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Abstract—This article is devoted to investigate the stability of
nonlinear Markovian switched delay sub-fractional stochastic
systems. Firstly, we study the existence of global unique so-
lution. Secondly, by applying general Itô formula, Gronwall’s
inequality and Borel-Cantelli lemma, we discuss the stability of
sub-fractional stochastic system. Finally, an example is given to
verify the validity of our theoretical results.

Index Terms—Nonlinear Markovian switched stochastic de-
lay systems; almost sure exponential stability; sub-fractional
Brownian motion; existence and uniqueness

I. INTRODUCTION

Many systems do not satisfy the principle of linear su-
perposition. Thence, except for a small part that can be
approximately regarded as linear systems, most of them
are nonlinear. For instance, simple pendulum systems [13],
gravitational three-body systems [16]. The nonlinear system
is the essence and the linear system is the approximation
or part of the nonlinear system. Therefore, it is necessary
to discuss the properties of the nonlinear systems. Recently,
nonlinear systems have been discussed by some authors. For
example, by applying a terminal sliding mode control, Fei et
al. [7] designed a dual-hidden-layer recurrent controller for
the nonlinear system. Guo et al. [8] studied the control issue
of assurance of cost for event-triggered stochastic systems.
Liu et al. [12] presented the adaptive control problem for
nonlinear time-varying systems. Wang and Qiao [18] de-
signed the incremental deep pretraining to extract effective
features and consider them as the input of the self-organizing
fuzzy neural network.

System dynamics can be depicted by some subsystems
or dynamic models. There is no jump phenomenon in the
continuous state of the system at the moment of switching.
The research of switching systems has always been a hot
issue in the field of control. For instance, Arteaga et al.
[1] derived the regression analysis about the drain voltage
data. Cheng et al. [5] discussed the T-S switched system by
designing finite time filtering. Jiao et al. [11] addressed the
incremental stability for Markovian switched delay stochastic
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systems. Qi et al. [15] designed the synovial controller for
semi-Markovian switched stochastic systems.

Generally, because of uncertain communication environ-
ment, the time delay is always unavoidable. Hence, taking the
factor of time delay into consideration for stochastic systems
is necessary. Chen et al. [4] studied the stability of delay
stochastic systems by using aperiodic sampling. Feng et al.
[6] discussed the exponential stability for highly nonlinear
hybrid delay stochastic systems by using multiple degenerate
functionals. By using the multiple linear regression model,
Plonis et al. [14] presented the synthesis of delay system. Wei
[20] studied the exponential stability of nonlinear stochastic
delayed systems driven by G-Brownian motion. Zhao and
Zhu [25] discussed boundedness of the unique solution for
highly Markovian switching delay systems.

The sub-fractional Brownian motion does not have the
stationary increments, the increments are weakly corre-
lated, the covariance decays faster. Hence, we could use
sub-fractional Brownian motion to describe non-stationary
models with long-range dependence and self-similarity. As
the sub-fractional Brownian motion is not martingale, it
is difficult to study. In the past few years, some authors
have studied the stochastic models driven by sub-fractional
Brownian motion. For example, Bian and Li [2] discussed the
European option pricing for financial stochastic market. Wei
[19] studied the parameter estimation problem for stochastic
fractional differential equations with incomplete information.
Xiao et al. [22] considered parameter estimation for fraction-
al Vasicek model based on H > 1

2 .
The nonlinear characteristic of the systems make the

performance of the systems more complicated, which brings
difficulties to the analysis of stability of systems. Stability has
always been the most fundamental and core issue in system
analysis. In recent years, lots of results about stability has
been reported in the literature [3], [21]. For example, Haddad
and Lee [9] developed Lyapunov and converse Lyapunov
theorems for discrete-time nonlinear stochastic semistable
dynamical systems. Han and Chung [10] studied incremental
stability of nonlinear stochastic systems driven by Lévy
noise. Wang et al. [17] discussed the stochastic stability
of nonlinear stochastic system with impulsion. Zhang et
al. [24] analyzed the interval stability for linear stochastic
delay systems by using Lyapunov-Krasovskii functionals. In
recent years, the financial empirical research showed that
volatility in financial asset prices shows long-range depen-
dence and self-similarity and the sub-fractional Brownian
motion could be used to exhibit these properties. Therefore,
it is necessary to investigate the stability of sub-fractional
stochastic system. Inspired by the aforementioned works,
we discuss the stability of nonlinear Markovian switched
delay sub-fractional stochastic systems. The existence of
the global unique solution is derived. By using general
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Itô formula, Borel-Cantelli lemma, Gronwall’s inequality,
Hölder inequality and Chebyshev inequality, we investigated
the almost sure exponential stability of the sub-fractional
system.

The rest of this paper is organized as follows. The nonlin-
ear Markovian switched delay sub-fractional stochastic sys-
tem, some definitions and assumptions are given in Section 2.
The existence of global unique solution is derived in Section
3. Moreover, the stability of the system is studied as well.
We provide an example in Section 4. In Section 5, we make
the conclusion and give some future works.

