
 

  

Abstract—Aiming at the small proportion of traffic signs in 

natural scenes, fuzzy and complex, and the problems of low 

detection accuracy, missed detection, and false detection in 

current traffic sign detection algorithms, a traffic sign 

detection algorithm based on YOLOv5s was proposed. Firstly, 

the Regional Feature Enhancement Module (RFEM) is 

presented, which uses dilated convolution with different dilated 

rates and 1×1 convolution to expand the receptive field and 

change the feature dimension. The feature fusion is carried out 

by adding a method to increase each dimension information of 

the image. Improve the final classification accuracy of the 

model. Secondly, a 160×160 size detection layer was added to 

the detection layer of the original algorithm, and the feature 

fusion was performed with the local small target information 

extracted from the backbone network to increase the detection 

accuracy of small targets. Finally, K-means++ was used to 

recluster the initial anchor box, which accelerated the 

convergence speed of the model, reduced the border loss, and 

improved the detection accuracy of the model. The 

experimental results show that the improved algorithm has 

achieved 90.10%Precision, 82.36%Recall, and 87.98%mAP, on 

the TT100K dataset. Compared with the original YOLOv5s 

algorithm, the improved YOLOv5s algorithm has improved 

the accuracy of the algorithm. It increased by 7.89%, 5.05%, 

and 4.36%, respectively. This method can be effectively applied 

for traffic sign detection. 

 
Index Terms—traffic sign detection, YOLOv5s, receptive 

field, feature fusion, dilated convolution 

I. INTRODUCTION 

S a crucial branch of object detection [1-4], traffic sign 

detection holds significant practical value for 

unmanned and assisted driving and has been extensively 

researched in recent years. However, detecting traffic signs 

in complex and dynamic real-world scenarios poses a 

significant challenge. Distant traffic signs appear smaller 

within the overall detection environment. In contrast, nearby 

traffic signs occupy a more substantial portion of the 

detection area, resulting in large-scale and small-scale 

transformation issues for the target to be detected. In 

essence, this paper aims to address the problems of multi-

scale transformation and small target detection [5, 6], which 

are the primary focus of our research. 

Research on traffic sign detection can be classified into 

two categories: traditional methods and deep learning-based 

methods. Traditional methods rely on shape and color 
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features of traffic signs, including algorithms such as 

Histograms of Oriented Gradient (HOG) [7], and Scale 

Invariant Feature Transform (SIFT) [8]. These approaches 

involve manual feature extraction and employ machine 

learning algorithms for classification. However, traditional 

algorithms are susceptible to external factors such as 

weather, resulting in poor robustness. On the other hand, 

deep learning-based traffic sign detection algorithms can be 

broadly classified into one-stage and two-stage detection 

approaches. One-stage object detection algorithms, such as 

OverFeat [9], YOLOv3 [10], SSD [11], and RetinaNet [12], 

treat positioning and classification as regression problems, 

enabling end-to-end detection. While these approaches 

improve detection speed, they usually have lower detection 

accuracy. In contrast, two-stage object detection algorithms, 

including R-CNN [13], SPP-Net [14], Fast R-CNN [15], 

Faster R-CNN [16], and R-FCN [17], use a Region Proposal 

Network to identify regions of interest. These algorithms 

typically achieve high detection accuracy in classifying the 

region of interest, but their detection speed is slower than 

that of one-stage approaches. 

II. RELATED WORK 

To address the challenges of small object detection and 

large-scale transformations in traffic sign detection, 

researchers often use Feature Pyramid Networks [18], fusion 

attention mechanisms [19-23], improved multi-scale 

detection heads [24], and data augmentation techniques to 

improve detection accuracy. The new Traffic Sign Detection 

Benchmark (Tsinghue-Tencent100K, TT100K) [25] offers a 

more extensive data scale than the widely used detection 

benchmark (CCTSDB, CSUST Chinese Traffic Sign 

Detection Benchmark) [26], with more target categories, 

better data quality, and higher image resolution. Researchers 

can select the appropriate benchmark dataset based on their 

specific needs. In China, traffic signs can be broadly 

categorized into three groups: instructions, warnings, and 

prohibitions, denoted by blue, yellow, and red, respectively 

[27]. They come in various shapes, such as circles, triangles, 

and rectangles. Currently, color and shape features are used 

to detect traffic signs, with the K-means method used for 

color grouping and convolutional neural networks employed 

for detection. 

