. Secondly, DGCNN uses maximum 

pooling operation to extract global features of point cloud 

data, which may ignore some vital feature information, 

resulting in inaccurate feature extraction. Therefore, this 

paper's proposed method combines the spherical radius query 

[10] and the KNN query. It incorporates a traditional 

convolution layer for multi-scale fusion and employs a global 

pooling method to extract features. The improved model 
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exhibits superior performance in 3D point cloud 

classification tasks. 

II. RELATED WORK 

Point cloud classification is an essential problem in 

computer vision, which aims to classify point cloud data into 

different categories. It has become a research hotspot [11], 

and many neural network-based methods have emerged. 

Traditional point cloud classification is performed by 

manually designing a series of features and then directly 

classifying the 3D point cloud using a suitable classifier [12]. 

However, although manual feature extraction has achieved 

some results, the disadvantages are also prominent. The 

feature extraction process overlooks the inter-correlation 

between features [13], thereby requiring extensive 

experimentation to identify the optimal combination of 

features. This requires domain experts with relevant domain 

knowledge, intense subjectivity, and weak adaptability to 

complex point cloud scenarios. Deep learning algorithms 

have powerful feature extraction and representation 

capabilities [14]. Features can be automatically learned from 

the original point cloud data, avoiding manual feature 

design's tedious and subjective nature. Due to the 

unstructured nature of point cloud data [15], the advancement 

of hardware facilities has facilitated the use of deep learning 

techniques. These techniques enable the extraction of latent 

information from data and effectively tackle complex 

classification tasks, thereby enhancing the accuracy of cloud 

classification [16-17]. In recent years, the development of 

deep learning in the image field has led researchers to apply 

deep learning to point cloud classification. 

In order to better apply deep learning to point cloud 

classification, early deep learning technologies projected 3D 

point clouds into multiple views or voxel grids. Su et al. [18] 

proposed a Multi-View Convolutional Neural Network 

(MVCNN) to develop a view-based 3D shape feature 

extraction method. This article projects the mesh surface onto 

multi-view images and extracts features separately. Then, 

fuse and classify the learned information in the pooling layer. 

VoxNet proposed by Maturana et al. [19], provides a 

compelling point cloud classification technique by 

converting point cloud data into 3D normalized voxel data 

and using convolutional neural networks to learn features and 

perform classification. However, although view-based or 

voxel-based methods have made some progress in processing 

point cloud data, they are more computationally intensive and, 

at the same time, insufficient for data feature extraction. 

Therefore, using deep learning to process point cloud data 

directly has become a current research hotspot.  

In 2017, Charles et al. [5] of Stanford University proposed 

PointNet, the first deep-learning network that can directly 

handle the classification of disordered point clouds. This 

method independently processes the data of each point cloud 

through Multi-Layer Perceptron (MLP) [20]. Meanwhile, the 

Spatial Transformation Network (STN) [21] is also used to 

solve the point cloud data rotation-invariance problem and 

the symmetric function of maximum pooling (Maxpooling) 

to solve the point cloud data disorder [22]. However, the 

disadvantages are apparent enough. This method only 

focuses on the global information of the point cloud data. It 

fails to utilize the local information fully, thus limiting the 

ability to extract deeper features and losing the universality of 

complex scenes. Therefore, to solve the above problems, the 

team proposed an improved version of PointNet, PointNet++ 

[6]. To introduce local information based on PointNet, one 

can use the Farthest Point Sampling (FPS) algorithm to 

construct local neighborhoods and group the sampled points 

using the ball radius query method. However, feature 

extraction still employs independent point convolution and 

does not establish the relationship among points. Therefore, 

Wang et al. [7] proposed a Dynamic Graph Convolutional 

Neural Network (DGCNN). The core structure of the 

network is the EdgeConv layer. Edge convolution captures 

the relationship between centroids and their edge points. It 

can create local neighborhood maps to extract local features 

better. The network establishes the connection between 

points and local neighborhoods, effectively improving the 

accuracy of point cloud classification. However, DGCNN 

still has some drawbacks. The method's focus on the distance 

relationship among points during the construction of the local 

neighborhood is limited in capturing the local features of the 

point cloud. As a result, the method exhibits poor feature 

expression ability and lacks robustness. 

