
 

  

Abstract—For urban rail transit (URT) operating 

companies, short-time passenger flow forecasting is a complex 

and critical task that determines the formulation and 

arrangement of operation plans and timetables. The automatic 

fare collection (AFC) system of URT provides detailed 

passenger flow data, which supports short-time passenger flow 

forecasting. This study proposes a combined model of Chaotic 

Sparrow Search Algorithm and Long Short-term memory 

artificial neural network (CSSA-LSTM) based on station 

classification. The model classifies stations based on various 

indicators such as point of interest (POI) data in the radiation 

area of Hangzhou, utilizes complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) to denoise 

and smooth passenger flow data. It also conducts short-time 

passenger flow prediction and cross-validation for different 

stations by using the proposed model. To demonstrate the 

accuracy of the model, evaluation metrics such as R-squared 

and RMSE are introduced, and the results of the CSSA-LSTM 

model are compared with those of the LSTM, PSO-LSTM, and 

SSA-LSTM models. The experimental results show that the 

CSSA-LSTM model can effectively improve prediction 

accuracy, with R-squared increasing by 14.80%, 8.60%, and 

6.82% compared to the other three algorithms, respectively. In 

addition, the cross-validation results of different stations prove 

the wide applicability of the CSSA-LSTM model, and this 

study have practical significance for URT planning and 

management. 
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I. INTRODUCTION 

ITH the continuous improvement of economic 

development and urbanization construction in China, 

people's travel demands have been steadily increasing, 

leading to a series of urban traffic problems, such as traffic 

congestion and excessive traffic pollution emissions. If these 

issues are not effectively resolved, they could obstruct the 

sustainable growth of society and the economy. Since the 

turn of the century, huge population concentrations have 

caused an issue known as "urban disease" that is visible in 

Europe, the United States, Japan, and other nations. Urban 

public transit, which draws on their development expertise, 

is one of the efficient solutions to several issues, including 

traffic congestion [1, 2]. Urban public transit is clearly 

preferable to private automobile travel in terms of increasing 

the effectiveness of land use, lowering energy usage, and 

other factors. Therefore, giving public transportation 

construction priority has emerged as a key strategy for 

solving urban traffic issues [3]. 

In this context, China's URT industry is booming, 

bringing new impetus and vitality to urban development. It 

has successfully enhanced the volume and speed of urban 

mobility, increased urban space, decreased oil consumption 

and exhaust emissions, and lessened plenty of urban stresses. 

But as URT has grown, a variety of flaws have also come to 

light, drawing the attention of academics. 

For instance, one of the difficulties is the rail transit 

system's capacity restriction, where the demand for 

passenger flow occasionally exceeds the system's capacity. 

As seen in Hangzhou rail transit during working days where 

the passenger saturation rate of some sections exceeds 100%, 

a large influx of passengers within a short period of time 

during peak hours can increase operational pressure on the 

transit line. There are times when the demand for passenger 

flow exceeds the carrying capacity of rail transit, resulting in 

empty seats on trains during off-peak hours, resource waste, 

and harm to sustainable development. Therefore, the 

solution to this issue lies in understanding short-term 

changes in passenger flow and achieving passenger flow 

prediction. 

There are three types of passenger flow prediction: 

medium- and long-term predictions, short-term predictions, 

and short-time predictions. Short-term passenger flow 

prediction is typically used for station size renovation design 

and other content, while medium- and long-term passenger 
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flow prediction is used for macro content, such as network 

planning and design, in the early stages of rail transit. Both 

macro predictions, though, might not have an impact on how 

rail transit functions on a daily basis. When discussing the 

short-time passenger flow prediction, which is used to 

support work planning, train scheduling, personnel 

deployment, and other decision-making tasks, it is typically 

used to refer to the prediction of passenger flow within the 

next 15 minutes. Strong randomness, non-stationarity, and 

non-linearity are characteristics of short-time passenger 

flow. At present, the train interval tracking in many first-tier 

cities in China's URT is mostly less than 5 minutes. Hence, 

the prediction of passenger flow with a time granularity of 5 

minutes is usually performed, which has profound 

significance for the operation and scheduling of URT 

systems [4, 5]. 

Deep learning and other optimization algorithms are 

currently being used to predict short-term passenger flow at 

various URT stations based on passenger flow sequence data 

[6]. To fully understand the patterns of passenger flow 

between URT stations, it is not enough to predict the amount 

of traffic at a single station. Various factors, including 

geographic location, land use characteristics within the 

station's radiation area, and road network density, have an 

impact on the passenger flow at each URT station. As a 

result, a model developed for one station may not be 

applicable to accurately predict passenger flow at other 

stations. The study suggests a station classification-based 

short-term passenger flow prediction model to solve this 

issue. Firstly, to categorize all URT stations, this study uses 

clustering algorithms to analyze their attributes. Following 

that, representative stations from each distinct category are 

chosen for in-depth analysis, enabling a more thorough and 

detailed study. The CEEMDAN algorithm is used to 

eliminate noise and smooth the passenger flow data of the 

chosen stations to increase the model's predictive accuracy. 

In the meantime, the CSSA algorithm is used for parameter 

optimization, resolving the problem of traditional prediction 

algorithms' slow convergence speed for URT passenger flow. 

High precision, good stability, quick convergence, and 

robust search capabilities are all benefits of this algorithm. 

The accuracy of the model can be significantly increased 

when used in conjunction with deep learning algorithms. 

Finally, individual evaluations of short-term passenger flow 

prediction for stations of various categories are performed 

using various indicators, and cross-validation between 

models of stations of dissimilar categories is evaluated to 

demonstrate the proposed model's usability and 

effectiveness. 

