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Abstract—We study the M/M/1 working vacation queueing
system with N -policy and different arrival rates in this paper.
The arrival rate of customers in a different period is different.
Using the method of matrix geometry solution, We have given
the steady-state performance indicators of this system. In
addition, we also get the conditional stochastic decomposition
structures of the queue length as well as the waiting time. The
last part of the article show the numerical analyses and the
trend of each performance indicators.

Index Terms—N -policy, different arrival rates, stochastic
decomposition, matrix geometric solution, working vacation.

I. INTRODUCTION

IN the queueing system, the idle state of the server station
can be effectively took advantage of avoiding the waste

of resources, so the queueing model with various vacation
strategies has an important application in some practical
systems, and has become a research hotspot of queueing
theory. A detailed introduction can be found in the review
papers [1], [2] or monographs [3]. A lot of scholars have
made extensive and in-depth study on the classical vacation
queueing system [4], [5]. As early as 20 years ago, Servi
and Finn [6] introduced a new vacation policy that it was
a semi-vacation policy: when a server served customers in
a vacation, they served at a lower rate and didn’t stop the
service. They defined such a vacation policy as working
vacation. They got relevant performance indicators. This
queueing systems have triggered various studies on discrete-
time working vacation queueing. Chen and Jia [7] obtained
PGF and the mean of queue length during departure periods.
Lv et al. [8] considered the customers’ input rates impacted
on the queue length in the system. [9] and [10] researched a
queueing model with a vacation interruption, working break-
downs and repairs. Yang and Tian [11] built a mathematical
model to research the N -policy queueing system. Then they
used matrix geometry solution method to obtain the results.
Secondly, a conditional stochastic decomposition structure
of the queue length and wait time distribution was given. In
addition, the queueing model with N -policy was also studied.
V. Karthick and V. Suvitha [12] analyzed the repairable
Markovian queueing systems which have three service coun-
ters with servers on vacation. Under the N-policy, when
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the system has on customers, the service station stops all
work and enters the idle period (if it is a vacation queue, it
enters the vacation period). When the number of customers
in the system gets to the conversion threshold N , the system
resumes normal work and enters the busy period. [13] and
[14] considered the retrial queueing system and obtained the
steady-state indexes and probability distributions. Ma, Li and
Wei [15] studied the social optimization in working vacation
queueing model with N -policy. Wang and Zhu [16] analyzed
the queue with negative customers and different arrival rates.
Studied on other more general models include: Tang et al.
[17] analyzed the calculation of the stable length with delay
N-policy. [18] and [19] considered the discrete-time case of
[17], that is, the calculation problem of the queueing stable
length with a delay N -policy. Finally, the research on the
queueing model with N -policy can also refer to the literature
cited above.

The core content of the theory of vacation queueing system
is stochastic decomposition. The performance indicators in
the queueing systems can usually be divided into two inde-
pendent random variables. One of which is the indicator with
the same name in the classical system with on vacation, and
the other is the additional random variable caused by vaca-
tion. So this process is called the stochastic decomposition.
The various stochastic decomposition results and the methods
that lead to them are a prominent feature of the study of
vacation queueing. The stochastic decomposition makes the
comparison between the working vacation queueing systems
and the classical queueing system clear. It is convenient
to analyze the influence of various vacation strategies on
the classical queueing model. Since the classical queueing
system has been studied in depth. Stochastic decomposition
method transforms the analysis of the vacation queueing into
the study of additional random variables, thus simplifying the
steady-state. Stochastic decomposition is not only important
in the theoretical analysis of vacation queueing, but also
provides great convenience for practical applications under
various backgrounds. Considering that the transition between
two states usually requires a certain amount of expenses,
the accumulation of a certain number of customers before
implementing the transition may produce better economic
benefits. When the vacation was over, if the number of
customers in the system is equal or great than N , the server
will start to service customers. Otherwise, the server will start
the other independent and equally distributed vacation. This
is a N -policy multiple vacation rule. In daily life, people
line up to get on the bus at the station, queue up to see a
doctor at the hospital and queue up to handle business at the
bank. Such service systems all have one thing in common,
that is, the arrival of customers has a strong time-varying
feature. The long waiting process not only affects the service
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efficiency but also easily causes customer dissatisfaction.
Therefore, the change of customer arrival rates and the
imbalance of service rates have become a research focus of
many scholars.

In summary, the queueing systems in the real word will
change with the changes of the system state and the arrival
rates of customers. Based On the above literatures, we study
the queueing system with N -policy, in which a customer
arrival rate changes with the queueing system’s state. Per-
formance indicators in this system were got by using matrix
geometry solution [20] method.

