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A One-Step Multi-Derivative Hybrid Block
Method with Modified-Picard Iteration for the
Solution of Second Order IVPs

Uthman O. Rufai, Precious Sibanda, and Sicelo P. Goqo

Abstract—This study presents a one-step multi-derivative
hybrid block method (OSMDHBM) of order ten, which incor-
porates third derivatives for the solution of linear and nonlinear
second-order initial value problems (IVPs). The derivation
incorporates a multi-step collocation and interpolation method,
using an approximated power series as the basis function. The
intra-step or off-step points are obtained from the derivative
of a shifted Legendre polynomial (SLP) of degree four. The
accuracy, consistency, and stability properties of the method are
analyzed. The nonlinear IVPs are linearized using the modified
Picard iteration method (MPIM). In order to demonstrate the
superiority of the method, numerical experiments are presented.
Comparisons are made between the numerical results obtained
and results from other methods and similar schemes in the
literature.

Index Terms—Interpolation, Collocation, Hybrid block,
Shifted Legendre polynomial, Modified Picard iteration.

I. INTRODUCTION

N the last half-century, much attention has been focused

on exploring and creating new techniques for numerically
integrating IVPs related to second-order (2-order) differential
equations (DEs) in the form:

y'=f, 9, 9), w€la ], ()
subject to the initial conditions:
y(a) = Yn; y/(a) = 6na 2

where ¥y, and §, are known constants. Equation (1) is
extensively used in various applied sciences, including orbital
dynamics, circuit theory and chemical kinetics. Numerous
strategies have been proposed for solving (1) directly, in-
cluding linear multi-step methods to overcome the Dahlquist
barrier by introducing intra-step points during formulation.

Linear multi-step methods have been extensively used
to solve first-order (1-order) IVPs and are conventionally
applied to solve higher-order (H-order) IVPs by initially
converting the ODE into an equivalent 1-order system (see
[11, [2]). In recent years, researchers have placed a significant
emphasis on utilizing block hybrid methods (BHMs) to solve
Equation (1) directly. Studies have shown that this direct
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approach is more effective than the method of converting
H-order IVPs into a system of l-order IVPs in terms of
execution time, cost-effectiveness and accuracy (see, for
instance [3]-[5]).

Seventh-order linear multi-step method was proposed in
[6] and was implemented in either predictor-corrector or
block mode, proving to be more efficient for solving (1).
Orakwelu et al. [7] presented an optimized two-step BHM
with symmetric off-step points for the solution of (1). Hybrid
Obrechkoff methods were developed to enhance the accuracy
of approximation and have been demonstrated to achieve an
order k + 2 [8].

Enright [9] and Gupta [10] independently proposed a
method called multi-derivative methods to solve H-order
IVPs. Tumba et al. [11] through a power series approach,
developed a uniformly eight-order implicit second-derivative
method combined with Taylor method for solving stiff or-
dinary differential equations of 2-order. Extensive research
findings (see [12], [13]) indicate that multi-derivative meth-
ods not only achieve higher accuracy but also exhibit robust
stability properties.

The aim of this study is to develop a OSMDHBM of order
ten, which incorporates third-derivatives (3-Ds) to solve lin-
ear (L) and nonlinear (N) IVPs in the form (1). The N-IVPs
are linearized using a MPIM. We examine the effectiveness
and stability properties of the proposed OSMDHBM.

II. DERIVATION OF THE OSMDHBM
A one-step 3-D method of the form:

[}
Untp: = Yn + hXi j0n + 02Bij fu+ B2 [ D i Fuiy,
=1

)
+ 137 jgn + B° Z%‘jgn+pj ;
Jj=1

3)