Based on the above analysis, this paper improves on the 

problems of DGCNN and proposes a new 3D point cloud 

classification network. First, combining KNN and ball radius 

query in feature extraction makes extracting local features 

more adequate based on DGCNN edge convolution. Then, 

the traditional convolution layer is added to improve the 

depth of the model, which can help the model better adapt to 

the data and enhance the ability of model feature 

characterization. Finally, this paper constructs a global 

pooling method by combining maximum pooling and 

average pooling, which serves as the primary approach for 

extracting global features. This improves the robustness of 

the model and reduces the risk of overfitting compared to the 

previous approach. Due to fully considering both the local 

and global characteristics of point cloud data, the proposed 

model achieves superior classification performance 

compared to the baseline model. On the ModelNet40 dataset, 

the proposed model achieves an accuracy of 93.8%. 

Compared with other point cloud classification methods, the 

method in this paper performs well in terms of accuracy and 

stability. The improved method in this paper has important 

implications for point cloud classification and related fields. 

It can offer more accurate and efficient solutions for practical 

applications. 

III. BUILD MODEL 

A. Network Structure Design 

This paper designs a point cloud classification network 

with an unordered point set as the input. The network's input 

is the 3D point set coordinates (x, y, z), where only the 

coordinate positions are considered, not the normal vectors, 

colors, and other factors. The original point cloud is input, 

transformed, and aligned by the Spatial Transform Network 

(STN), and then, the Dynamic Graph Convolutional (DGC) 

operation is used to obtain the local features. As shown in Fig. 

1, the classification network contains four layers of 

convolutional blocks. From left to right, it first passes 

through the graph convolution with 64 and 128 convolution
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Fig. 1 Model architectures 

 

kernels, then the traditional convolution with 128 

convolution kernels, and finally, the graph convolution with 

256 convolution kernels.  In the feature extraction process, 

one can fuse the previous layer's local features again while 

extracting local features at a deeper level. Finally, the feature 

output of each layer is united, and then the global feature is 

extracted through MLP. 

B. Dynamic Graph Convolution 

Graph Convolutional Neural Network (GCNN) [8] is a 

neural network model based on graph structure. It realizes the 

representation learning of graph data by aggregating and 

summarizing the nodes' and neighbors' information. 

Traditional graph convolution applies a fixed graph to each 

layer in the network, and convolution operations are applied 

to the graph structure. Therefore, convolution calculation is 

based on a fixed adjacency matrix. Dynamic graph 

convolution is a convolution calculation method based on a 

dynamic adjacency matrix [24]. The dynamic graph 

convolution used in this paper improves EdgeConv in 

DGCNN, in which the KNN query is improved to a 

combination of KNN query and ball radius query. After 

querying and calculating distances, one can construct a 

dynamic adjacency matrix and divide feature extraction using 

dynamic graph convolution into two steps. (1) Construct the 

graph structure using KNN and ball radius query algorithm. 

(2) Extract the features of edges in the graph structure using 

MLP. 

ⅰ. Building Feature Structure Extraction Module of 

Structure-Graph  

In point cloud data, the density of each point is not 

necessarily the same, so the number of neighbors of each 

point may vary significantly in a traditional KNN query. 

Some points may have more neighboring points, while others 

may have only a small number of neighboring points. In this 

case, using the same K value may not fully exploit the 

topology of the point cloud data and thus affect the model's 

performance. Therefore, combining KNN query and ball 

radius query can better capture the local structure of point 

cloud data, leading to improved model robustness and 

generalization ability. 

For a given center point pi, the K-nearest neighbors 

algorithm is applied to select k neighboring nodes Nk(pij), 

where j = 1, 2, ..., k. Equation (1) defines the graph structure 

Nk(pij) constructed by k. 

 2

1( ) { | arg min | | }K
k ij ij ik ikN p p p j p p==   −  (1) 

Subsequently, we employ the ball radius query algorithm 

to obtain all points within a specified radius r, denoted as 

Nr(pij), where j = 1, 2, ..., r. Equation (2) defines the graph 

structure Nk(pij) constructed by r. 

 ( ) { | | }r ij ij ij iN p p p p p r−=    (2) 

To explain the generation process of N(pij), the fusion of 

the neighborhoods Nk(pij) and Nr(pij) of pi is described in 

Equation (3).  