II. MODEL DESCRIPTION

1) The customer arrival obeys the Poisson process. The
customer arrival rate is λ1 in normal busy period (state 1) as
well as λ2 in working vacation period (state 0).

2) The service time is subject to exponential distribution
and abides the exponential distribution of with µ1 in state 1.
During state 0, the server doesn’t stop working completely,
and serves customers at a rate µ2 (µ2 < µ1).

3) Once this system has no customers, the server immedi-
ately enters a working vacation of random length V . In the
end of the working vacation, if the number of customers
is j (j < N ) in the system, server will again enter a
separate, evenly distributed working vacation. Continue to
serve the customers after the working vacation; Otherwise,
if the number of customers is equal to or great than N (N
is given in advance) in the system, the servers are going to
immediately stop working vacation, and the service rate will
increase from µ2 to µ1. It begins a normal busy period, until
the service station recovers idle again. The length V of the
vacation obeys the exponential distribution of the parameter
θ.

4) We assumed that all processes are independent of each
other. In addition, the queueing system has only one service
station and the service discipline is first-come-first-served
(FCFS).

Let Q (t) be the number of customers in the system at
the moment t, and J (t) be the state of service stations at
the moment t.

J (t) =


0, the system is in the working vacation
period at time t,

1, the system is in the normal busy
period at time t.

Then {Q (t) , J (t)} is a quasi-birth-and-death pro-
cess (QBD) with the state space Ω = {(0, 0)} ∪
{(k, j) , k ≥ 1, j = 0, 1}.

The state transition diagram for this system is shown in
Figure 1.

From the state transition diagram, the infinitesimal gener-
ator Q can be written as

Q =



A00 C00

B10 A0 C
B A0 C

. . . . . . . . .
B A C

. . . . . . . . .


, (1)

where
A00 = −λ2, C00 =

(
λ2 0

)
, B10 =

(
µ2

µ1

)
,

B =

(
µ2 0
0 µ1

)
, C =

(
λ2

λ1

)
,

A0 =

(
− (µ2 + λ2) 0

0 − (µ1 + λ1)

)
,

A =

(
− (µ2 + λ2 + θ) θ

0 − (µ1 + λ1)

)
.

To analyze this QBD process, the minimal non-negative
solution of matrix equation [20]

R2B +RA+ C = 0. (2)

Theorem 1. If ρ = λ1µ1
−1 < 1, the matrix equation

R2B +RA+ C = 0 has the minimal non-negative solution

R =

(
r θr

µ1(1−r)

0 ρ

)
, (3)

where r is the root of equation µ2r11
2 −

(µ2 + λ2 + θ) r11 + λ2 = 0 and 0 < r < 1.
Proof Assume that R has the upper triangular matrix, let

R =

(
r11 r12
0 r22

)
.

Taking R2 and R into Eq. (2), the following system of
equations can be obtained: µ2r11

2 − (µ2 + λ2 + θ) r11 + λ2 = 0,
µ1r12 (r11 + r22) + θr11 − (µ1 + λ1) r12 = 0,
µ1r22

2 − (µ1 + λ1) r22 + λ1 = 0.
(4)

r11can be derived from the first equation of Eq. (4)

r11 =
(µ2 + λ2 + θ)±

√
(µ2 + λ2 + θ)

2−4µ2λ2

2µ2
. (5)

Evidently, r11 < 1 when the negative sign works, and
r11 > 1 when the positive sign works. We take the negative
sign to get the minimum non-negative solution R,. From the
third equation of Eq. (4)

r22 =
(µ1+λ1)−

√
(µ1+λ1)

2−4µ1λ1

2µ1

= (µ1+λ1)−|µ1−λ1|
2µ1

= λ1

µ1
= ρ.