The remaining structure of this study is as follows. 

Section 2 expands on commonly used methods for 

short-term passenger flow prediction and introduces the 

study's research ideas. Section 3 describes the study area and 

provides relevant details about the methods used. Section 4 

presents the experimental findings and results. Finally, in 

Section 5, this study summarizes the findings and discusses 

current issues and future research directions. 

II. LITERATURE REVIEW 

Numerous statistical models, including the autoregressive 

integrated moving average (ARIMA) and seasonal 

autoregressive integrated moving average (SARIMA) 

models, are frequently used for forecasting. Williams et al. 

[7] used a seasonal time series model and an exponential 

smoothing model to predict traffic flow in a single interval 

of urban highways in 1998. Lee and Fambro [8] investigated 

the use of the subset ARIAM model in short-term traffic 

volume forecasting and discovered that it was more stable 

and accurate than the full ARIMA model. Williams and 

Hoel [9] proposed a theoretical basis for modeling 

single-variable traffic data as a SARIMA process using a 

SARIMA model of single-variable traffic data. Milenkovic 

et al. [10] forecasted the time series of Serbian railway 

passenger volume from January 2004 to June 2014 using the 

SARIMA model, and the experimental results demonstrated 

good predictive performance. 

With the rapid development of computer technology and 

various algorithms, machine learning has become a very 

effective tool for predicting passenger flow. Support vector 

machines (SVM) and artificial neural network (ANN) 

models are examples of common methods. Wei and Chen 

[11] predicted passenger flow using empirical mode 

decomposition (EMD) and neural network models, with the 

previous six-time steps as input. Jeong et al. [12] proposed a 

new online learning weighted support vector regression 

prediction model. Jiao et al. [13] improved the traditional 

Kalman filter method and proposed three models, KF-ECC, 

KF-HD, and KF-BCNR, which they validated using 

passenger flow data from Beijing Metro Line 13. The 

KF-BCNR model performed the best, according to the 

results.  Li et al. [14] proposed a new multiscale radial basis 

function (MSRBF) network. When combined with the 

analysis of Beijing bus data, the algorithm demonstrated an 

exceptional ability to predict non-traditional demand within 

30 minutes.  Ouyang et al. [15] proposed a new bus 

passenger flow prediction model based on XGBoost feature 

extraction and decoding of multilayer neural networks, 

employing LSTM. 

The models mentioned above only consider passenger 

flow within the URT, ignoring potential URT passenger 

flow, which influences short-term passenger flow prediction. 

Mobile phones, on the other hand, provide a reliable data 

source that can supplement existing AFC system data and 

improve the accuracy of passenger flow prediction [16]. 

Researchers can obtain travel trajectories of passengers as 

they pass by base stations using mobile phone data, 

providing additional insights into passenger movements.  

Dai et al. [17] proposed a data-driven short-term subway 

passenger flow prediction framework that uses spatial and 

temporal correlation information to combine potential 

passenger flow with AFC card-swipe passenger flow, 

improving the performance of short-term traffic prediction. 

Single models are inherently flawed, and it is difficult to 

say that one model is superior to others under all conditions. 

As a result, more researchers are focusing on combining 

models, which can combine the strengths of multiple models 

and significantly improve the accuracy of passenger flow 

prediction [18]. Jia et al. [19] explored a deep learning-based 

model for predicting short-term passenger flow at each 

station that combined Long Short-Term Memory neural 

networks (LSTM-NN) and stacked autoencoders (SAE). 

Shahriari et al. [20] combined the Bootstrap and ARIMA 
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models to create an E-ARIMA ensemble, which improved 

prediction accuracy for traffic data from major roads in 

Sydney, Australia. Zeng et al. [21] proposed a combined 

model for short-term passenger flow prediction in URT 

based on Adaptive Noise Empirical Mode Decomposition 

(CEEMDAN) and LSTM neural networks, and calculated 

LSTM hyperparameters using Improved Particle Swarm 

Optimization (IPSO). To eliminate noise and improve 

short-term predictions, Xiu et al. [22] proposed a new 

framework that integrates Empirical Mode Decomposition 

(EEMD) and Bidirectional Gated Recurrent Unit (Bi-GRU) 

models. 

Based on the above research, it can be concluded that 

commonly used methods for short-term passenger flow 

prediction involve combination forecasting models that 

combine global optimization algorithms with deep learning 

algorithms. Traditional optimization algorithms, on the 

other hand, have some drawbacks, such as reduced 

population diversity and susceptibility to local optima when 

approaching the minimum value. Furthermore, the 

nonlinearity and randomness of URT passenger flow make it 

ideal for chaotic algorithms. Therefore, this study proposes a 

CSSA-LSTM model for short-term passenger flow 

prediction based on the Tent chaotic algorithm. Furthermore, 

many previous studies have only chosen a few URT stations 

in a city, which may result in incomplete findings and make 

accurately identifying passenger flow patterns difficult. In 

contrast, this study classified 79 Hangzhou stations and 

chose representative stations from each category for 

research, yielding more comprehensive and reliable results. 

III. MATERIALS AND METHODS 

A. Study area and Data processing 

Study area and data sources 

Hangzhou, China's capital and administrative center, is 

located between 118°1' E and 120°31′  E longitude and 29°

11' N and 30°33' N latitude. It is one of eastern China's most 

important cities. Hangzhou is a vital component of the 

Yangtze River Delta and is adjacent to Shanghai, making it a 

core city of the Yangtze River Delta region. Furthermore, 

Hangzhou is an important node for the North-South 

Economic Corridor and the Maritime Silk Road, acting as a 

major transportation hub connecting mainland China with 

Southeast Asia, South Asia, the Middle East, and Europe. 