  ( ), ( )
( ) ( ) ( )

( ), ( )
k ij

ij k ij r ij
r ij

N p k r
N p N p N p

N p k r


= =


 (3) 

After the above operation, all the neighboring points of the 

center point that meet the requirements are found by the 

combination of KNN and ball radius query. Assuming that 

there are m points and then connecting the central point pi 

with all its neighbors pij through directed edges, Equation (4) 

to Equation (6) constructs the graph structure. 

 ( , )G V E=  (4) 

 { | 1,2,..., }iV p i N= =  (5) 

 1 2{ ( , ,..., | 1,2,..., )}i i i imE e e e e i N= = =  (6) 

In the graph structure G, V represents the set of N central 

nodes. E represents the directed edges formed by the central 

point and its neighbors. The edge feature between the central 

point pi and the m-th neighbor point pim is denoted as eim. The 

features of each point change across different feature 

extraction layers, resulting in a dynamic neighborhood map 

in the feature space. This enables for continuous updates to 

the local structure of the point cloud as the network layers 

deepen, enhancing the network's ability to capture local 

information. After the above operation, the construction of 

the graph structure by KNN and ball radius query algorithm 

is completed, as Fig. 2 shows the graph structure constructed 

in this paper. 
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Fig. 2 Using KNN-BR to construct the graph structure 

 
 

ⅱ. MLP Feature Extraction 

In this paper, the feature extraction of graph structure is 

realized using a shared multi-layer perceptron. In 

constructing the graph structure, all neighboring points pij of 

the center point pi are queried for the MLP operation. For 

each point pi, build the adjacency matrix A, where Aij=1 

means that point pij is a neighbor point of point pi. Otherwise, 

it is 0. Equation (7) shows the constructed adjacency matrix 

Aij. 

 
1, ( )

0,

ij ij

ij

p N p
A

otherwise


= 



 (7) 

For each point pi and its neighbor point pij, calculate the 

weight wij. (a) The weights wij can be calculated directly 

using the Euclidean distance for KNN neighbor points whose 

pij is pi. (b) For pij is a spherical radius neighbor point of pi, it 

is necessary to now calculate the relative distance ρij from the 

distance between pi and pij as shown in Equation (8). The 

weights wij are then computed using the Gaussian function, 

where σ is the learnable parameter, so Equation (9) shows the 

weights wij. 

 
| |ij i

ij
p p

r


−
=  (8) 

 
2

2

2

2

exp( | | ), ( )

exp , ( )ij

ij i ij k ij

ij

ij r ij

p p p N p
w

p N p




− − 


= 


（- ）
 (9) 

After calculating the weights, one needs to nonlinearly 

transform the feature vector of each neighbor point and then 

obtain the updated feature vector after weighted aggregation. 

Specifically, define the feature vector fi of each point pi as its 

three-dimensional coordinates (xi, yi, zi), and thus the feature 

vector of the neighbor node pij is fij. Then, use a fully 

connected layer as MLP to nonlinearly transform the feature 

vector of the neighbor points, obtaining the hidden layer 

feature vector hij as shown in Equation (10).  

 1 1( )ij ijh RELU W f b= +  (10) 

Where W1 is the weight matrix of the fully connected layer, 

b1 is the bias vector. Utilizing the RELU activation function 

[25] in neural networks enables better adaptation to nonlinear 

modeling. It effectively captures nonlinear relationships, 

particularly in addressing complex point cloud problems, 

while enhancing the model's generalization ability. Then, we 

weigh and aggregate the feature vector hij and weight wij of 

the hidden layer to obtain the new feature vector f'ij of point 

pij as shown in Equation (11). 

 '
2 2( )ij ijj mijf RELU W w h b= +  (11) 

W2 is the weight matrix of the second layer of MLP, and b2 

is the bias vector. After obtaining the new feature vector f'ij, 

the feature vectors of all points are divided into t groups, each 

containing n feature vectors. We fuse the feature vectors for 

each group using the maximum pooling and average pooling 

operations to receive a new set of feature vectors gij. Finally, 

all groups of feature vectors are connected to obtain the 

global feature vector G of the whole point cloud. Equation 

(12) shows the specific formula. 