To address the challenges of small-scale, fuzzy, and 

complex traffic sign recognition in natural scenes, a traffic 

sign detection method based on RetinaNext-NeXt has been 

proposed. This approach utilizes a new backbone network, 

ResNeXt, to improve the detection accuracy and 

effectiveness of RetinaNet. Further, an improved Sparse R-

CNN has been proposed to address the mismatch between 

existing detection algorithms and their practical application 

in natural traffic scenes. This approach combines the 
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coordinate attention block with ResNeSt to construct a 

feature pyramid that modifies the backbone, enabling the 

extracted features to focus on important information and 

improve detection accuracy. Despite the promising results 

achieved by existing traffic sign detection algorithms, 

several challenges still need to be solved, including low 

detection accuracy, missed detection, false detection, and 

other problems. Therefore, further research is needed to 

address these challenges and enhance the effectiveness of 

traffic sign detection. 

Small target detection poses a critical challenge in traffic 

sign detection, given that the majority of traffic signs are 

characterized as small targets within real-world detection 

scenes, and their scale may dynamically vary with the 

movement of the vehicle camera. To improve the accuracy 

of small target detection and address the issue of multi-scale 

changes in the target, this study aims to enhance the 

application of traffic sign detection in real-life scenarios. To 

achieve this, the YOLOv5s [28] algorithm has been 

improved. The proposed improvements include the 

following: (a) A Regional Feature Enhancement Module 

(RFEM) based on Dilated Convolution and 1x1 convolution 

is proposed and applied to the Neck part of the basic 

network. This enriches the language information of the 

small target before the feature map enters the detection Head, 

thereby improving the detection accuracy of the small target. 

(b) The Multi-scale Detection Head (MDH) part of the basic 

network is improved by adding a 160x160 feature map for 

the fourth detection head. The receptive field of this feature 

map, corresponding to the original image, is smaller than 

that of the 80x80 feature map, making it more effective in 

detecting small objects on larger feature maps. (c) The 

anchor calculation method of the basic network is 

abandoned, and the K-means++ clustering algorithm is used 

to re-cluster the anchor boxes suitable for the dataset. This 

not only accelerates the convergence speed of the model but 

also improves the final detection accuracy of the model. By 

implementing these improvements, the proposed approach 

aims to address the challenges of small target detection and 

multi-scale changes in the target, thereby improving the 

accuracy and effectiveness of traffic sign detection in real-

life scenarios. 

As with the network structure of the YOLO series, 

YOLOv5s consists of four primary parts: Input, Backbone, 

Neck, and Head. This lightweight model of YOLOv5 has a 

smaller model volume and faster inference speed than other 

YOLO models. The structure of YOLOv5s is illustrated in 

Fig. 1. 

The input of YOLOv5s is RGB images with three 

channels, and the feature map size is 640x640x3. Mosaic 

data augmentation is used to enrich the background of the 

detected target image and reduce the model's dependence on 

batch size. The backbone network is responsible for feature 

extraction, and the CSPDarkNet53 structure is used to 

divide the input feature map into two parts, with cross-stage 

partial connections introduced between the two parts to 

enable the network to learn feature information of different 

scales. This design significantly reduces the model's number 

of parameters and calculations while improving its accuracy 

and generalization ability. The neck employs the Path 

Aggregation Network (PANet) to effectively fuse the feature 

maps output by the backbone and achieve information 

fusion across different feature layers. PANet better 

integrates the feature information of shallow and deep layers, 

enabling the network to fully extract the features of each 

level in the network. This strengthens feature extraction and 

provides richer feature information, including strong 

semantic information, edges, textures, and other details. The 

output part, Head, has three YOLO head detectors that 

output feature maps of different scales for object prediction.  