Hangzhou's urban area covered 728.46 square kilometers 

and had a population of 9.115 million as of early 2019. As 

shown in Fig.1, Hangzhou's transportation system is 

primarily supported by its three operational metro lines: 

Line 1, Line 2, and Line 4, which play a critical role in 

facilitating transportation throughout the city. 

In addition to its economic and transportation importance, 

Hangzhou is an important tourist destination, with 170 

million domestic and foreign visitors in 2019. The tourism 

industry's rapid growth has increased demand for URT 

operations, necessitating short-term passenger flow 

prediction. Accurate passenger flow prediction can help 

URT operators with scheduling, optimizing station layouts, 

and increasing transportation efficiency, resulting in more 

convenient travel services for both citizens and tourists. 

 

 
Fig. 1.  Routes of Hangzhou's URT Lines (2019) 

 

Data processing 

The AFC system of Hangzhou URT system is the primary 

source of data for passenger flow prediction. This system is 

an advanced public transportation management tool that can 

collect and process data on ticket sales, ticket inspection, and 

passenger travel. It offers critical management and 

operational decision support for forecasting passenger flow 

in the URT. This study's data was obtained from the Internet 

and includes swipe card records from Hangzhou Metro 

Lines 1, 2, and 4 from January 1st to January 25th, 2019, 

with an average of approximately 2.6 million swipes per day. 

The information is saved in a.csv file and includes the swipe 

time, user ID, line ID, station ID, device ID, entry/exit status, 

and payment method. As shown in Fig.2, we eliminated 

illogical data by combining the same user ID's entry and exit 

card swiping time intervals (long intervals may indicate 

station staff, while short intervals may indicate non-use of 

URT). We also removed data that had missing values. 

Finally, to ensure data consistency, we only kept passenger 

flow data for each station from 6:00 a.m. to 11:00 p.m. daily. 

The final average daily data volume for each station was 

approximately 4800 entries after studying with a 5-minute 

time granularity. 

 

 
Fig. 2.  Combination of Passenger Flow Data from URT system 

 

POI data is available from a variety of open-source 

websites on the Internet. Open-source websites offer open, 

non-commercial data that users can freely upload and 

download. Amap is a Chinese digital map content and 

navigation provider that provides global earth services such 

as POI data. The POI data spans many cities and regions 

worldwide and covers a wide range of categories such as 

catering, attractions, healthcare, shopping, traffic, and so on. 

The POI data in this study is based on the Amap open 

platform, and a total of 534,596 POI points in Hangzhou 

were crawled. We retained data only within a 1000-meter 
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radius of the stations and removed some outliers to focus on 

land use within the radiation range of rail transit stations, 

resulting in 100,232 data points across 11 categories, such as 

catering and shopping, as shown in Table I. 

 
TABLE I  

POI STATISTICS FOR HANGZHOU 

Categorization Counting 

Catering 34197 

Company 18288 

Shopping 52136 

Traffic 17616 

Hotel 5751 

Education 10335 

Attraction 1112 

Residence 7360 

Leisure 2913 

Healthcare 7192 

Sport 2570 

 

We can use the POI points and other indicators (such as 

peak passenger flow ratio, number of peaks, and so on) from 

table 1 to perform K-means clustering analysis and classify 

the URT stations [23]. This classification method enables 

more accurate prediction of passenger flow for various types 

of URT stations. 

B. CEEMDAN for Passenger Flow Decomposition 

Non-stationary passenger flow data directly input into a 

prediction model may reduce prediction accuracy due to 

data noise. As a result, before entering passenger flow data, 

the original data must be denoised. Empirical Mode 

Decomposition (EMD) and wavelet denoising are currently 

popular denoising methods. EMD is a powerful nonlinear 

time-domain and time-frequency analysis method that can 

adaptively decompose a signal into a superposition of 

multiple Intrinsic Mode Functions (IMFs), each representing 

a different frequency component of the signal. EMD 

denoises signals by removing noise-containing IMF 

components or smoothing the IMF components, making it 

one of the most effective methods for signal denoising [11, 

22]. 

Traditional EMD algorithms, on the other hand, have 

some limitations, such as the issue of mode mixing in signal 

decomposition. Scholars proposed Ensemble Empirical 

Mode Decomposition (EEMD) and Complementary 

Ensemble Empirical Mode Decomposition (CEEMD) to 

solve this problem by adding paired positive and negative 

Gaussian white noise to the signal. The intrinsic mode 

functions (IMFs) obtained from these two algorithms, 

however, may still contain residual white noise, which can 

affect the subsequent signal analysis and processing. 

Torres et al. proposed CEEMDAN, an improved 

algorithm, to overcome these limitations. It is an improved 

method based on EMD that incorporates Gaussian noise and 

averaging multiple iterations from EEMD [24, 25]. The 

CEEMDAN method's calculation procedure is as follows: 

Calculate the IMF1 component. Add a set of signals 

{x(t)+E1(ni)} consisting of paired positive and negative 

Gaussian white noise E1(ni) (i=1, 2, ..., I) to the original 

waveform signal x(t). Using EMD to decompose each signal 

separately, obtain the first IMF component of the 

decomposition and combine them to form a set. Take the 

average of the set to obtain the IMF1 component, denoted as 

h1, and simultaneously calculate the residual of IMF1, 

denoted as r1, as shown in equations (1)-(2). 

 ( )
1 1

1

1
h

N
i

i

h
N =

=   (1) 

 ( )1 1r x t h= −  (2) 

Similarly, calculate the IMF2 component to obtain the 

IMF2 component h2, and calculate the residue r2 as shown in 

equations (3)-(4). 