 
1 ' '

1 2max , [ , ,..., ]ij tj m j mij ijn
g f f G g g g=  + =   (12) 

This leads to the core modules in the network structure of 

this paper, as shown in Fig. 3. Learning features in local 

graph structures using graph convolution. N represents the 

number of input points. e represents the feature dimension of 

each input point. Here e=3, m represents the number of 

neighbor points of the point cloud centroid, {32, 64, …, D} 

represents the number of neurons in each perceptual layer of 

the MLP, and the neuron in the last layer is D. Therefore, the 

feature dimension obtained after the pooling operation for 

feature aggregation is N×D. 
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Fig. 3 Feature extraction module of graph structure 

C. Spatial Transformation Network 

PointNet proposes that the function of the Spatial 

Transformation Network (STN) is to train a set of spatial 

rotation matrices. This rotation matrix can coordinate the 

alignment of the input point cloud data. The spatial 

transformation network can directly rotate the point cloud  
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Fig. 4 Spatial transformation network 

 

data to a better angle, which is more beneficial for the 

network to classify the data. The specific implementation is 

shown in Fig. 4. Multiple MLPs align the input cloud data  

with a maximum pooling prediction 3*3 rotation matrix, 

multiplied directly with the input point cloud to achieve 

coordinate alignment. 

 

IV. EXPERIMENTS 

A. Experimental Dataset and Evaluation Index 

ⅰ. Experimental Dataset 

The dataset used for the 3D point cloud classification 

experiments in this paper is the ModelNet40 dataset [26]. The 

Princeton University 3D Vision Organization provides the 

dataset and has 12, 311 meshed CAD models of 

manufactured objects. A distinctive feature of this dataset is 

its diversity, containing 40 categories that can cover a large 

number of real-world 3D objects. There are 9843 models in 

the dataset for training and 2468 models for testing. As 

shown in Table Ⅰ, the number of samples used for training and 

testing is given for the 40 categories. Another essential 

feature of this dataset is its challenging nature. Since the 

models in the dataset come from different categories, with 

further deformation and scaling, the algorithm must be able 

to distinguish these objects accurately. 

ⅱ. Evaluation Index 

The evaluation metrics provide an adequate and intuitive 

assessment of the effectiveness of the point cloud 

classification model. Among several metrics, such as 

accuracy, spatial complexity, and execution time, the the 

accuracy metric is the most critical. This paper selects the 

most commonly used accuracy metrics for evaluating point 

cloud classification tasks. The overall accuracy (OA), 

precision, and mean accuracy (mA), as expressed in 

Equations (13) to (15), are used to evaluate the performance 

in our study. 
 

TABLE Ⅰ 

EXPERIMENTAL DATA 

 

Classification 

Number of 

training 

samples 

Number of 

testing 

samples 

 

Classification 

Number of 

training 

samples 

Number of 

testing 

samples 

Airplane 626 100 Bathtub 106 50 

Bed 515 100 Bench 173 20 

Book shell 572 100 Bottle 335 100 

Bowl 64 20 Car 197 100 

Chair 889 100 Cone 167 20 

Cup 79 20 Curtain 138 20 

Desk 200 86 Door 109 20 

Dresser 200 86 Flower pot 149 20 

Glass box 171 100 Guitar 155 100 

Keyboard 145 20 Lamp 124 20 

Laptop 149 20 Mantel 284 100 

Monitor 465 100 Night stand 200 86 

Person 88 20 Piano 231 100 

Plant 240 100 Radio 104 20 

Range hood 115 100 Sink 128 20 

Sofa 680 100 Stairs 124 20 

Stool 90 20 Table 392 100 

Tent 163 20 Toilet 344 100 

Television stand 267 100 Vase 475 100 

Wardrobe 87 20 Xbox 103 20 
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+ + +
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TP FP
=

+
 (14) 

 
1

/
M

m
m

MeanAccuracy Precision M
=

=   (15) 

True positive (TP) indicates the model correctly predicts 

positive cases. False positive (FP) shows the model 

incorrectly predicts negative cases to be positive cases. False 

negative (FN) suggests the model incorrectly predicts a 

positive case to be a negative case. True negative (TN) 

indicates the model has correctly predicted the negative 

instances. M represents the number of categories of the 

classification. 

B. Experimental Results 

The test results of different network models for the 

ModelNet40 dataset are shown in Table Ⅱ. Overall Accuracy 

（ OA ） in the table indicates the overall classification 

accuracy, the result of correct classification of all tested 

several models. Mean Accuracy (mA) represents the average 

classification accuracy and the mean of the accurate results 

for each category in the test set. The comparison shows that 

the model proposed in this article achieves significant results 

in OA and mA metrics on the ModelMet40 dataset compared 

to DGCNN and other classic models, proving that the model 

performs better. 