 
Fig. 1. YOLOv5s model
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III. IMPROVED MODEL 

A. Region Feature Enhancement Module 

In general, downsampling is a common method to 

increase the receptive field and reduce the amount of 

calculation in deep neural networks. However, 

downsampling can also sacrifice resolution and result in loss 

of input information. On the other hand, dilated convolution 

not only increases the receptive field but also enhances the 

resolution and accuracy of the target location compared to 

downsampling. To improve the accuracy of small object 

detection, we propose the Regional Feature Enhancement 

Module (RFEM). As the depth of the neural network 

increases, the semantic information contained in small 

targets can gradually be lost, which limits the model's ability 

to extract relevant information. We propose RFEM, 

implemented based on Dilated Convolution and 1×1 

convolution, to address this issue. Dilated convolution is a 

standard operation in convolutional neural networks that 

increases the receptive field without adding parameters. This 

allows the feature map to capture more target information 

from the upper layer of the network, thereby improving the 

model's performance. The essence of dilated convolution 

involves inserting interval zero elements into the input 

tensor, which enables the convolution kernel to span a more 

considerable distance during convolution. For instance, a 

3x3 kernel with dilation=1 can only move one pixel at a 

time. However, if dilation=2, the kernel can cross an interval 

of one pixel each time, effectively expanding the adequate 

size of the convolution kernel to 5x5. After dilated 

convolution, each pixel of the feature map corresponds to a 

5x5 receptive field size of the feature map from the previous 

layer. The receptive field is calculated as follows: 

 ( 1) ( 1)N K K d= + −  −  (1) 

K denotes the original convolution kernel size, d denotes 

the dilation rate parameter. The larger the dilation rate 

parameter is, the larger the receptive field of each pixel on 

the feature map after dilated convolution corresponds to the 

original image. 1d −  means that for dilation rate d , the 

convolution spans 1d −  pixel intervals each time; N

represents the size of the corresponding receptive field after 

the dilation convolution with the dilation rate of d . The 

ordinary convolution is shown in Fig. 2(a), and the dilated 

convolution is shown in Fig. 2(b). 

 
(a) dilation=1           (b) dilation=2 

Fig. 2. Comparison of normal convolution and dilated convolution 

In the RFEM module, the role of a 1×1 convolution is to 

modify the channel dimension and fuse features. The 1×1 

convolution has a kernel size of 1×1, which not only reduces 

computational complexity but also enhances the network's 

expressive ability and classification performance. In this 

module, the input is the feature map from the feature 

enhancement module. Initially, the channel dimension is 

adjusted using a 1×1 convolution to control the number of 

channels within a suitable range for the layer. Subsequently, 

the subsequent operation is carried out on the modified 

feature map. 

 
Fig. 3. RFEM structure diagram 

Fig. 3 illustrates the implementation of the regional 

feature enhancement module based on dilated convolution 

and 1×1 convolution. The process follows: the input feature 

map is denoted as, and the channel dimension is modified 

using a 1×1 convolution, resulting in the output feature map. 

It is then simultaneously fed into four parallel branches. In 

the first branch, dilated convolution is applied with a 

dilation rate of 3, expanding the receptive field of the 

extracted features. A 1×1 convolution follows this. In the 

second branch, dilated convolution with a dilation rate of 

four is performed, followed by a 1×1 convolution. Branches 

three and four start with a 1×1 convolution, followed by 

dilated convolutions with dilation rates of 3 and 4, 

respectively. The feature maps obtained from these branches 

contain richer semantic information about small targets, as 

different dilation rates yield different receptive field sizes in 

the original images. 

 ( )convI x=   (2) 

 1 2( ( ))conv conv dY I=    (3) 

 2 2( ( ))conv conv dY I=    (4) 

 3 2 ( ( ))conv d convY I=    (5) 

 4 2 ( ( ))conv d convY I=    (6) 

x  represents the input feature map of the RFEM module. 

conv  denotes the 1×1 convolution. I represents the feature 

map obtained by applying conv  to x . 2conv d  represents the 

dilation convolution with a dilation rate of 3, and 2conv d  

represents the dilation convolution with a dilation rate of 4. 

1Y , 2Y , 3Y , 4Y  correspond to the outputs of the four branches, 

respectively. The outputs of the four branches are ultimately 

fused using the Add operation to preserve more valuable 

information. 