 ( )
2 2

1

1
h h

N
i

iN =

=   (3) 

 
2 1 2r r h= −  (4) 

Following the same procedure, the IMFk component hk 

and the residue rk of the original signal can be computed, as 

shown in equations (5)-(6). 

 ( )

1

1
h

N
i

k k

i

h
N =

=   (5) 

 
1rk k kr h−= −  (6) 

Repeat the above steps until the residual signal becomes a 

monotonic function, completing the decomposition. The 

decomposition result of the original signal x(t) at this point is 

shown in equation (7). 

 ( )
1

x
K

j k

j

t h r
=

= +  (7) 

C. SSA and CSSA Algorithms 

SSA Algorithm 

The central concept of the swarm intelligence 

optimization algorithm is to simulate the movement and 

behavior patterns observed in various natural phenomena 

and organisms, with the goal of finding optimal solutions 

within a given range of solution space. Observing the 

collective behaviors of birds, ants, whales, and other 

organisms has led to the development of numerous swarm 

intelligence optimization algorithms. Beni et al. [26] 

proposed the concept of "swarm intelligence" for the first 

time in 1989. Colorni et al. [27] proposed the ant colony 

optimization (ACO) algorithm in 1991 by simulating how 

ants avoid obstacles and choose the shortest path from their 

nest to food sources. Kennedy et al. [28] proposed the 

particle swarm optimization (PSO) algorithm in 1995, which 

was inspired by bird hunting behavior. Other researchers 

then proposed the bat algorithm, whale optimization 

algorithm (WOA), seagull optimization algorithm (SOA), 

and other algorithms. Among these algorithms, the sparrow 

search algorithm (SSA), proposed by Xue and Shen [29] in 

2020, has gotten a lot of attention because of its advantages 

such as simple implementation, ease of expansion, and 

self-organization. 

The basic modeling steps of SSA can be summarized as 

follows: 

(1) Constructing the population. The population consists 

of N sparrows represented in the following form: 
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In the above equation, n represents the number of sparrow 

populations, and d represents the dimensionality of the 

problem to be optimized. 

(2) Calculate the fitness value. Like other heuristic 

algorithms, the SSA algorithm requires computing the 

fitness value of every individual in the swarm. 
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 (9) 

Here, f represents the fitness value of each sparrow, and 

the fitness function can be chosen as the average mean 

squared error of the training and testing sets. 

(3) Update the position of the discovery agent. In the SSA 

algorithm, the discovery agent provides the swarm with 

foraging direction, and its position update is described as 

follows: 

 
, 21
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 (10) 

Here, t represents the iteration number, xt
i,j represents the 

i-th sparrow's j-th dimensional value in the t-th iteration and 

can be seen as different parameters of the problem to be 

optimized. tm is the maximum preset number of iterations, Q 

is a random number generated from a standard normal 

distribution, and L is a 1×d matrix of all ones. R2 and ST are 

the safety threshold and alarm threshold, respectively. When 

R2<ST, the discovery agent enters the search mode and 

updates its position. When R2>ST, it indicates that the 

sentinel agents in the swarm have detected danger, and the 

discovery agent will stop foraging and fly to a safe location. 

(4) Updating follower positions. In the SSA algorithm, the 

roles of discoverers and followers switch, but the proportion 

of the two roles remains fixed within the population. 

Typically, the m top-performing sparrows are assigned the 

role of discoverers, while the remaining n-m sparrows act as 

followers. As the energy level of the followers diminishes, 

their foraging position deteriorate, and they may eventually 

exit the population. The update formula for follower 

positions is expressed as follows: 
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 (11) 

Where yp represents the best position within the 

population at the current time, and yw represents the worst 

position. When i > n/2, it indicates that the i-th newcomer 

fails to acquire food and may depart from the population to 

explore alternative food sources. 

(5) Regarding anti-predator behavior. It is presumed that 

during the initial stages, 10% to 20% of the sparrows possess 

awareness of potential risks and promptly maneuver closer 

to their counterparts to mitigate the likelihood of predation. 

The formula is as follows: 
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 (12) 

Where zt
b denotes the best solution at time t, z is either x or 

y, fi is the fitness value. When fi > fg, it indicates that the 

sparrows located at the edges of the population become 

aware of the risk, they perceive the position zb, which 

represents the central position of the population, as a safe 

area. When fi < fg, the sparrows located in the middle of the 

population tend to move closer to their companions. Here, K 

is a constant that governs the step size, and e is a small 

non-zero value introduced to prevent division by zero in the 

denominator. Compared to other swarm intelligence 

optimization algorithms, SSA exhibits several advantages, 

such as high search precision, rapid convergence, good 

stability, and strong robustness. However, like other swarm 

intelligence optimization algorithms, SSA may encounter 

problems such as reduced population diversity and the risk 

of getting trapped in local optima during the search process 

[30]. 

CSSA Algorithm 

Researchers have proposed several improvement 

strategies to overcome the challenges of reduced population 

diversity and local optima in swarm intelligence 

optimization algorithms [31, 32]. For example, Zhang et al. 

[33] redesigned the SOA algorithm's representation and 

update strategy for seagull positions, making it discrete and 

introducing a random mutation factor to improve 

individuals' ability to escape local optima. This improved 

SOA algorithm solved optimal path problems with good 

stability. Yang et al. [34] discovered that chaos theory could 

endow the PSO algorithm's inertia weight with chaos search 

ability, and they proposed a new simplified chaotic PSO 

algorithm based on the Logistic map to reduce the likelihood 

of being trapped in local optima. Han et al. [35] added a 

mutation operator with a Gaussian function and chaotic 

properties to the PSO algorithm to help the population jump 

out of local optima and improve global search ability. 