 
TABLE Ⅱ 

POINT CLOUD CLASSIFICATION RESULTS 

Model Input Points OA mA 

VoxNet voxel - 85.9 83.0 

PointNet xyz 1024 89.2 86.0 

PointNet++ xyz 1024 90.7 - 

PointNet++(msg) xyz, normal 1024 92.9 90.4 

PointCNN xyz 1024 92.2 88.1 

PointConv xyz, normal 1024 92.5 - 

MVCNN image - 90.1 - 

DGCNN xyz 1024 92.9 90.2 

Ours xyz 1024 93.8 90.6 

Compared with the VoxNet and MVCNN algorithms, the 

algorithm in this paper deals with each point in the point 

cloud directly. It can perceive local fine-grained structural 

information and reduce the information loss caused by 

voxelization and multi-view conversion process, so the 

accuracy rate increases by 4.3%~8.5%. Compared with 

PointNet and PointNet++, the algorithm in this paper 

considers the set association between points when obtaining 

single-point features. Local information descriptions are 

enhanced to facilitate detailed feature mining, improving 

accuracy by 2.5%~5.2%. Compared with DGCNN and other 

algorithms, the improved algorithm in this paper enhances 

feature linking between dynamic graphs. It has gained a 

deeper understanding of the intrinsic correlations in feature 

maps, resulting in an accuracy improvement of 0.9%.   

Fig. 5 plots the changes in OA during the training of the 

proposed model in this paper and the baseline model. As can 

be seen from the figure, compared with the DGCNN network 

model under the same conditions, the OA of the whole 

process of the proposed model in this paper is significantly 

higher than that of DGCNN. The model's accuracy stabilizes 

after 150 iterations, while the DGCNN model needs the 

required stability after 200 rounds. Figure 6 depicts the 

variation in mA throughout the training process, while both 

demonstrate improved experimental outcomes. They 

illustrate the proposed model's accuracy, displaying slight 

fluctuations and consistent enhancements over time. It shows 

that the proposed model in this paper has a more vital local 

feature extraction ability than DGCNN. 
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Fig. 5 Comparison diagram of OA 

0 50 100 150 200 250
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

m
A

epochs

 PointNet++(msg)
 DGCNN
 Ours

PointNet++(msg) Ours

DGCNN

 

Fig. 6 Comparison diagram of mA 

 

Also, in this thesis model, 40 categories in the dataset are 

classified and compared with PointNet++ and DGCNN, 

respectively. As shown in TABLE Ⅲ, it verifies that this 

paper has improved overall classification accuracy for each 

category for the most part and proves that the model in this 

paper is more generalizable. 
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TABLE Ⅲ 
CATEGORY ACCURACY

Classification PointNet++ DGCNN Ours Classification PointNet++ DGCNN Ours 

Airplane 1.000 1.000 1.000 Laptop 1.000 1.000 1.000 

Bathtub 0.861 0.922 0.941 Mantel 0.953 0.972 0.976 

Bed 0.969 0.978 0.981 Monitor 0.961 0.981 0.985 

Bench 0.700 0.762 0.846 Night stand 0.721 0.833 0.851 

Book shell 0.913 0.925 0.942 Person 0.909 0.976 0.972 

Bottle 0.945 0.972 0.976 Piano 0.860 0.956 0.961 

Bow 0.903 0.954 0.962 Range hood 0.922 0.937 0.942 

Car 0.986 0.990 0.991 Sink 0.804 0.807 0.814 

Chair 0.973 0.981 0.987 Sofa 0.958 0.967 0.971 

Cone 0.957 1.000 1.000 Stairs 0.858 0.954 0.964 

Cup 0.802 0.786 0.843 Stool 0.855 0.878 0.885 

Curtain 0.900 0.934 0.961 Table 0.819 0.956 0.963 

Desk 0.802 0.943 0.951 Tent 0.952 0.961 0.968 

Door 0.814 0.927 0.935 Toilet 0.980 0.960 0.971 

Dresser 0.721 0.776 0.801 Television stand 0.797 0.89 0.883 

Flower pot 0.208 0.705 0.763 Vase 0.812 0.814 0.821 

Glass box 0.982 0.967 0.944 Wardrobe 0.612 0.795 0.814 

Guitar 1.000 1.000 1.000 Xbox 0.856 0.848 0.855 

Keyboard 1.000 1.000 1.000 Plant 0.762 0.743 0.788 

Lamp 0.951 0.961 0.974 Radio 0.756 0.875 0.846 
 

 

C. Model Analysis 

ⅰ. Determine the Value of K and Radius 

The core module of this paper is constructing a local 

domain using a combination of KNN and ball radius queries. 