 ( 1 2 3 4 )convx Y Y Y Y x =       (7) 

  signifies that the output feature maps from the four 

branches are fused using the Add method. This feature 

fusion approach does not alter the channel number of the 

feature map; instead, it adds the corresponding pixel values 

from each feature map. This enables the retention of more 
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semantic information about small targets and enhances the 

model's classification performance. x  represents the final 

output of the RFEM module. 

B. Multi-scale Detection Head (MDH) 

The YOLOv5 model extracts features through the 

backbone network and then fuses the features extracted at 

each stage using the neck feature fusion network. Finally, 

these fused features are passed to the multi-scale prediction 

head. In the original network, the input to the prediction 

head is divided into three feature maps of sizes 80×80×256, 

40×40×512, and 20×20×1024. The prediction head performs 

object detection and classification on these feature maps at 

different levels. The larger feature map size allows for 

smaller receptive fields of the original image corresponding 

to each pixel on the feature map, enabling the detection of 

smaller targets. Conversely, smaller feature map sizes have 

larger receptive fields, making them more suitable for 

detecting larger targets. The variation in receptive field sizes 

corresponding to feature maps of different dimensions is 

illustrated in Fig.  4. 

 
Fig. 4. Feature maps of different dimensions correspond to 

receptive field sizes 

For the TT100K dataset, which predominantly contains 

small traffic signs, smaller feature maps are needed to detect 

these smaller signs. Therefore, a smaller feature map of size 

160×160×256 is added to the multi-scale prediction head 

specifically for detecting smaller traffic signs. Additionally, 

the 160×160×128 feature maps extracted from the backbone 

network are fused to provide local feature information from 

the initial part of the network. This fusion plays a crucial 

role in improving the accuracy of detecting small targets. 

While the initial part of the backbone network may not 

extract high-dimensional target information, it contains 

valuable information about small targets. The enhanced 

multi-scale prediction head is illustrated in Fig.  5. 

 
Fig. 5. This added multi-scale detection head aggregates low-level 

semantic information from the backbone shallow network 

C. Re-cluster   

YOLOv5 utilizes the K-means clustering algorithm to 

cluster the TT100K dataset and generate 9 initial anchors of 

fixed size. However, due to the small number of small 

targets in the TT100K dataset, the anchors generated by the 

original YOLOv5 clustering algorithm are large in size. This 

can have an adverse impact on the detection speed and 

accuracy of small target traffic signs. Therefore, this study 

employs the K-means++ clustering algorithm to re-cluster 

the training set of the TT100K dataset and identify initial 

anchors that are more suitable for the dataset used in this 

study. In the K-means++ algorithm, the initial cluster center 

is selected through a specific strategy rather than random 

selection as in K-means. It gives priority to points that are 

far away from the selected cluster center as the new cluster 

center. This approach helps to better avoid issues caused by 

random initialization. As a result, compared to K-means, K-

means++ can avoid falling into local optima, thereby 

enhancing the accuracy and stability of the clustering 

process. Furthermore, three anchors with smaller sizes are 

generated compared to the original anchors. These smaller 

anchors are not only suitable for the new detection head but 

also contribute to the detection accuracy of small targets. 

The process of the K-means++ clustering algorithm is as 

follows: 

(1) Randomly select a sample data as the first cluster 

center. 

(2) Calculate the minimum distance between each sample 

ix  and the cluster center jC . 

 
2

2
( ) arg mini i jD x x C= −  (8) 

ix  is the number of samples and jC represents the C-th 

cluster center, where 1,2,...,j k= . 

(3) The sample point with the maximum distance is 

selected as the cluster center. 

(4) Repeat (2) and (3) until the number of clusters k is 

reached. 

(5) The k  cluster centers are used as the initial cluster 

centers to run the K-means++ algorithm. 

When the cluster center is set to 12, the K-means++ 

clustering analysis of the TT100K dataset is depicted in Fig.  

6. The analysis reveals that the target sizes in the TT100K 

dataset used in this paper fall within a small range. 

Therefore, it is appropriate to employ the K-means++ 

clustering algorithm to re-cluster the anchors in accordance 

with the initial anchors of the dataset. In Fig. 6, the red dots 

represent the 12 cluster center points. The horizontal 

coordinate represents the initial frame width (w), and the 

vertical coordinate represents the initial frame height (h). 

Both coordinates are normalized within the range of 0 to 1, 

relative to the image width and height. 