P
Ontp; = On +hnijfn+h ZCijfn-i—pj +h2wij9n

j=1

[
F02 D Gisgnip, | i=2,3,.,9,
j=1

“)
is developed for solving (1) over an interval with a <z < b
which is partitioned as a = g < 21 < T3 < - - - < Tr_1 <
xr = b. The step length is conventionally denoted as h =
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Tpp1—axp forn=1,2 3, ..., R—1. The IVP (1) is solved
within the intervals [x,,, 1], using the initial values y(x,,)
and y'(x,,) forn =0, 1, ..., R—1. To improve the method’s

accuracy, ® — 1 off-step points are introduced. The set of
points utilized in the solution process within each interval
[T, Tnt1] is given by

Ln+pos Lntprs Lntpas -5 Tntpy—1) Tntpas (5)
where 25,4, = T, and 4 p, = Typ1. Set
O+

ylx) =Y (x) = Z kn o(x —x,)°, (6)
o=0

with the first, second and third derivatives given by

P+
S@) Y () =Y jhnolw—2n)" ", (7)
o=0
D4
Vi = 0(0 =1 kno(z—2,)" > 5
= ®)
= f(@ntpss Yntpis Ontp;),
P+w
Y’r;/‘;’pi = Z o(oc—1)(0 = 2) ko (x— )77
72 ©
= g(xn+pi7 yn+pi7 5n+piu fn+pi)7
1=2,3,...,9,

where £, , are unknown coefficients in the interval
[€n, Tpy1] to be determined from a system of & + U
equations with unknowns generated from (8) and (9), and
V=041,

Apply the initial conditions:

Y(xn) = kn,O = Yn,

Y'(xn) = kn1 = 0n, (10)

and collocating at

Tptp, = Tn + hpi, 1=2,3,..., 0.

When ® = 5, the points p; range from p; = 0, p2, p3, P4,
to ps = 1. The off-step points are ¢ = pa, p3 and p4. These
off-step points are obtained from the derivative of a SLP of
degree four, where

V21

V21
) + —.
14 14

| —

1 j—
2a P4 =

N =

P2 =

By solving equations (8) to (10) for all values of M.
We obtain the unknown constants k, ;. Substituting the
coefficients k,, ; into (6) and (7), we obtain a one-step 3-D
method of the form (3) and (4). By evaluating (3) and (4)
at Tp4p, fori = 2,3, ..., ®, we obtain

Yn+po X2,2  X2,3 X2,3
Yn+ps X3,2  X3,3 X3,®
Yn+ps | X®,2 X@,3 Xo,®
B22 P23 B2.@
o, |P32 Ds3 B3,
+hofn | . } .
|Ba2 Ba,3 Bo,a ]
Q22 (23 a2 fn+pz
9 Qg2 Q33 a3 o fn+p3
+h . (11)
apo2 o3 093] | frtps
72,2 T2;3 7'2,@—
5 T3,2 733 73,8
+h’gn
T®2 T3 T, |
72,2 V2,3 V2,® _gn-‘rpz
73,2 73,3 V3, In+ps
+h*| . . . O
Ye,2 Yo,3 V2,8 | | 9n+pes
and
Ontps N22 72,3 12,
5n—i—pg 73,2 73,3 73,®
. - 6n + hfn .
Ontpe N2 N3 1% &
G2 Q23 G| | fntps
G2 (33 G| | fntps
Co2 (o3 Co,0| | frntps
nrpe (12)
Wo2 W23 W2, o
) w32 W33 w3, 8
+h%gn
We2 W3 Wa, 3
S22 &23 §2.0 | | Intpo
o |32 &3 3.0 | | 9n+ps
+h . . . .
o2 a3 §o,0] [Intpse

III. ANALYSIS OF THE METHOD
A. Order of Accuracy

The local truncation error (LTE) associated with equation
(3) can be defined in terms of a linear operator £ as

M

Lly(zn); h] = Z[aijy(xn +pj h) = hBijy (xn + pjih)
=1

- hZ'Yijy”(zn +Dj h) - hSTijym(xn +Dj h)]

13)

Assuming that y(z,) is sufficiently differentiable, the
terms y(z, + pjh), ¥ (xn + pjh), y"(zn + p;jh) and
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y"'(xy, + p; h) can be expanded using Taylor’s series about
Ty, yielding:

£[y(xn), h] = CO y(xn) + élhy/(xn)

+ Co b2y (xn) + Ca b3y (x,)  (14)
+ o F O Py () F .
where the constant coefficients are CA’M, w=20,1 2 .... The
method (3) has order p if A A A
E[y(:g); hl = O(h**t2), Co=C1=...=C, =Chup1 =0
and Cq2 # 0.