Denote ({Ft}t≥0) is a filtration generated by sub-
fractional Brownian motion {BH(t), t ≥ 0}, H ∈ ( 1

2 , 1),
C1,2(Rn×Rn×R+×S;R+) is the family of V (x, y, t, i) > 0,
r(t), t ≥ 0 is a right-continuous Markov chain.

The nonlinear Markovian switched delay sub-fractional
stochastic systems is introduced as follows:

dx(t) = f(x(t), x(t− τ(t)), t, r(t))dt

+g(x(t), x(t− τ(t)), t, r(t))dBH(t), (1)

where 0 ≤ τ(t) ≤ τ , the nonrandom initial data {x(t) =
ξ(t) : −τ ≤ t ≤ 0} = ξ ∈ C([−τ, 0];Rn), r(t), t ≥ 0 ∈ S =
{1, 2, ..., N} is a right-continuous ergodic Markov chain, S
is a finite state space, r(0) = r0 ∈ S, BH(t), H ∈ ( 1

2 , 1) is
a sub-fractional Brownian motion with one dimension. The
mapping rule of f and g is: Rn × Rn × R+ × S→ Rn.

Firstly, we introduce some assumptions and definitions
which are very important in the proof of main results.

Assumption 1: ∃LK > 0, for ∀t ≥ 0, |x| ∨ |x′ | ∨ |y| ∨
|y′ | ≤ K, i ∈ S, |f(x, y, t, i)−f(x

′
, y
′
, t, i)|∨|g(x, y, t, i)−

g(x
′
, y
′
, t, i)| ≤ LK(|x− x′ |+ |y − y′ |).

Assumption 2: f(0, t, i) ≡ 0, g(0, t, i) ≡ 0, ∀i ∈ S.
Assumption 3: lim|x|→∞ inft≥0,i∈S V (x, y, t, i) = ∞,

LHV (x, y, t, i) ≤ −c1V (x, y, t, i), where V (x, y, t, i) > 0 ∈
C1,2(Rn×Rn×R+×S;R+), C1,2(Rn×Rn×R+×S;R+) is
continuously once differentiable in t and twice differentiable
in x.

Definition 1: For any x0 ∈ {F}0, r0 ∈ S. If

lim
t→∞

sup
1

t
log(|x(t;x0, r0)|) < −λ,

where λ > 0 is a constant, the sub-fractional system (1) is
almost sure exponential stability.

The sub-fractional Brownian process BHt is a Gaussian
process, BH0 = 0, E[BHt ] = 0, the covariance

E(BHt B
H
s ) = s2H + t2H − 1

2
{|t− s|2H + |t+ s|2H},

where s, t ≥ 0. As H = 1
2 , BHt is the standard Brownian

motion.
Moreover, for all s ≤ t,

E(|BHt −BHs |2) = −22H−1(t2H+s2H)+(t+s)2H−(t−s)2H ,

and for m ≤ n ≤ s ≤ t,

E(BHt −BHs )(BHn −BHm)

=
1

2
[(t+m)2H + (t−m)2H + (s+ n)2H + (s− n)2H

−(t+ n)2H − (t− n)2H − (s+m)2H − (s−m)2H ].

Define φ(s, t) = H(2H − 1)|s− t|2H−2 and the operator
LHV

LHV (x, y, t, i)

= Vt(x, y, t, i) + Vx(x, y, t, i)f(x, y, t, i)

+ Vx(x, y, t, i)g(x, y, t, i)

∫ t

0

φ(ν, s)g(x, y, ν, i)dν.

Then,

dV (x, y, t, i) = LHV (x, y, t, i)dt

+Vx(x, y, t, i)g(x, y, t, i)dBH(t).

II. MAIN RESULTS AND PROOFS

Theorem 1: When Assumptions 1-3 hold, the global u-
nique solution of sub-fractional system (1) exists.

Proof: Let the initial value |x0| ≤ ξ. For m ≥ ξ, m ∈ N,
we suppose that

f (m)(x, y, t, i) = f(
|x| ∧m
|x|

x,
|y| ∧m
|y|

y, t, i), (2)

g(m)(x, y, t, i) = g(
|x| ∧m
|x|

x,
|y| ∧m
|y|

y, t, i), (3)

when x = 0, ( |x|∧m|x| x) = 0.
We obtain that f (m) and g(m) satisfy the conditions of

existence and uniqueness. Thus,

dxm(t) = f (m)(xm(t), xm(t− τ(t)), t, r(t))dt

+g(m)(xm(t), xm(t− τ(t)), t, r(t))dBH(t), (4)

has the global unique solution.
Let

ηm = inf{t ≥ 0 : |xm(t)| ≥ m}. (5)

When 0 ≤ t ≤ ηm, xm(t) = xm+1. Then, {ηm} is
increasing. Thus, ∃η satisfies

η = lim
m→∞

ηm. (6)

Let
x(t) = lim

m→∞
xm(t), −τ ≤ t < η. (7)

When −τ ≤ t < η, we obtain that x(t) is unique.
By using general Itô formula, for t ≥ 0, we get

V (xm(t ∧ ηm), xm(t ∧ ηm − τ(t ∧ ηm)),

t ∧ ηm, r(t ∧ ηm))

= V (ξ(0), xm(−τ(0)), 0, r0)

+

∫ t∧ηm

0

LH(m)V (xm(s), xm(s− τ(s)), s, r(s))ds

where LH(m)V (xm(s), xm(s − τ(s)), s, r(s)) =
LHV (xm(s), xm(s− τ(s)), s, r(s)) when 0 ≤ s ≤ t ∧ ηm.