As depicted in Fig. 6, the clustering process with 12 

cluster centers yields 12 initial anchors, which are smaller 

than those generated by the baseline model and more 

suitable for the dataset used in this paper. The sizes of the 

anchors after re-clustering are presented in Table Ⅰ. The 

smaller anchors are assigned to the larger feature map, 

which improves the model's detection accuracy for small 

targets by utilizing smaller anchors on the larger feature map. 
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Fig. 6. Anchors clustering distribution 

TABLE Ⅰ 

THE ANCHOR SIZE CORRESPONDING TO EACH DETECTION HEAD 

Feature Map Size Anchors Size 

160×160 (4×5); (6×7); (7×15) 

80×80 (8×9); (11×12); (14×15) 

40×40 (14×28); (18×19); (24×26) 

20×20 (37×35); (45×45); (67×66) 

D. Improved YOLOv5s Model 

The improved structure of YOLOv5s is illustrated in Fig.  

7. The red module in the neck network represents the RFEM 

(Regional Feature Enhancement Module) proposed in this 

paper. The feature map entering each prediction head 

undergoes this module, resulting in more comprehensive 

and detailed feature information. The newly added scale 

prediction head, denoted by the red dashed box, combines 

local feature information extracted by the backbone network, 

which contains more details about small targets. It utilizes a 

detection head that is specifically designed for small target 

detection to detect smaller traffic signs in the dataset. 

IV. EXPERIMENTS AND ANALYSIS 

A. Introduction to Dataset 

We utilize the TT100K dataset, a collaborative effort 

between Tsinghua University and Tencent. This dataset 

provides a total of 100,000 high-resolution images, 

including 30,000 instances of traffic signs. It covers images 

captured under different lighting and weather conditions, 

offering a large-scale dataset with rich semantic information. 

Compared to other traffic sign datasets, TT100K offers a 

greater number of categories and smaller-sized targets, 

making the detection task more challenging. Due to the 

imbalance in instance numbers across categories in the 

dataset, and the presence of uncommon traffic signs in real-

world scenes, this paper focuses on selecting categories with 

more than 100 instances for training and testing. The 

processed dataset used for network training and testing 

consists of 45 categories, with 7,198 instances in the training 

set and 1,850 instances in the testing set. 

B. Experimental Environment and Parameter Configuration 

Experimental environment: The experiment was 

conducted on a CentOS7 operating system. The CPU model 

used was Intel E5-2650. CUDA version 11.0 was employed 

for accelerated training, and the deep learning framework 

used was PyTorch 1.10.0. The programming language used

 
Fig. 7. Improved YOLOv5s structure diagram 
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was Python 3.7. The GPU model utilized was a single 

NVIDIA GTX1080ti with 11GB of video memory. The 

hyperparameters were set as follows: batch size of 32, initial 

learning rate of 0.01, cosine annealing strategy for learning 

rate adjustment, weight decay coefficient of 0.0005, 

momentum size of 0.937, SGD optimizer, and a total of 200 

iterations. 

C. Evaluation Index 

Precision, Recall, and mAP (mean Average Precision) are 

selected as evaluation metrics to evaluate the proposed 

algorithm's performance. Precision refers to the probability 

of correct predictions among all positive samples, providing 

an intuitive measure of the model's false detection. Recall 

refers to the probability of predicting all positive samples, 

offering an intuitive measure of the model's missed 

detection. Model performance can be assessed using 

Precision and Recall, and typically, as Recall increases, 

Precision may decrease, and vice versa. 

 
1

1
( )

n

j

mAP AP j
n =

=   (9) 

n =45, which represents the 45 classes in the dataset used in 

this paper, and AP  represents the Average Precision of a 

class in the dataset. 

 
TP

p
TP FP

=
+

 (10) 

 
TP

R
TP FN

=
+

 (11) 

 1

0 ( )AP P R dR=   (12) 

If a positive example is classified as a positive example, it 

is denoted as TP  (true positive).If a positive example is 

misclassified as a negative example, it is denoted as FN  

(false negative).If a negative example is misclassified as a 

positive example, it is denoted as FP  (false positive). 