These optimization strategies offer useful insights and 

methodological guidance for improving the Sparrow Search 

Algorithm. Inspired by the Gaussian distribution's good 

local search ability and the Tent chaotic sequence's uniform 

traversal and rapid convergence, a new algorithm called 

Chaos-based Sparrow Search Algorithm (CSSA) is 

proposed. The Tent chaotic mapping is used to initialize the 

population for an even distribution of initial positions. Then, 

Gaussian mutation and chaotic disturbance are used to adjust 

individuals when the population exhibits "aggregation" or 

"divergence" tendencies. These mechanisms aid in escaping 

local optima and improving model accuracy. The following 

are the main steps in the process: 

Step 1 Initialization, including the population size N, the 

number of explorers pnum, the number of sentinels snum, the 

dimension of the objective function D, the lower and upper 

bounds lb and ub for initial values, and the maximum 
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Fig. 3.  Comparison of Different Benchmark Function Tests 

 

number of iterations tm. 

Step 2 Initialize the population using the Tent chaotic 

sequence. Generate N D-dimensional vectors Wi and map 

their components onto the variable range of the original 

problem space. 

Step 3 Calculate the fitness value fi of each sparrow and 

select the current best fitness value fg and its corresponding 

position zp, as well as the current worst fitness value fw and 

its corresponding position zw. 

Step 4 Select the top pnum sparrows with better fitness 

values as explorers and assign the remaining sparrows as 

followers and update the positions of the explorers and 

followers according to equations (10)-(11). 

Step 5 Randomly select snum sparrows from the sparrow 

population for reconnaissance and warning. Update their 

positions according to formula (12). 

Step 6 After each iteration, recalculate the fitness value fi 

of each sparrow and the average fitness value favg of the 

sparrow population. 

1)  If fi ＜ favg, it indicates the occurrence of "aggregation" 

phenomenon and requires Gaussian mutation processing. If 

the mutated individual is superior to the original individual, 

replace the original individual with the mutated individual; 

otherwise, keep the original individual unchanged. 

2)  If fi ≥ favg, it indicates the occurrence of "divergence" 

trend. Perform Tent chaotic disturbance on individual i in 

the population. If the individual after disturbance has better 

performance, replace the original individual with the 

disturbed individual; otherwise, keep the original individual 

unchanged. 

Step 7 Update the overall best position zp and its fitness fg, 

as well as the worst position zw and its fitness fw, based on the 

current state of the sparrow population. 

Step 8 Check if the maximum number of iterations has 

been reached. If so, terminate the loop; otherwise, go back to 

step 4. 

To validate the performance of the improved CSSA 

algorithm, this study used benchmark functions to run a 

performance test on both the CSSA and the SSA algorithms. 

Benchmark functions are well-known mathematical 

functions with well-known optimal solutions that are used to 

assess and compare the performance of optimization 

algorithms. These functions cover a wide range of problems, 

such as continuous optimization, discrete optimization, 

multi-objective optimization, and others. Eight benchmark 

functions were used in this study to compare the 

performance of the two algorithms. The experiments used a 

population of 30, a maximum iteration of 1000, and a 

dimension of 30. As shown in Fig.3, the CSSA algorithm 

outperformed the SSA algorithm in terms of optimization 

performance.  The CSSA algorithm's superiority was 

manifested in its faster convergence speed and easier 

attainment of the optimal solution. As a result, this study 

concludes that the CSSA algorithm performs better in terms 

of optimization when dealing with practical problems [36]. 

D. LSTM 

The LSTM, which was proposed in 1997, is a type of 

artificial neural network that is commonly used for 

sequential data processing. It outperforms traditional 

recurrent neural networks, particularly in addressing 

challenges related to processing long sequences and 

mitigating the vanishing gradient problem. Each neuron in 

the LSTM model has three gates: the input gate, the output 

gate, and the forget gate, which regulate the flow of 

information for input, output, and forgetting, respectively.  

These gated units allow LSTM to selectively store and 

retrieve essential information over long sequences while 

preventing irrelevant information from propagating 

throughout the network [37, 38]. 

The input gate, forget gate, output gate, and memory cell 

are the four main components of an LSTM. The input gate 

determines whether the current input data should be stored in 

the memory cell. The forget gate decides whether or not to 

discard previous memory information. The output gate 

determines which memory cell information should be 

outputted at the current time step. The memory cell 

functions as a long-term data storage unit. LSTM effectively 

processes long sequences and captures long-term 

dependencies within the sequence by utilizing these gated 

units. Because of its effectiveness in dealing with long-term 

data, LSTM has been widely used in fields such as natural 

language processing, time series prediction, and image 

analysis [39-41].  

(1) The forget gate employs an activation function to 

determine how much of the previous cell state Ct-1 is retained 

in the current cell state Ct, as shown in equations (13)-(14).
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Where Wf and bf represent the weights and biases of the 

forget gate, respectively. [ht-1, xt] represents the 

concatenation of the previous hidden state and the current 

input at the current time step. The specific process is shown 

in the following diagram. 

(2) The input gate determines the proportion of the current 

input xt that is saved in the current cell state Ct, while 

employing the tanh function to generate a candidate cell 

state, as shown in equations (15)-(16). 
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Where Wi and bi represent the weights and biases of the 

input gate, respectively. The specific process is shown in the 

following diagram. 

(3) The output gate determines the amount of the original 

output information that is multiplied pointwise with the cell 

state passed through the tanh layer, to obtain the final model 

output, as shown in equations (17). 
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= 
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Where Wo and bo represent the weights and biases of the 

output gate, respectively. The specific process is shown in 

the following diagram. 