(6)

We can derive r22 = ρ < 1. Taking r11 = r and r22 = ρ <
1 into the second equation of Eq. (4), we get the expression
for r12 = θr

µ1(1−r) , Theorem 1 is proved.
We can obtain that r satisfies the following relation:

λ2 + θ + µ2 (1− r) = µ2 +
θ

1− r
=

λ2

r
. (7)

III. QUEUE LENGTH DISTRIBUTION

If ρ = λ1µ1
−1 < 1, let

∏
be the steady-state probability

vector of {Qv, J}, then∏
= (π0, π1, π2, · · ·) ,

and

πkj = lim
t→∞

P {Qv (t) = k, J (t) = j} , (k, j) ∈ Ω

the steady-state probability is

π0 = (π00) , πk = (πk0, πk1) , k ≥ 1.
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Figure 1. The state transition diagram of the system

Theorem 2. If ρ = λ1µ1
−1 < 1, the stationary probability

distribution meets the following equations

πj0 = K ·
(

λ2

λ2−µ2

(
θr

λ2(1−r) − (1− r)
(

µ2

λ2

)N−j
))

,

j = 0, 1, 2, · · · , N − 1,

πj1 = K · θr
µ1(1−r) ·

1−ρj

1−ρ , j = 1, 2, · · · , N − 1,

πko = K · rk−N+1, k = N, · · · ,

πk1 = K · θr
µ1(1−r)

(
k−N∑
j=0

rjρk−N−j + 1−ρN−1

1−ρ ρk−N+1

)
,

k = N, · · · ,
(8)

where

K = [(N − 1)

(
1−

(
µ2

λ2

)−1
)(

1− rµ2

λ2

)(
1− µ2

µ1

)
1

1−ρ

+ 1
1−ρ

1
1−r

(
1− µ2

µ1
r
)
− (1− r)

((
µ2

λ2

)2
−
(

µ2

λ2

)N+1
)

(
1− µ2

λ2

)−2

]−1.

Proof In terms of the matrix-geometric solution method
[20] (Neuts,1981), we have

πk = πN−1R
k−N+1

=
(
πN−1,0 πN−1,1

)
Rk−N+1, N − 1 ≤ k,

(9)

and (π00, π10, π11, · · · , πN−1,0, πN−1,1) satisfies the set of
equations

(π00, π10, π11, · · · , πN−10, πN−11)B[R] = 0, (10)

where

B[R] =


A00 C00

B10 A0 C
. . . . . . . . .

B A0 C
B RB +A

 ,

RB +A =

(
rµ2 − (µ2 + λ2 + θ) θ

1−r

0 µ1ρ− (µ1 + λ1)

)
.

Taking B[R] into the above relation, we obtain the set of
equations

−λ2π00 + µ2π10 + µ1π11 = 0,
− (λ1 + µ1)π11 + µ1π21 = 0,
λ2πj−i,0 − (λ2 + µ2)πj,0 + µ2πj+1,0 = 0,
λ2πN−2,0 + [rµ2 − (λ2 + µ2 + θ)]πN−1,0 = 0,
λ1πj−i,1 − (λ1 + µ1)πj,1 + µ1πj+1,1 = 0,
λ1πN−2,1 +

θ
1−rπN−1,0 + [µ1ρ− (λ1 + µ1)]πN−1,1 = 0.

(11)

Taking πN−1 = K, from the fifth equation of Eq. (11)

µ1 (πj+1,1 − πj,1) = λ1 (πj,1 − πj−1,1) ,

πj+1,1 − πj,1 =
λ1

µ1
(πj,1 − πj−1,1) = ρ (πj,1 − πj−1,1) .

From the second equation of Eq. (11), µ1 (π21 − π11) =
λ1π11, is that

π21 − π11 =
λ1

µ1
π11 = ρπ11.

We get
πj+1,1 − πj,1 = ρjπ11,

πj,1 =

j−1∑
i=0

ρiπ11 =
1− ρj

1− ρ
π11.

πj,1and µ1π11 = θr
1−rπN−1,0 are added in turn, we have

πj,1 =
θr

µ1 (1− r)
· 1− ρj

1− ρ
πN−1,0, j ≤ N − 1.

From the third equation of Eq. (11)

λ2 (πj−1,0 − πj,0) = µ2 (πj,0 − πj+1,0) ,

πj−1,0 − πj,0 =
µ2

λ2
(πj,0 − πj+1,0) =

(
µ2

λ2

)N−j

πN−1,0.

From the fourth equation of Eq. (11)

πN−2,0 − πN−1,0 =
µ2 (1− r) + θ

λ2
,

πN−j,0 − πN−j−1,0 = (1− r)

(
µ2

λ2

)j−1

πN−1,0.

Thus,

πN−j,0 = λ2

λ2−µ2
[r
(
1− µ2

λ2

)
+ (1− r)

(
1−

(
µ2

λ2

)j)
]πN−1,0, j ≤ N,

πN−j,0 = λ2

λ2−µ2
[ θr
λ2(1−r)

− (1− r)

(
1−

(
µ2

λ2

)j)
]πN−1,0, j ≤ N.