Therefore, éu represents the order, Cu+2 represents the
error constant and C, 42 h#+2 y#+2 (1)) represents the prin-
cipal LTE at the point z,,. The LTE of the method are

1677 — 343v/21y12) (x,, ) h'?
Lly(x);h] = ‘
ly(@); 7] { 9467481952051200
1677 + 34321y (z,,)h!2
9467481952051200

(12) 12

Yy (z,)h 13

_J \wm)r h

8739776102400 +O(™),
+ O(h13)}.

+ O(h'?),

+ O(h'?),

y(12) (2,)h12
1971570585600

We have
C():Cl:... 2010:07
and the error constants are

o [ 1677 = 343V21 1677 4 343v/21
127 | 9467481952051200° 9467481952051200°

T
1 1
8739776102400 1971570585600 | ’

indicating that the method has order p = 10.

B. Stability Analysis

A matrix finite difference equation in block form can be
used to express the OSMDHBM as

A1Yoio = AoYn +hXo An + B2 6o Frvo

- (15)
+h2ﬁOFn +h3’?0Gn+<I> +h37~—OGna

EiAnio = Eg Ay +hilg Fy +hC Frrs (16)

+ B2 @ G + B &1 s,
where

Yoo = Untpas Yntpss Yntpar Yns1) s

Y, = (yn7p27 Yn—p3> Yn—pa>s yn)Ta

FTH-CI’ = (fn+p27 fn+p37 flz+p47 f7t+1)T7

Fn = (fnfpza fn7p37 fn7p47 fn)T7 (17)

Grtd = (Gntpss Inipss Gntpas Gnt1) "
Gn = (Gn—pss In—ps> Gn—pss 9n) " »
An+<1> = (5n+pzv 5n+p37 5n+p45n+1)T,
Ay, = (On—py» On—pss On—p,; 5n)T.

Y

The coefficients of the methods in (15) and (16) are
provided as follows:

1 0 0 O B2o 0 0 O
s = 1 00 0 5 _ B2 000
100 0 Bs2 0 0 0
[x22 0 0 0 1 000
~ lxs2 000 + = Jo10 0
Xo= 135 00 o MT=E =10 0 1 0|
| X5,2 0 0 O 0 0 0 1
(o2 a3 o4 aop 22 0 0 0
G — |92 33 asa ass| - 732 00 0
! Q42 Q43 Q44 o455’ 0 Ts2 0 0 0]’
|52 Q53 Q54 Q55 752 0 0 0
(V22 Y23 Y24 Y25 n22 0 0 0
5 = Y32 V3,3 V3.4 V35 o = m32 0 0 0
Va2 V43 Va4 Vas| nae 0 0 0]
75,2 75,3 V54 V5.5 ns2 0 0 0
(G2 o3 Cou (o) wao 0 0 0O
& = G2 G33 G4 (35 Do = |32 000
G2 Ca3 Caa Casl|’ wae 0 0 O
G52 G53 (54 G55 ws2 0 0 O
(20 Co3 &4 &5
g = €32 &3 &34 &35
a2 &3 &ua s
1§52 &3 54 E55]

The zero stability of the method concerns the stability of
the difference system (15) as h — 0. Thus, as (15) tends to

A Yo = AgYy,.
The characteristics polynomial Q(%)) is given by
Q) = det(y(Ar) — Ag) = (¥ - 1),

and therefore, v» = 0 and ¢ = 1.

The OSMDHBM is zero stable for the roots ®(1)) = 0
and satisfies |1);| < 1. For the root with [¢;| = 1, it has a
multiplicity of 1. Therefore, the OSMDHBM is zero stable,
consistent with order ;2 > 1 and also converges.