D. Experimental Results and Analysis 

Fig. 8 presents a training comparison between the 

YOLOv5s baseline model and the proposed algorithm in 

this paper on the TT100K dataset, using images of the same 

size (640×640) as input to the network. The training 

comparison reveals that the proposed algorithm outperforms 

the baseline model. The Precision is increased by 7.89%, 

Recall by 5.05%, mAP@0.5 by 4.36%, and mAP@0.5:0.95 

by 3.88%. All the evaluated indicators show improvement 

compared to the original network model. Furthermore, the 

improved model demonstrates faster convergence, a 

smoother training curve, and higher accuracy, exhibiting 

significant superiority over the baseline network. 

E. Ablation Study 

In order to demonstrate the effectiveness of the proposed 

module, ablation experiments are conducted on the TT100K 

dataset. The experimental design consists of the following 

variations: (a) Adding only the RFEM module to the 

baseline model. (b) Adding only the MDH module to the

 
(a)Precisions 

 
(b)Recall 

 
(c)mAP@0.5 

 
(d)mAP@0.5:0.95 

Fig. 8. Comparison diagram between training of YOLOv5s and improved algorithm 
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TABLE Ⅱ 
ABLATION EXPERIMENT 

Models RFEM MDH K-means++ P (%) R (%) mAP (%) #Params(M) FLOPs(G) 
Inference 

time(ms) 

YOLOv5s × × × 82.21 77.31 83.35 7.1 16.1 2.7 

YOLOv5s+ 
RFEM 

√ × × 84.72 77.75 84.37 7.2 18.2 3.0 

YOLOv5s+ 

MDH 
× √ × 88.03 80.80 87.05 7.2 21.0 3.0 

YOLOv5s+ 
MDH+ K-

means++ 

× √ √ 89.14 83.19 87.93 7.2 21.0 2.9 

Ours √ √ √ 90.10 82.36 87.98 7.3 23.1 3.2 

baseline model. (c) Conducting two experiments to verify 

the effectiveness of the MDH module, wherein the initial 

anchors obtained through MDH and K-means++ algorithm 

re-clustering are added to the baseline model. (d) Adding 

all the modules proposed in this paper to the baseline model 

to assess the overall performance. The experimental results 

are presented in Table II. 

From Table II, several conclusions can be drawn. When 

only the RFEM module is added, the Precision increases by 

2.51%, the Recall rate increases by 0.44%, the mAP 

increases by 1.02%, the number of model parameters 

increases by 1%, the FLOPs increase by 2.1, and the model 

inference time increases by 0.3ms. When only the MDH 

module is added, the Precision increases by 5.22%, the 

Recall rate increases by 3.49%, the mAP increases by 3.7%, 

the number of model parameters increases by 1%, the 

FLOPs increase by 4.9, and the model inference time 

increases by 0.3ms. When the MDH module is added and 

the initial frames obtained through the K-means++ 

algorithm are re-clustered, the Precision increases by 6.93%, 

the Recall rate increases by 5.88%, the mAP increases by 

4.58%, the number of model parameters increases by 1%, 

the FLOPs increase by 4.9, and the model inference time 

increases by 0.2ms. Finally, by deploying all the proposed 

improvement modules to the baseline model, the Precision, 

Recall, and mAP improve by 7.89%, 5.05%, and 4.63% 

respectively compared to the baseline model. The total 

number of model parameters increases by 2%, and the 

model inference time increases by 0.5ms. Despite a slight 

increase in model complexity, parameter count, and 

inference time, the results in Table II indicate that it does 

not significantly impact real-time inference detection. This 

demonstrates the practical significance of our proposed 

improvement modules, and sacrificing a small amount of 

model inference time has minimal impact on the detection 

speed in essence. Thus, while ensuring lightweightness, 

substantial improvements in detection accuracy can be 

achieved. 

F. Feature Map Visual Analysis is used for MDH Module 

To thoroughly illustrate the effectiveness of the MDH 

module in augmenting a small object detection layer within 

the baseline model, comprehensive research has been 

conducted. Fig. 9 visualizes the feature maps obtained by 

the prediction head before and after the enhancement. In 

Fig. 9, the inputs to the prediction head for the baseline 

model are represented by (b), (c), and (d), corresponding to 

the outputs of layer 17, layer 20, and layer 23, respectively. 