Notice

Rk−N+1 =

(
rk−N+1 θr

µ1(1−r) ·
1−ρj

1−ρ πN−1,0

0 ρk−N+1

)
.

Substituting (πN−1,0, πN−1,1) and Rk−N+1 into Eq. (9),
we can obtain Eq. (11). Through the normalization condition,
we obtain the constant factor K.
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IV. THE CONDITIONAL STOCHASTIC DECOMPOSITION
STRUCTURE

Theorem 3. If ρ = λ1µ1
−1 < 1, the conditional random

variable Qv
(N) can be decomposed into Qv

(N) = Q0 +Qd,
where Q0 is the conditional queue length of the classical
M/M/1 queue without vacation, and Qd is the additional
queue length caused by working vacation [11]. The distri-
bution function is

P {Qd = k} =

 1
ξ

(
1

1−ρ +
(1−ρN−1)ρ

(1−ρ)2

)
, k = 0,

1
ξ · 1

1−ρ · rk, k ≥ 1,
(12)

where

ξ =
1

1− r
· 1

1− ρ
+

ρ
(
1− ρN−1

)
(1− ρ)

2 .

Proof The probability of the system in state 1 and the
number of customers not less than N ,

P {Qv ≥ N, J = 1}

=
∞∑

k=N

πk1

= K · θr
µ1(1−r)

[
1

1−r · 1
1−ρ +

ρ(1−ρN−1)
(1−ρ)2

]
= K · θr

µ1(1−r) · ξ.

Thus, we have

P
{
Qv

(N) = k
}

= P {Qv −N = k|Qv ≥ N, J = 1}

= 1
ξ

(
k∑

j=0

rjρk−j + 1−ρN−1

1−ρ · ρk+1

)
, k = 0, 1, · · · .

The PGF of Qv
(N) is

Qv
(N) (z)

=
∞∑
k=0

zkP
{
Qv

(N) = k
}

= 1−ρ
1−ρz · 1

ξ ·
(

1
1−ρ · 1

1−r · 1−r
1−rz +

ρ(1−ρN−1)
(1−ρ)2

)
= Q0 (z) ·Qd (z) ,

where Q0 (z) =
1−ρ
1−ρz , then the PGF of Qd is

Qd (z) =
1

ξ
·

(
1

1− ρ
· 1

1− r
· 1− r

1− rz
+

ρ
(
1− ρN−1

)
(1− ρ)

2

)
.

Expanding it to a power function of z can have the
distribution of Qd.

The mean additional queue length of system

E (Qd) = Qd
′ (z) |z=1 =

1

ξ

[
1

1− ρ

r

(1− r)
2

]
.

Then, we get

E
(
Qv

(N)
)

= E (Q0) + E (Qd)

= ρ
1−ρ + 1

ξ

[
1

1−ρ
r

(1−r)2

]
.

(13)

Theorem 4. If ρ = λ1µ1
−1 < 1, the conditional random

variable Wv
(N) can be decomposed into Wv

(N) = W0 +
WN−1+Wd. Where W0 is the conditional waiting time of the
classical M/M/1 queue without vacation, and WN−1 obeys

the Erlang distribution of parameters µ1 and N−1. And Wd

is the additional waiting time caused by working vacation
[11]. The distribution function

Wd (x) = 1− 1

ξ

1

1− ρ

r

1− r
e−µ1(1−r)x, x ≥ 0, (14)

where

ξ =
1

1− r
· 1

1− ρ
+

ρ
(
1− ρN−1

)
(1− ρ)

2 .

Proof If a customer arrive under state (j, 1), the LST of
Wj

(N) is

Wj
(N)∗ (s) =

(
µ1

s+ µ1

)j

, j ≥ N.

The LST of Wv
(N)

Wv
(N)∗ (s)

=
∞∑
k=0

(
µ1

s+µ1

)N+k

P
{
Qv

(N) = k
}

= 1
ξ

∞∑
k=0

(
µ1

s+µ1

)N+k
(

k∑
j=0

rjρk−j + 1−ρN−1

1−ρ · ρk+1

)
= W0

∗ (s)WN−1
∗ (s)Wd

∗ (s) ,

where W0
∗ (s) = µ1(1−ρ)

s+µ1(1−ρ) ,WN−1
∗ (s) =

(
µ1

s+µ1

)N−1

,

and Wd
∗ (s) = 1

ξ

[
1

1−ρ · r
1−r · µ1(1−r)

s+µ1(1−r) +
1−ρN

(1−ρ)2

]
.