C. Absolute Stability

The absolute stability region for the OSMDHBM can be
defined as
R(z) ={z€C:H(z) < 1}.

A region is said to have absolute stability (A-stable) if it
contains the whole left half-plane.

(18)

Applying
y' =Ny, oy =Ny,
to the new method gives
Yoinm = H(2)Yy, z = \h?, (19)
where the matrix H(z) is expressed as
H(z):A0+ZﬁO+ZQBO+23%O. 20)

1211 —22&1 —2’3:}/1
The stability function () can be determined by obtaining

the dominant eigenvalues of the matrix 7(z). The absolute
stability region for this method is depicted in Figure 1.
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Fig. 1: Stability region

IV. IMPLEMENTATION
A. Linear Second-Order Differential Equations
Consider the general 2-order L-IVP of the form:
y'=f(@,y,y) = k(@) + w(@)y + M)y’
By differentiating (21), we obtain

y/// _ g(t, Y, y’7 y”) = l(x) + q(m)y + S(I)yl + V(x)y,/-
(22)

Substituting (21) and (22) into (15) and (16) respectively,

3y

we obtain
[Au A12:| [Yn+<1>] _ [Bln] 23)
A21 Al |[Anss Ban|’
where
A=Ay — 26 Wote — h* 91 Quio
— 135 Viso Watae,
Aiz = —h* @1 Apya — P51 Spya — 1250 Vo Anya,
Az =—hG Wate — 1?01 Quie — B2 1 Voo Waie,

Azz =A1 —hii Ao — h* i Snto
=B Voso Ao,

Bin =AY, + hpo Ay + h* a1 Knye + h* 5o B,
+h3 7 G+ b2 F1 Lyro + 251 Viyo Kpto,

Ban = Eg A, + hijg By +hy Knyo + h2 00 Gy
+h* 0 Lpvo + 0201 Vo Knyo.

We solve the L-system (23) to obtain the numerical solution
(NS) for the L-IVPs.

B. Nonlinear Second-Order Differential Equations
Consider a 2-order N-IVP of the form:

y' =N(x,y,y)+ Li(x)y+ La(z, y)y’. (24

We use a modified Picard-type iteration to solve (24). We
evaluate all linear terms at the current iteration (v + 1) and
the nonlinear terms at the previous iteration (¢) to obtain

y" = N(z, y, v)) + L1(@)y41 + Loz, y)yi 11, (25)

and
"

y" = N(z,y, v, ¥)) + L1(@)ys1 + Lo(z,4.)y, 41
N (26)
+ L3($7 Yoy yL)yL+1'

This equation is in the linear form (21) and (22) with

K(x) = N(z, g, y,), w(@) = Li(2),

AMz) = La(z, y.),
and
a(z) = Li(x), s(z) = La(x, y,),
v(z) = La(w, v, v,), &) = N(2, v, v, 4,)-
We solve the L-system (23) to obtain the NS for the N-

IVPs. In Section V, we demonstrate how this method can be
applied to both 2-order L-IVPs and N-IVPs.

V. NUMERICAL EXAMPLES

In this section, numerical experiments are presented to
demonstrate the application of the OSMDHBM and test
its accuracy and effectiveness in solving these numerical
examples.
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Example 1
Consider the L-IVP:

V=AY —8y+a®, y(0)=2, y(0)=4, x€l0,1],
with exact solution:
y(z) = e*(2c082x — & sin2z) + o + Sa? + La®.