Therefore, the experimental results of the model in this paper 

at K = 5, 10, 15, 20 and radius r = 0.1, 0.2, 0.3, 0.4 are shown 

in Figs. 7 and 8. During the model testing phase in this study, 

the optimal performance is observed when using a radius of 

0.2 and a value of K equal to 20. As depicted in Figure 7, the 

OA metric achieved a peak performance of 93.8%. Similarly, 

Figure 8 illustrates the peak performance of the mA metric at 

90.6%. Therefore, this paper sets the model's radius to 0.2 

and the value of K to 20.  
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                 Fig. 7 Comparison diagram of OA of KNN-BR 
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                   Fig. 8 Comparison diagram of mA of KNN-BR 

ⅱ. Determining the Pooling Method 

To investigate the influence of different pooling methods 

on classification accuracy, the paper tests the models for 

maximum pooling, average pooling, and combining the two 

methods. Table Ⅳ presents the test results. Which √ indicates 

that the method is used and ⅹ indicates that the procedure is 

not used. The test results of maximum pooling and average 

pooling show that the maximum pooling results outperform 

the average pooling results. It is 0.15% higher in the OA 

metric and 0.11% higher in the mA metric, which is 

consistent with the conclusions obtained by PointNet. 

Combining the two pooling approaches improves the OA 

metric by 0.21% and the mA metric by 0.18% compared to 

using maximum pooling alone. This indicates that the 

constructed global pooling method can effectively reduce 

information loss in the international feature selection process. 
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Therefore, this article extracts local and global features from 

the model by building two pooling methods.  

 
TABLE Ⅳ 

GLOBAL POOLING TESTING 

Max pooling Ave pooling OA mA 

√ ⅹ 93.59 90.42 

ⅹ √ 93.47 90.31 

√ √ 93.8 90.6 

V. CONCLUSION 

This study uses DGCNN as the baseline model to improve 

three aspects of the point cloud classification task. First, the 

model proposed improves the KNN query by combining it 

with a spherical radius query to construct a neighborhood 

map. This enhancement aims to strengthen the local receptive 

field of features and enhance the characterization ability of 

point cloud features. Next, the paper adds a conventional 

convolutional layer to the model to expand its perceptual 

field and strengthen its abstraction. It is finally constructing a 

global pooling approach that combines maximum and 

average pooling to increase the focus on global features. The 

improved model achieved an accuracy of 93.8% on the 

ModelNet40 dataset, a significant improvement compared to 

the baseline model of 92.9%. The experiments show that the 

improved method proposed in this paper can significantly 

enhance the performance of the point cloud classification 

task. 

Finally, we need to explore further the application effect of 

the point cloud classification method in practical applications. 

Although our model performs well in the point cloud 

classification task, its effectiveness and stability in practical 

applications need further validation. Therefore, we need to 

conduct more in-depth experiments and applications of the 

model and apply it to a broader range of fields and tasks. 

With the continuous development and advancement of point 

cloud technology, the research in this paper will make a more 

critical contribution to point cloud processing. 

REFERENCES 

[1] Shi, Shaoshuai, Xiaogang Wang, and Hongsheng Li, “Pointrcnn: 3D 

object proposal generation and detection from point 

cloud,” Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, pp. 770-779, 2019. 
[2] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention 

generative adversarial networks,” Proceedings of the International 

Conference on Machine Learning, pp. 7354-7363, 2019. 
[3] A. Johnson and M. Hebert, “Using spin images for efficient object 

recognition in cluttered 3D scenes,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 21, no. 5, pp. 433-449, 1999. 

[4] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing 

objects in range data using regional point descriptors,” Proceedings of 
the Computer Vision-ECCV 2004: 8th European Conference on 

Computer Vision, Prague, Czech Republic, 11-14 May, 2004, Springer 
Berlin Heidelberg, pp. 224-237, 2004. 

[5] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on 

point sets for 3D classification and segmentation,” Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, pp. 