Then, we get the PGF of Wd caused by the working
vacation

Wd
∗ (s) =

1

ξ

[
1

1− ρ
· r

1− r
· µ1 (1− r)

s+ µ1 (1− r)
+

1− ρN

(1− ρ)
2

]
.

V. THE BUSY PERIOD ANALYSIS AND THE OTHER
PERFORMANCE INDICATORS

A. The Busy Period Analysis

We used B to represent the period that the server continues
to serve customers with µ1. C is denoted as full working
vacation that the period between two sequential normal busy
periods. It consists of several vacations V . A busy cycle is
expressed by C, where C = B + Vg . Since the distribution
of V is memoryless, if the number of customers during the
vacation isn’t less than N , the normal busy period may start
at any time, so

P {Qb = k} = P {Qv = k|j = 0, Qv ≥ N} , k ≥ N,

P {j = 0, Qv ≥ N} = K · r

1− r
.

Thus, the distribution, PGF and mean function of Qb are
respectively

P {Qb = k} = (1− r) rk−N , k ≥ N, (15)

Qb (z) =
(1− r) zN

1− rz
(16)

and
E (Qb) = N +

r

1− r
. (17)
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B0 represents the classical busy period of M/M/1 queue
without vacation, then

B0
∗ (s) = Bb

∗ (s+ λ1 (1−B0
∗ (s))) ,

B0
∗ (s) =

µ1

µ1 + s+ λ1 (1−B0
∗ (s))

,

E (B0) =
1

µ1 (1− ρ)
.

When Qb = k and k ≥ N , then a normal busy period
begins, so

B∗ (s) = Qb (B0
∗ (s)) =

(1− r) (B0
∗ (s))

N

1− rB0
∗ (s)

,

E (B) = E (Qb)E (B0) =

(
N +

r

1− r

)
1

µ1 (1− ρ)
.

Using the joint probability distribution and the limit theo-
rem of the alternating renewal process, we get

P {J = 1} = E(B)
E(C)

=
N−1∑
j=1

K 1−ρj

1−ρ
θr

µ1(1−r)+

∞∑
k=N

K θr
µ1(1−r)

(
k−N∑
j=0

rjρk−N−j + 1−ρN−1

1−ρ ρk−N+1

)
= K 1

1−ρ
θr

µ1(1−r)

[
(N − 1) + 1

1−r

]
.

(18)

P {J = 0} =
E(Vg)
E(C)

=
N−1∑
j=0

K

(
λ2

λ2−µ2

(
θr

λ2(1−r) − (1− r)
(

µ2

λ2

)N−j
))

+
∞∑

k=N

K · rk−N+1

= K[(N − 1)
(
1− µ2

λ2

)−1 (
1− rµ2

λ2

)
+ (1− r) µ2

λ2

(
1−

(
µ2

λ2

)N)(
1− µ2

λ2

)−2

].

(19)
Substituting E (B) into Eq. (19), we have E (C) = 1−r

Kθr .
From the relationship between B, Vg and C we get

E (Vg) = E (C)− E (B) = 1−r
Kθr −

(
N + r

1−r

)
1

µ1(1−ρ)

= [(N − 1)
(
1− µ2

λ2

)−1 (
1− rµ2

λ2

)
+ (1− r) µ2

λ2

(
1−

(
µ2

λ2

)N)(
1− µ2

λ2

)−2

] · 1−r
θr .

E (Vg) is dependent on λ2, θ and µ2 but independent on
µ1. This is in line with the reality that the length of full
vacation has no relationship to service rates during regular
busy periods.

B. System Performance Indicators

1) The probability that the system is in the normal busy
period

P {J = 1} = K 1
1−ρ

θr
µ2(1−r)

[
(N − 1) + 1

1−r

]
.

2) The probability that the system is in the working
vacation period

P {J = 0}

= K[(N − 1)
(
1− µ2

λ2

)−1 (
1− rµ2

λ2

)
+ (1− r) µ2

λ2

(
1−

(
µ2

λ2

)N)(
1− µ2

λ2

)−2

].