(4) State update, including cell state Ct and hidden state ht  

 

update, as shown in equations (18)-(19). 

 
t 1t t t tC f C i C−=  +   (18) 

 ( )tanht t th o C=   (19) 

The LSTM principles described above are illustrated in 

Fig.4. 

The process of updating the cell state, which is a key 

component of the LSTM model and is depicted in the figure 

above. Numerous factors influence the LSTM model's 

prediction accuracy, including data quality and quantity, as 

well as model parameters such as the number of hidden layer 

neurons, learning rate, and time step. This study employs the 

CEEMDAN algorithm to effectively eliminate noise from 

the data to improve data quality. Furthermore, the CSSA 

algorithm is used to find the best hyperparameters of the 

LSTM model, allowing for accurate short-term passenger 

flow prediction. It should be noted that these techniques are 

critical for achieving high-precision predictions in the 

LSTM model, and their application has great potential for 

furthering research in this domain. The main process of this 

study is shown in Fig.5. 

IV. RESULT AND DISCUSSIONS 

A. Clustering Results 

The POI kernel density within the 1000 m radius of the 

station is shown in the Fig.6. It clearly displays the density 

of various POIs near the routes, providing detailed insights 

into the land use characteristics within the station's influence 

area. URT stations can be classified more effectively based 

on this, in conjunction with factors such as route density and 

passenger flow attributes [42]. 
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Fig. 4.  The principle of LSTM 
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(a) Catering 

 
(b) Company 
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(d) Traffic 

 
(e) Attraction 

 
(f) Education 

 
(g) Healthcare 

 
(h) Sports 

Fig. 6.  POI Density Heatmap 

Based on previous research experience, this study 

classifies URT stations into four categories, and the 

statistical results are shown in Table Ⅱ. 
  

TABLE Ⅱ 

RESULTS OF STATIONS CATEGORIZATION 

Category Station Name Number 

Category 1 
Xianghu Station, Jinshahu Station, 

Yunshui Station, etc. 
42 

Category 2 
Xixing Station, Jiubao Station, People's 

Square Station, etc. 
19 

Category 3 
Ding'an Road Station, Wulin Square 

Station, Nanxingqiao Station, etc. 
13 

Category 4 
Hangzhou East Railway Station, 

Passenger Transport Center Station, etc.  
6 

  

Category 1: Residential stations. These stations have a 

wide coverage of residential areas and offer services 

oriented towards daily life, such as restaurants, shopping 

facilities, and educational institutions. The proportion of 

passengers entering the station during the morning peak 

period is higher than that during the evening peak period, as 

shown in Fig.7. 

Category 2: Comprehensive stations. These stations have 

a variety of POIs near the station, including both 

life-oriented and production-oriented services. The 

proportion of passengers entering and exiting the station 

during the morning and evening peak periods is relatively 

balanced. 

Category 3: Commercial stations. These stations have a 

mix of life-oriented and job-oriented services, with a higher 

volume of passenger flow during the evening peak period 

compared to the morning peak period. 

Category 4: Transportation hub stations. This category 

includes URT interchange stations and railway hub stations. 

Fig. 5.  Research Process 
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The surrounding land use of these stations does not have any 

distinct features, but they have a high volume of passenger 

traffic, which is evenly distributed throughout the day.  
  

 
Fig .7.  Different Types of Passenger Flow in URT Stations 

  

The graph above depicts how the passenger flow for 

various types of URT stations varies. Some stations have 

unimodal traffic patterns, while others have bimodal or 

multimodal traffic patterns. Furthermore, peak passenger 

flow for different types of stations can occur in the morning 

or evening. As a result, analyzing only one or two URT 

stations is insufficient for predicting short-term passenger 

flow. In this study, we classified Hangzhou's URT stations 

into different types and chose two representative stations 

from each type to predict passenger flow. We hoped to 

achieve more accurate results by conducting horizontal 

comparisons of prediction performance across these stations, 

thereby improving the reliability and applicability of our 

findings. 

To validate the effectiveness of site categorization, we ran 

a similarity analysis of the historical passenger flows of the 

target sites and calculated averages for each site category, as 

shown in Fig.8. According to the graph, passenger flows for 

the first three categories of sites remain relatively stable 

during the weekdays, which could be attributed to 

commuting and school-related activities. The fourth 

category of sites, on the other hand, has significantly lower 

passenger flow similarity, which could be because these 

sites serve as transportation hubs with high passenger 

volumes and greater mobility, making predictions more 

difficult. 

 

 
Fig .8.  Distribution of Site Similarity among Different Site Types 

 

The passenger flow similarity for the first three categories 

decreases slightly during non-working days, while the 

similarity for the fourth category remains relatively 

unchanged. This implies that the shift between working and 

non-working days has less of an impact on the fourth 

category of sites. Overall, the first category of sites has the 

most stable passenger flow similarity, followed by the 

second and third categories, and the fourth category has the 

least stability. 

B. CEEMDAN Decomposition Results 

Based on the above-mentioned station classification 

results, this study divides the stations into four types and 

builds different prediction models for each type, which are 

then cross-validated. Cross-validation is the process of 

training a model on data from one station and then testing its 

performance on data from other stations to determine the 

accuracy of the model's predictions for those stations. 

Because passenger flow patterns differ between station types, 

cross-validation effectively evaluates the model's 

generalization ability. Table III shows the selection of eight 

representative stations for short-term passenger flow 

prediction. For convenience in subsequent discussions, the 

first column of Table III is labeled 1–4 for the four stations, 

and the second column is labeled a–d for the four stations, 

where station 1 represents Xianghu Station and station b 

represents Qingling Station. 
  