Conversely, the inputs to the prediction head for the 

proposed model are denoted as (e), (f), (g), and (h). The 

enhanced model incorporates an additional prediction head, 

with the feature map obtained by this prediction head 

integrating the output of the second layer of the backbone 

network, as indicated by (f). Significantly, it is evident that 

feature map (f) encompasses more intricate target features, 

ensuring a comprehensive extraction of target 

characteristics from the original image. Consequently, 

utilizing this improved feature map substantially enhances 

the detection performance for small targets. 

 
Fig. 9. Feature maps of the input multi-scale prediction head before and after improvement 

(b)  Original 17 layers (d)  Original 23 layers  (c)  Original 20 layers 

(e)  17 layers improved  (g)  25 layers improved    (f)  22 layers improved  (h)  28 layers improved   

(a)  Original image 
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(a)Backbone1 

 

(b)Backbone2 

 

(c)Backbone3 

Fig. 10. Feature maps of the input multi-scale prediction head before and after improvement. We fuse the RFEM module in different 

positions of the baseline model, and discuss the impact of the three positions in the baseline model fused by the RFEM module on the 

performance of the baseline model, respectively 

G. Comparative experiments of the RFEM Module 

We conducted experiments on the three model structures 

depicted in the Fig. 10, and the results are presented in Table 

III. Upon analyzing the experimental data, we observed the 

following findings: 

(1) When utilizing the Backbone1 structure, the model 

achieved a Precision of 79.62%, Recall rate of 70.69%, 

mAP of 78.63%, with 7.2M parameters, 18.2 FLOPs, and an 

inference time of 2.7ms. 

(2) With the use of the Backbone2 structure, the model 

achieved a Precision of 83.45%, Recall rate of 74.08%, 

mAP of 81.70%, with 7.9M parameters, 18.2 FLOPs, and an 

inference time of 2.0ms. 

(3) By employing the Backbone3 structure, the model 

achieved the highest Precision of 84.72%, Recall rate of 

77.75%, mAP of 84.37%, with 7.2M parameters, 18.2 

FLOPs, and an inference time of 2.8ms. 

Despite the slightly longer inference time of the 

Backbone3 structure, the additional 0.1ms increase is 

negligible in practical scenarios. Using the Backbone3 

structure allows for maximizing the detection accuracy of 

the model, while only incurring a minimal increase in the 

number of parameters and model complexity. This is 

advantageous for real-world detection scenarios. 

The experimental results indicate that the computational 

complexity of the RFEM module remains consistent 

regardless of the fusion position, with a fixed complexity of 

18.2 FLOPs, irrespective of the fusion method employed. 

This consistency in computational complexity ensures the 

reliability and efficiency of the RFEM module, making it a 

valuable addition to the model, irrespective of the fusion 

approach used. This contributes to the model's overall 

stability and performance. 

TABLE Ⅲ 

RFEM COMPARATIVE EXPERIMENT  

Experimental 

Grouping 
Backbone   P (%) R (%) mAP (%) 

# Parameters 
(M) 

FLOPs(G) 
Inference 

time(ms) 

1 Backbone1 79.62  70.69  78.63 7.2 18.2 2.7 

2 Backbone2 83.45  74.08  81.70 7.9 18.2 2.0 

3 Backbone3 84.72  77.75  84.37 7.2 18.2 2.8 

TABLE Ⅳ 
PERFORMANCE COMPARISON OF DETECTION ALGORITHMS  

Model Name P (%) R (%) mAP (%) # Parameters (M) FLOPs(G) Inference time(ms) 

YOLOv3 73.36 72.14 73.79 61.6 77.7 15.2 

YOLOv5s 82.21 77.31 83.35 7.1 16.1 2.7 

SSD 60.59 70.28 70.46 - - - 

Faster R-CNN 75.54   75.20 74.58 41.2 91.1 5.4 

RetinaNet 78.37 70.56 79.39 - - - 

FOCS 73.24 71.12 67.21 31.8 78.9 8.2 

YOLOv7-tiny 71.12 73.23 72.82 6.2 13.8 2.6 

RetinaNet-NeXt 87.45 79.65 86.71 - - - 

Ours 90.10   82.36 87.98 7.3 23.1 3.2 

P1

P2

P3

P4

RFEM

P1

P2

P3

P4

P5

RFEM

SPPF

P1

P2

P3

P4 P5

RFEM

SPPF

P6

P7
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H. Performance Comparison of Object Detection Algorithms 