652-660, 2017. 
[6] C. R. Qi, L. Yi, and H. Su, “Pointnet++: Deep hierarchical feature 

learning on point sets in a metric space,” Advances in Neural 

Information Processing Systems, pp. 5099-5108, 2017. 
[7] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. 

Solomon, “Dynamic graph CNN for learning on point clouds,” Acm 
Transactions on Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019. 

[8] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional 
neural networks on graphs with fast localized spectral 

filtering,” Advances in Neural Information Processing Systems, pp. 

3844-3852, 2016. 

[9] Z. Y. Deng, “Research and Application of Webpage Information 

Recognition Method Based on KNN Algorithm,” IAENG International 
Journal of Applied Mathematics, vol. 52, no. 3, pp725-731, 2022. 

[10] H. Zhou, Y. Feng, M. Fang, M. Wei, J. Qin, and T. Lu, “Adaptive 
graph convolution for point cloud analysis,” Proceedings of the 

IEEE/CVF International Conference on Computer Vision, pp. 

4965-4974, 2021. 
[11] Y. Zhou, and Q. Tuzel, “Voxelnet: End-to-end learning for point cloud 

based 3d object detection,” Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 4490-4499, 2018. 

[12] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan, “Rotational 

projection statistics for 3D local surface description and object 
recognition,” International Journal of Computer Vision, pp. 63-86, 

2013.  
[13] W. Q. Qin, W. C. Zhao, and M. Li, “Multi-level Feature Representation 

and Multi-layered Fusion Contrast for Few-Shot 

Classification,” IAENG International Journal of Computer Science, 

vol. 49, no. 2, pp318-324, 2022. 

[14] C. Z. Huang, and Y. Zhong, “A Network Representation Learning 
Method Fusing Multi-Dimensional Classification Information of 

Nodes,” IAENG International Journal of Computer Science, vol. 50, 

no. 1, pp94-105, 2023. 
[15] Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao, “Deepcontext: 

Context-encoding neural pathways for 3D holistic scene 
understanding,” Proceedings of the IEEE International Conference on 

Computer Vision, pp. 1192-1201, 2017. 

[16] B. F. Ma, and Y. F. Chen, “Attentive Enhanced Convolutional Neural 
Network for Point Cloud Analysis,” IAENG International Journal of 

Computer Science, vol. 50, no. 2, pp417-421, 2023. 
[17] S. R. S. Bhat, “A Counter Example for Neighbourhood Number Less 

Than Edge Covering Number of a Graph,” IAENG International 

Journal of Applied Mathematics, vol. 52, no. 2, pp500-506, 2022. 
[18] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view 

convolutional neural networks for 3D shape recognition,” Proceedings 
of the IEEE International Conference on Computer Vision, pp. 

945-953, 2015. 

[19] D. Maturana, and S. Scherer, “Voxnet: A 3D convolutional neural 
network for real-time object recognition,” Proceedings of the 

IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), pp. 922-928, 2015. 

[20] H. Thomas, C. R. Qi, J. E. Deschaud, B. Marcotegui, F. Goulette, and L. 

J. Guibas, “Kpconv: Flexible and deformable convolution for point 
clouds,” Proceedings of the IEEE/CVF International Conference on 

Computer Vision, pp. 6411-6420, 2019. 
[21] W. Shi, and R. Rajkumar, “Point-GNN: Graph neural network for 3D 

object detection in a point cloud,” Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, pp. 
1711-1719, 2020. 

[22] W. Liu, J. Sun, W. Li, T. Hu, and P. Wang, “Deep learning on point 
clouds and its application: A survey,” Sensors, vol. 19, no. 19, pp. 

4188-4210, 2019.  

[23] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3D 

object reconstruction from a single image,” Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, pp. 605-613, 
2017. 

[24] X. Wang, S. Liu, X. Shen, C. Shen, and J. Jia, “Associatively 

segmenting instances and semantics in point clouds,” Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, pp. 4096-4105, 2019. 
[25] H. Zhou, Y. Feng, M. Fang, M. Wei, J. Qin, and T. Lu, “Adaptive 

graph convolution for point cloud analysis,” Proceedings of the 

IEEE/CVF International Conference on Computer Vision, pp. 
4965-4974, 2021. 

[26] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D 
ShapeNets: A deep representation for volumetric shapes,” Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, 

pp. 1912-1920, 2015. 
 

Engineering Letters, 31:4, EL_31_4_59

Volume 31, Issue 4: December 2023

 
______________________________________________________________________________________ 