TABLE Ⅲ 
RESEARCH SUBJECT 

 Urban Rail Transit Stations 

Category 1 Xianghu Station Feihong Road Station 

Category 2 
Xueyuan Road 

Station 
Qingling Station 

Category 3 
Ding'an Road 

Station 
Wulin Square Station 

Category 4 Cheng Station 
Hangzhou East Railway 

Station 

  

To denoise the signal at Xianghu Station, the CEEMDAN 

decomposition was use. The Pearson correlation coefficient 

was used to determine the correlation between the 

decomposed signal and the original signal, which indicates 

whether the signal information was lost during the 

decomposition process, to ensure the integrity of the original 

signal. 
  

 
Fig. 9.  The Decomposition Results of CEEMDAN 

  

The CEEMDAN decomposition results are shown in 

Fig.9, which includes ten IMF components and one residual 
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component. The IMF components are arranged in 

decreasing frequency order from 1 to 10, with 

high-frequency noise removed (representing unstable 

passenger flow in URT) and low-frequency signals retained 

(representing long-term stable passenger flow, which is 

easier to investigate for passenger flow changes). The 

Pearson correlation coefficient was used to ensure the 

integrity of the original signal after removing 

high-frequency noise, with a coefficient of 0.9689 and 

p-value of 0. Thus, after removing high-frequency noise, the 

signal retained much of the original signal information and 

had smoother data with higher research value, as illustrated 

in detail in Fig.10. The same procedure was used for the 

remaining other URT stations. 
  

 
Fig. 10.  Comparison before and after Decomposition 

  

C. CSSA-LSTM Prediction Results 

To meet scientific writing standards, we conducted a 

comparative analysis of the CSSA-LSTM model's 

effectiveness in comparison to three other models: LSTM, 

PSO-LSTM, and SSA-LSTM. These models were trained 

and tested using data samples collected from each station 

over a 24-day period with a granularity of 5 minutes, 

yielding approximately 4800 data points per station. The 

training and testing data were split in a 9:1 ratio. The LSTM 

model included 50 hidden neurons, a 10-step time step, a 

learning rate of 0.01, and 50 epochs. The hidden neurons in 

the CSSA-LSTM, SSA-LSTM, and PSO-LSTM models 

were determined by their respective optimization algorithms, 

while the other parameters remained constant. The 

prediction results for different categories of stations for each 

model are presented in Fig.11. 

 

 
(1) Xianghu Station 

 

 
(a) Feihong Road Station 

 

 
(2) Xueyuan Road Station 

 

 
(b) Qingling Road Station 

 

 
(3) Ding’an Road Station 
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(c) Wulin Square Station 

 

 
(4) Cheng Station 

 

 
(d)  Hangzhou East Railway Station 

Fig. 11.  Comparison of Passenger Flow Predictions among Different URT 

Stations 

 

Fig.11 shows the prediction results obtained from various 

models used to forecast passenger flow at various URT 

stations. The predicted results were inverse-normalized and 

compared against the actual passenger flow to allow for a 

direct comparison of the model's prediction accuracy. The 

models were evaluated using R-squared, RMSE, MAE, and 

MAPE metrics. Table IV shows the specific evaluation 

results. 

Fig.12 shows that as the model's performance advances, 

so do the projections of passenger flow at different stations. 

The standalone LSTM model performs the worst, with the 

greatest RMSE, MAE, and MAPE values and the lowest 

R-squared value. The level of prediction accuracy varies 

significantly among station categories. Both the PSO-LSTM 

and SSA-LSTM models have very erratic forecast accuracy 

for various station types, which could not be in line with the 

day-to-day operational requirements of URT systems. On 

the other hand, the CSSA-LSTM model exhibits good 

predictive accuracy for passenger flow at various station 

categories and is well suited for tackling short-time 

passenger flow forecasting difficulties at diverse URT 

station types. 
  

TABLE Ⅳ 

MODEL EVALUATION METRICS RESULTS 

Station Model R2 RMSE MAE MAPE 

Xianghu 

Station 

LSTM 0.86 19.37 13.11 0.45 

PSO-LSTM 0.91 15.69 10.54 0.53 

SSA-LSTM 0.91 16.04 11.43 0.23 

CSSA-LSTM 0.98 7.31 4.96 0.31 

Feihong 

Road 

Station 

LSTM 0.89 20.34 14.58 0.45 

PSO-LSTM 0.93 16.08 11.69 0.37 

SSA-LSTM 0.94 15.46 11.49 0.36 

CSSA-LSTM 0.99 5.83 4.22 0.13 

Xueyuan 

Road 

Station 

LSTM 0.88 18.11 12.38 0.17 

PSO-LSTM 0.93 14.17 10.15 0.15 

SSA-LSTM 0.94 12.75 8.82 0.13 

CSSA-LSTM 0.98 6.53 4.51 0.06 

Qingling 

Station 

LSTM 0.89 12.22 9.23 0.2 

PSO-LSTM 0.91 11.13 8.37 0.17 

SSA-LSTM 0.92 10.21 7.58 0.16 

CSSA-LSTM 0.98 4.89 3.51 0.07 

Ding'an 

Road 

Station 

LSTM 0.84 28.37 19.66 0.16 

PSO-LSTM 0.86 26.61 19.11 0.19 

SSA-LSTM 0.85 27.19 19.73 0.2 

CSSA-LSTM 0.97 11.85 8.16 0.07 

Wulin 

Square 

Station 

LSTM 0.85 25.52 18.71 0.16 

PSO-LSTM 0.91 19.61 14.39 0.14 

SSA-LSTM 0.94 15.92 11.91 0.14 

CSSA-LSTM 0.99 7.65 5.51 0.05 

Cheng 

Station 

LSTM 0.82 32.9 24.47 0.32 

PSO-LSTM 0.91 23.03 17.26 0.24 

SSA-LSTM 0.93 20.98 15.55 0.2 

CSSA-LSTM 0.98 12.15 9.03 0.12 

Hangzhou 

East 

Railway 

Station 

LSTM 0.79 74.65 57.57 0.28 

PSO-LSTM 0.85 62.14 47.69 0.22 

SSA-LSTM 0.9 50.12 38.82 0.19 

CSSA-LSTM 0.96 32.38 24.96 0.12 

  