To further validate the effectiveness of our proposed 

algorithm, we conducted a comparative analysis with the 

mainstream object detection algorithms currently available, 

including YOLOv3, YOLOv5s, SSD, Faster R-CNN, 

RetinaNet, Retinanet-next, FOCS [29], and YOLOv7-tiny 

[30]. Precision rate, Recall rate, mAP, parameters, FLOPs, 

and inference time were utilized as evaluation metrics, and 

the results are presented in Table Ⅳ. 

Based on the data presented in the table, our improved 

algorithm exhibits superior performance compared to other 

algorithms in terms of Precision rate, Recall rate, mAP, 

parameters, FLOPs, and inference time. Notably, our 

proposed algorithm demonstrates an outstanding Precision 

rate, reaching an impressive value of 90.10%. This indicates 

that the enhancements made to the baseline model in our 

paper effectively improve its performance using the same 

dataset. Furthermore, the improved algorithm only 

introduces a marginal increase of 0.5ms in inference time 

while significantly enhancing the detection accuracy of the 

model. Thus, accepting this minor trade-off in inference 

speed is justifiable to achieve substantial improvements in 

detection accuracy. Although the FLOPs metric increases by 

7FLOPs compared to the baseline model, this increase 

remains relatively low compared to specific traditional 

algorithms. Moreover, the number of model parameters is 

only augmented by 2%. 

I. Detection on Random Images 

To intuitively observe the effectiveness of the improved 

algorithm presented in this paper, we randomly selected 

three images from the test set of the TT100K dataset to 

compare the detection results, as shown in Fig. 11. From the 

comparison images of the detection effects, and it is evident 

that the improved algorithm in this paper outperforms the 

baseline model significantly. Specifically, the improved 

algorithm is depicted in the three lower figures of Fig. 11. In 

detecting small targets at long distances. The improved 

model successfully detects the p6 target and p19 target, 

which the baseline model missed. The detection accuracy 

for the p19 target reaches 81%. Moreover, the improved 

model performs better for close-range targets than the 

baseline model. Overall, our improvement of the baseline 

model proves to be effective in detecting small targets at a 

distance, demonstrating practical significance. 

V. CONCLUSION 

To tackle the challenge of low detection accuracy and 

suboptimal performance in existing traffic sign detection 

models, this paper introduces an enhanced version of the 

YOLOv5s model, tailored specifically for traffic sign 

detection. The proposed model builds upon YOLOv5s and 

incorporates several key improvements. Firstly, a prediction 

head optimized for detecting small objects is integrated into 

the multi-scale prediction head section. This addition 

effectively combines local feature information extracted by 

the backbone network, thereby enhancing the accuracy of 

small object detection. Secondly, K-means++ clustering is 

employed to reconfigure the initial anchor boxes, making 

them better suited for the specific dataset. This process 

aligns the prior knowledge with the dataset's characteristics, 

resulting in reduced prediction box loss and faster model 

convergence. Lastly, the paper introduces the RFEM 

(Region-based Feature Enhancement Module) module, with 

its optimal embedding position determined through 

comparative experiments. This module is seamlessly 

integrated into the baseline model, increasing detection 

accuracy across all categories in the dataset under study.

   

   
Fig. 11. Comparison of detection effect of detection algorithm before and after improvement 
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Experimental results showcase significant enhancements in 

the model's Precision (an increase of 7.98%), Recall (an 

increase of 5.88%), and mAP (an increase of 4.36%). 

Notably, these improvements in detection accuracy are not 

at the cost of a substantial impact on the model's inference 

speed. The increase in inference time is minimal, with a 

mere 0.5ms difference compared to the baseline model. This 

negligible effect on real-time performance ensures the 

model's practical deployability. Future research explores 

lightweight model approaches to reduce size while 

maintaining detection accuracy. This would boost detection 

speed, facilitate integration into mobile hardware devices, 

and enhance its suitability for real-world applications. 
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