3) The mean queue length

E (L) =
N−1∑
j=0

j · πj,0+
N−1∑
j=1

j · πj,1+
∞∑

k=N

k · πk,0+
∞∑

k=N

k · πk,1

= K θr
µ1(1−r)

1
1−ρ

· 1
2

[
(1−2ρ−ρ2)N(N−1)+2ρN (N+ρ−2Nρ)

(1−ρ)2

]
+K θr

µ1(1−r)

[
N

(1−r)(1−ρ)
+ r+ρ(1−2r)

(1−r)2(1−ρ)2
− (N−Nρ+ρ)(ρ−ρN)

(1−ρ)3

]
+Kr

(
N

1−r
+ r

(1−r)2

)
+K λ2

λ2−µ2
[ θr
λ2(1−r)

N(N−1)
2

−

(1− r)
µ2

[
λ2(N−1)−Nµ2+λ2

(
µ2
λ2

)N]
(λ2−µ2)

2 ].

VI. NUMERICAL EXPERIMENTS

For different queueing models, the change of the param-
eters will directly affect the performance indicators of this
system. This section will use specific numerical examples to
prove the reasonability and actual operability of the model.

Assuming that µ1 = 0.8, θ = 0.5, λ2 = 0.2, N = 4, λ1

takes values of 0.3, 0.4 and 0.5. The range of variation
of µ2 is 0.1 ≤ µ2 ≤ 0.5. We account for the trend of
the E

(
Qv

(N)
)

with λ1 and µ2 in figure 2. When λ1 is

fixed, E
(
Qv

(N)
)

gradually decreases with the increase of

µ2. When µ2 is fixed, E
(
Qv

(N)
)

smoothly increase with
the increase of the λ1. Obviously, the influence of λ1 on
E
(
Qv

(N)
)

is significant.
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Figure 2. The mean queue length E
(
Qv

(N)
)

versus µ2.

Assuming that µ1 = 0.8, λ1 = 0.5, λ2 = 0.2, N = 4, µ2

takes values of 0.3, 0.4 and 0.5 and the range of variation
of θ is 0.3 ≤ θ ≤ 0.7. Figure 3 illustrates the effects of
µ2 and θ on E

(
Qv

(N)
)

. When µ2 is fixed, E
(
Qv

(N)
)

gradually decreases with the increase of θ. When θ is fixed,
E
(
Qv

(N)
)

decreases with the increase of µ2. When the
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working vacation policy is added to a queueing system to
save resources, it is important to determine an appropriate
service rate on the system.
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Figure 3. The mean queue length E
(
Qv

(N)
)

versus θ.

Assuming that µ2 = 0.5, λ1 = 0.6, λ2 = 0.3, N = 4, the
range of variation of µ1 is 0.8 ≤ µ1 ≤ 1.3 and the range of
variation of θ is 0.3 ≤ θ ≤ 0.7. Figure 4 illustrates the effects
of µ1 and θ on E

(
Qv

(N)
)

. This figuer reflects E
(
Qv

(N)
)

decreases with the increase of θ and µ1.
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Figure 4. The mean queue length E
(
Qv

(N)
)

for different values
of θ and µ1.

Assuming that µ1 = 0.8, λ1 = 0.5, λ2 = 0.2, N = 4, the
range of variation of µ2 is 0.3 ≤ µ2 ≤ 0.5 and the range
of variation of θ is 0.3 ≤ θ ≤ 0.7. We show the effects of
µ2 and θ on E

(
Qv

(N)
)

in figure 5. The result indicates

E
(
Qv

(N)
)

decreases with the increase of parameter θ and
µ2.

Assuming that µ1 = 0.8, λ1 = 0.5, λ2 = 0.2, N = 4, the
range of variation of µ2 is 0.3 ≤ µ2 ≤ 0.5 and the range of
variation of θ is 0.3 ≤ θ ≤ 0.7. The figure 6 illustrates the
effects of µ2 and θ on the mean of busy cycle E (C). When
µ2 is fixed, the mean of busy cycle E (C) in the system
decreases with the increase of θ. When the θ is fixed, E (C)
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Figure 5. The mean queue length E
(
Qv

(N)
)

for different values
of θ and µ2.

grows as the service rate µ2 grows.
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Figure 6. The mean busy cycle E (C) for different values of θ
and µ2.

VII. CONCLUSION

This paper investigated the M/M/1 working vacation
queueing system with N -policy and different arrival rates.
We first obtained the stationary distribution via the matrix
geometry solution method. Through contrastive analysis, the
conditional stochastic decomposition structure of the queue
length and waiting time are obtained. We compute various
performance indicators of the system and analyzed the busy
period. The impacts of system parameters on the performance
indexes are obtained by numerical experiments. From the
above results, it can be concluded that it is essential to
consider service rates when during the working vacation to
enhance efficiency. We can carry on the research in the future
to extend the system with general distribution of service time
or PH distribution.
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