 
Fig. 12.  Comparison of model evaluation metrics (data are from Table Ⅳ, 

selecting R-squared and MAPE, which are not affected by the unit of 

measurement) 
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Fig.13 shows that the CSSA-LSTM model has better 

convergence performance and a faster rate of convergence. 

As a result, using this technique in real-world applications 

can increase efficiency. 
  

 
Fig. 13.  Loss Function Comparison for Different Algorithms 

  

Using Xianghu Station as an example, we input passenger 

flow data that has been decomposed and denoised alongside 

undecomposed and denoised passenger flow data into the 

CSSA-LSTM model to explore the effect of the CEEMDAN 

algorithm on model prediction outcomes. Fig.14 displays the 

comparison. 
  

 
(a)  Predictive Results Comparison 

  

 
(b)  Convergence Speed Comparison 

Fig. 14.  The Effects of CEEMDAN Decomposition on CSSA-LSTM's 

Predictive Performance 

  

According to Fig.15, the R-squared value for predicting 

passenger flow before denoising is 0.88, but it increases to 

0.98 after denoising. This emphasizes how important 

CEEMDAN preprocessing is for predicting passenger flow 

because it speeds up model convergence and produces more 

precise predictions. 
  

 
Fig. 15.  Cross-validation of different stations 

  

As shown in Fig.15, we performed cross-validation on 

models for various station categories, and it is clear from the 

graph that the accuracy of the forecast of the passenger flow 

is higher for stations of the same kind than it is for stations of 

different types. The performance is noticeably better than 

models based on Category 4 data when using passenger flow 

data from Category 3 stations to train models for predicting 

passenger flow at other station types. This discrepancy 

might be explained by the fact that Category 4 stations have 

a 'peak-hour' pattern with considerable passenger flow 

variations, which makes it difficult for the model to detect 

underlying trends. 

V. CONCLUSIONS 

This study proposes a CSSA-LSTM neural network for 

short-time passenger flow prediction in URT systems based 

on a station classification strategy. First, we evaluate diverse 

land-use properties within a 1000-meter radius of URT 

stations to investigate the standards for station classification. 

We divide stations into four unique classes using the 

K-Means clustering technique. The original passenger flow 

data is then broken down and denoised using the 

CEEMDAN approach to ensure that any unstable passenger 

flow interference is removed and that the processed data 

more closely represents the signal's fundamental properties. 

We then put the CSSA-LSTM model into practice for 

forecasting short-time passenger flow and evaluate it against 

alternative algorithms. To evaluate the generalizability of 

model, we lastly perform cross-validation using pre-trained 

models for several station categories. 

The research findings include the following: (1) We 

demonstrated the feasibility and necessity of site 

categorization by analyzing the degree of similarity among 

different types of sites. This method allows us to quantify 

the difficulty of predicting passenger flow at various URT 

stations. (2) The efficacy of CEEMDAN signal 

decomposition in greatly boosting the prediction model's 
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accuracy. (3) Variations in typical URT passenger flow 

prediction model performance across various station types. 

For instance, compared to Category 3 and Category 4 

stations in this study, the LSTM model had better predictive 

accuracy for Category 1 and Category 2 stations. The 

passenger flow attributes, and computational procedures 

may be the reason for this disparity. Category 1 and 

Category 2 stations, with their comparatively steady 

passenger flows, enable better learning of their dynamic 

properties, resulting in higher prediction performance. The 

passenger flows at Category 3 and Category 4 stations are 

relatively complex, and the model training is insufficient, 

resulting in relatively poor training outcomes. (4) No matter 

the station category for which passenger flow prediction was 

done, the CSSA-LSTM model presented in this research 

showed the best predictive performance. When compared to 

the other three models, it showed 14.81%, 8.60%, and 6.82% 

gains in R-squared values, as well as reductions in RMSE 

values of 61.72%, 53.00%, and 47.48%, MAE values of 

61.78%, 53.41%, and 48.25%, and MAPE values of 57.53%, 

53.73%, and 64.37%. (5) Extensive experiments showed 

that this model had faster convergence, shorter training 

times, and less resource usage. (6) The CSSA-LSTM model 

demonstrated strong generalization ability based on 

cross-validation results, however minor variations in 

predicting accuracy persisted across several station types. 

These findings highlight the benefits and contributions of 

the CSSA-LSTM model as it relates to improving short-time 

passenger flow forecast in URT systems. 

It is important to recognize that the model's performance 

may be constrained by the cross-validation approach in this 

study's relatively small sample size. To further improve the 

predictive power of the model, it is crucial to consider the 

impact of numerous elements such as different time periods, 

seasonal fluctuations, and extraordinary occurrences on 

passenger flow prediction. It is noteworthy that the results of 

cross-validation differ significantly between the various 

station categories, with Category 3 stations showing 

comparably better passenger flow prediction results for 

stations belonging to other categories, while Category 4 

stations show comparably worse results for the same. 
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