In this example, the 3-D is given by

"

y" = 4y" — 8y + 3a2,

and the parameters are

k(z,y,y) = 2%, wx)=-8, \az)=4,
Uz, y,y') =32% q(z)=0, s(z)=-8 w(z)=4
Example 2
A N-IVP given by
1 N2 / 1
y'=a@y)", y0) =1 y(0)=2,
with exact solution: y(z) =1+ 1in Bf—ﬂ
In this example, the 3-D is
1 — (y/)2 + Qxy/y//-
The parameters are defined as follows:
H(xa Y, yZ) - x(yZ)zv w(ac) =0, )\(Z, yb) =0,
Uz, g v y)) = ()% a(z) =0, sz, y.) =0,

(@, Yo, y,) = 2y,

Example 3
We consider a system of 2-order IVPs given by
ylll - y17 yl(o) = 13 yll(o) = 17
Y2 =24+, 52(00=0,  15(0) =1,

whose exact solutions are y;(x) = e* and ya(z) = xe®.
In this example, the 3-Ds are

"

vy = Z/l = Z/l
s = (2+2)y +y1 = B +2)y

The parameters are
w1, Y1, Y2, Y1, ¥2) = 0, wi(x) =0, Nz, y1, y2) = 1,
w2(T, Y1, Y2, Y1y Yo) = 205 + Yy, we(z) =0,
A2 (z, Y1, y2) =0,
L, y1, Yo, Y15 Yas Y15 ¥2) =0, qi(x) =0,
si(@, v, y2) = 1, v, yi, v2, Y1, ¥5) =0,
la(, y1, yz, Yis Yas Y1 ¥5) = 3+ 2)y1,
q2(r) = s2(x, y1, y2) =0,  walx, y1, Y2, Y1, ¥3) = 0.

Example 4

We consider the following two body problem which was
solved in [14] given by

" —Y1 /
| =—F—— wn0)=1  3(0) =0,
Vi +y3
iz —Y2 /
= —=—, $(0)=0, 150)=1,
VYT +y3
x € [0, 157,

with exact solutions: y;(x) = cosz and yo(x) = sin .
In this example, the 3-Ds are

"o _yi (y%) + y1y2yl2

1 — 3
(\/ yi + y%)

"o _yé(y%) + ylylel

2 3
(\/y% +y§>

The parameters are

-1,
;‘431(33, yl,u yQ,La yi,u yl2,L) = B . 5 ) wl('r) = 07
\/ yl,L + y2,o
)\l(xv Y1,y y27b) = 07
Y2,
IiQ(I, Yt Y2,09 yll,u y/Q,L) = 2 - > WQ('I) =0,
yl,L + y2,L

A2(x7 yl,L7 yQ,L) = 07
ll($7 Y1, Y2,05 yll,u yé,m yl L yQ L)
_yl L( % ) + Y1,.92, Ly2 L

3
(\/2.+43.)

@(z) =0, s1(z, y1,., y2,.) =0,
vi (@, Y105 Y2,05 yi L ylz ) =0,
(%, Y1us Y200 Y100 Y00 Y1 s Y2,) =

5.,y % )+ YLY2.Y0,

3
(\/1. +43.)

QQ(ZL') = 07 82(1'7 Y10, y2,b) = Oa
UQ(LE, Y,y Y2,05 yi,u y/2,L) =0.

)

9

VI. RESULTS AND DISCUSSION

In this section, we present the results obtained from
implementing OSMDHBM with order ten and ) = 3 for
solving 2-order L-IVPs and N-IVPs. Table I-VII illustrate the
computation time, absolute error, maximum error, maximum
relative error, rate of convergence and number of function
evaluations at selected points using the method. Figures 2—
6 depict the absolute error and convergence error of the
method. All the results were obtained using the number
of partitions R = ;a, where h represents the step size.
The non-linear equations were solved using the MPIM. We
compared our results with those obtained in ( [6], [14]-[17]).

The maximum relative error (MRE) and the rate of con-
vergence (ROC) on the closed interval [z, z,41] is defined
as follows:

|y(xn+p1: ) — Yn+p; |

MRE = max
|y(xn+pi)

1<i<®

?
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X
Fig. 2: Absolute error graph for y when ¢ = 3 at R = 97
10-101 ]
. 10—15; i
\>__/ L
£
o
3 |
10—20 L i
107251 i
5 10 15 20
iterations
Fig. 3: Convergence graph for y when ¢ = 3 at h = ﬁ
and TABLE II: Maximum relative error, rate of convergence and
MAEsy, number of function evaluations for OSMDHBM in Example
ROO = 10g2 m, 1

where M AE is the maximum absolute error and h is the
step size.

TABLE I: MAXERR (maz;|y(x;) — y;)|) for Example 1

SOLMM [6] BSSHA-BAP [16] OSMDHBM  OSMDHBM
R m=>5 Y =3 CPU Time
7  314x1073 1.97 x 10— 12 3.09 x 1015 0.0011
13 140x10-5 1.36 x 10— 14 6.34 x 1018 0.002
25 5.07x10°8 7.25 x 10~17 9.16 x 10—21 0.0038
49  1.92x 10710 332x 10719 1.09 x 10—23 0.0077
97 531x10712 1.41 x 10—21 1.18 x 10—26 0.0142

Table I displays the maximum error and computation time
at different grid points (R) on the closed interval [0,1], ob-
tained using the OSMDHBM and compared with the seventh-
order linear multi-step method (SOLMM) [6] and the block
single-step hybrid algorithms based on Bhaskara approxima-

R MRE ROC NFe'Ual
7 9.610 x 10~1*  13.717 35
13 45034 x 10°17  13.687 65
25 42680 x 10720 13.677 125
49 33881 x 10722 13.675 245
97 25304 x 10725  13.674 485

tion points (BSSHA-BAP) [16] with five intra-step points. It
observed that the OSMDHBM achieves superior convergence
with a few intra-step points (three) used. However, as the
number of partitions R increases, the computation time for
OSMDHBM convert to four decimal places also increases.
In Table II, the maximum relative error, rate of convergence
and number of function evaluations of the OSMDHBM are
presented at different grid points (&) on the closed interval
[0,1].
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25

— Exact solution 1
L « Numerical solution ]
2.0t 1
150 i
’>'<\ 4
‘S: 4
1.0 ]
0.5¢ i
0.07 L L L L il

0.0 0.2 0.4 0.6 0.8

Fig. 4: Numerical vs Exact solution for y; and y» when ¥ =3 at h =

TABLE III: Absolute error for Example 2 when ¢ = 3 at

X
1

10

[0,1].

TABLE V: Absolute error for Example 3 when ¢ = 3 at
1

h= s

BTSHM-BP [7] OTSBHM [7] OSMDHBM

x m=2>5 m=2>5 Y =3
0.1 222x 10716 222x10716  1.02x 10731
0.2 0 0 8.73 x 103!
0.3 222 x 10716 334 x 10730
0.4 0 0 9.48 x 10—30
0.5 444 x 10716 222x10716 235x 1030
0.6 222x10716  222x10716  553x10°29
0.7 6.66 x 10716 222x 10716 129x 1028
0.8 1.55x 10715 222x10716 305x 1028
0.9 3.11x 10715 0 7.59 x 10—28
1.0 6.66 x 10~1° 2.02 x 10~27

CPU Time 0.1467

TABLE IV: Maximum relative error, rate of convergence and
number of function evaluations for OSMDHBM in Example
2

h MRE ROC  NFeyq;
0.1 1.3600 x 10~17  10.113 50
0.01 13064 x 10=27  10.002 500

0.001  1.3058 x 10737  10.000 5000

Table III presents the absolute error at selected points
obtained using the OSMDHBM with & = 0.01 and twenty
iterations on the closed interval [0,1]. The results were
compared with the block two-step hybrid methods based
on Bhaskara points (BTSHM-BP) [7] and OTSBHM [7]
when 1y = 5. The OSMDHBM, which uses the fewest
intra-step points (three), is superior to BTSHM-BP and
OTSBHM. Table IV illustrates the maximum relative error,
rate of convergence and number of function evaluations of
OSMDHBM for different step sizes on the closed interval

10

ADM [17] ADM [17] OSMDHBM OSMDHBM
x Y1 Y2 Y1 Y2
0 1 0 0 0
0.1 4441x10716 2914x10716 5505x 10725 6418 x 1024
02 2887x107'% 2879x10713 2338x 10724 2.645x 10”23
03 1.673x107'2 1677x10~" 5618x 1072 6.173 x 1023
04 2998 x 10~ 3009x10°10 1.068x 10°23 1.141 x 1022
05 2819x10710 2832x107? 1.787x 10723  1.856 x 1022

CPU Time 0.0294

TABLE VI: Maximum relative error, rate of convergence and
number of function evaluations for OSMDHBM in Example
3

MRE MRE ROC ROC
h Y1 Y2 Y1 Y2 NFcya1
0.1 3.7381 x 10723 3.4087 x 1022 10.007  10.006 200
0.01 37319 x 10733 3.4045x 10732 10.000  10.000 2000
0.001  3.7318 x 10743 3.4045x 107%2  10.000  10.000 20 000

Table V shows the computation time and absolute errors
obtained using the step size of i = 0.1 at selected points
within the closed interval [0,1]. The results, as shown in
Table V, were compared with the adomian decomposition
method (ADM) [17]. These results indicate that the OS-
MDHBM performs better than ADM in terms of accuracy,
yielding smaller errors. The maximum relative error, rate of
convergence and number of function evaluations of OSMD-
HBM for different step sizes within the closed interval [0,1]
are displayed in Table VI.

The maximum error, computation time and number of
function evaluations of OSMDHBM at different grid points
(R = 88, 219, 346) on the closed interval [0,157] are
displayed in Table VII. The results obtained are compared
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— y1 Numerical solution
----- - y» Numerical solution
« Exact solution

Fig. 5: Numerical vs Exact solution for y; and y» when ¢y = 3 at R = 219
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Fig. 6: Convergence graph for y; and y» when ¢ = 3 at R = 219

TABLE VII: MAXERR (max;|y(z;) —y;)|) for Example 4

N Method MAXERR(y1) MAXERR(y2) NF., CPU Time
88  Singla et al [14]  9.636 x 107 1.01 x 106 352

OSMDHBM 1.021 x 1073 1.076 x 10713 1760 0.1478
219  Singla et al [14]  4.154x 1072  4315x 107° 876

OSMDHBM 7.025 x 10714 881 x 10714 4380 0.3708
346  Singla et al [14] 2.623 x 10710 2732 x 10710 1384

OSMDHBM 2,063 x 10713 2,178 x 1013 6920 0.5857

with those obtained in [14]. Examining the table reveals that
the maximum error is smaller than that of [14], indicating
better performance.

Figure 2 shows the absolute error for y in Example 1 for
the closed interval [0,6] with R = 97. Figure 3 displays
the convergence graph of y in Example 2 for the closed
interval [0,1] with h 0.01 and twenty iterations. The
graph demonstrates that y converges after ten iterations. After
achieving convergence, the error norm levels off and does
not improve with further iterations. Figure 4 illustrates the

numerical and exact solution for y; and ys in Example 3 on
the closed interval [0,1] with » = 0.1. Figure 5 presents the
numerical and exact solution for y; and ys in Example 4 on
the closed interval [0,157] with R = 219. The convergence
graph for y; and y, in Example 4 with R = 219 and ten
iterations on the closed interval [0,157] is plotted in Figure
6.

VII. CONCLUSION

In this study, a OSMDHBM of order ten has been
successfully developed. The method incorporates 3-Ds to
directly solve both 2-order L-IVPs and N-IVPs. The N-
IVPs are linearized using a MPIM. The analysis confirms
that the OSMDHBM exhibits zero stability, consistency, and
convergence. To verify the accuracy and efficiency of the
method, it has been applied to solve some standard IVPs. The
outcomes of these solutions were then compared with those
obtained using existing methods (see Table I-VII and Figure
2-6). The outcomes strongly affirm the method’s efficiency
and accuracy.
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