Then, we obtain

E[V (xm(t ∧ ηm), xm(t ∧ ηm − τ(t ∧ ηm)),

t ∧ ηm, r(t ∧ ηm))]

≤ E[V (ξ(0), xm(−τ(0)), 0, r0)]

+E[

∫ t∧ηm

0

LH(m)V (xm(s), xm(s− τ(s)), s, r(s))ds]

≤ E[V (ξ(0), xm(−τ(0)), 0, r0)]

+

∫ t∧ηm

0

E[V (xm(s), xm(s− τ(s)), s, r(s))]ds.
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According to the Gronwall’s inequality, we obtain

E[V (xm(t ∧ ηm), xm(t ∧ ηm − τ(t ∧ ηm)),

t ∧ ηm, r(t ∧ ηm))]

≤ E[V (ξ(0), xm(−τ(0)), 0, r0)]e(t∧ηm). (8)

Furthermore, as

P{ηm ≤ t} inf
|x|≥m,|y|≥m,t≥0,i∈S

V (x, y, t, i)

≤
∫
ηm≤t

V (xm(t ∧ ηk), xm(t ∧ ηm − τ(t ∧ ηm)),

t ∧ ηm, r(t ∧ ηm))dP

≤ EV (xm(t ∧ ηm), xm(t ∧ ηm − τ(t ∧ ηm)),

t ∧ ηm, r(t ∧ ηm)),

we have

P{ηm ≤ t} ≤
E[V (ξ(0), xm(−τ(0)), 0, r0)]e(t∧ηm)

inf |x|≥m,|y|≥m,t≥0,i∈S V (x, y, t, i)
. (9)

When t→∞,

P{η ≤ t} = 0. (10)

Thus,

P{η =∞} = 1. (11)

The proof is complete.
Theorem 2: If ∃V (x, y, t, i) and some constants

a1, a2, c1 > 0 satisfy

a1|x|2 ≤ V (x, y, t, i) ≤ a2|x|2, (12)

LHV (x, y, t, i) ≤ −c1V (x, y, t, i), (13)

the sub-fractional system (1) is almost sure exponential
stability.

Proof: By using general Itô formula, we get

eλtV (x(t), x(t− τ(t)), t, i)− V (x0, 0, i)

=

∫ t

0

λeλsV (x(s), x(s− τ(s)), s, i)ds

+

∫ t

0

eλsVs(x(s), x(s− τ(s)), s, i)ds

+

∫ t

0

eλsVx(x(s), x(s− τ(s)), s, i)

f(x(s), x(s− τ(s)), s, i)ds

+

∫ t

0

eλsVx(x(s), x(s− τ(s)), s, i)

g(x(s), x(s− τ(s)), s, i)dBH(s)

+

∫ t

0

eλsVx(x(s), x(s− τ(s)), s, i)

g(x(s), x(s− τ(s)), s, i)∫ u

0

φ(ω, s)g(x(ω), x(ω − τ(ω)), ω, i)dωds,

for ∀i ∈ S, t > 0, λ > 0.

Thus, we obtain

eλtV (x(t), x(t− τ(t)), t, i)

= V (x0, 0, i)

+

∫ t

0

eλs[λV (x(s), x(s− τ(s)), s, i)

+LHV (x(s), x(s− τ(s)), s, i)]ds

+

∫ t

0

eλsVx(x(s), x(s− τ(s)), s, i)

g(x(s), x(s− τ(s)), s, i)dBH(s).

Since

E[

∫ t

0

eλsVx(x(s), x(s− τ(s)), s, i)

g(x(s), x(s− τ(s)), s, i)dBH(s)] = 0,

we get

E[eλtV (x(t), x(t− τ(t)), t, i)]

= E[V (x0, 0, i)]

+E
∫ t

0

eλs[λV (x(s), x(s− τ(s)), s, i)

+LHV (x(s), x(s− τ(s)), s, i)]ds

≤ a2|x0|2

+E
∫ t

0

eλs[λV (x(s), x(s− τ(s)), s, i)

−c1V (x(s), x(s− τ(s)), s, i)]ds

= a2|x0|2

+(λ− c1)

∫ t

0

E[eλsV (x(s), x(s− τ(s)), s, i)]ds.(14)

Hence, we obtain

E|x(t)|2 ≤ a2
a1
e−c1t|x0|2. (15)

It can be easily to check that

|x(t)|2

= |x0 +

∫ t

0

f(x(s), x(s− τ(s)), s, r(s))ds

+

∫ t

0

g(x(s), x(s− τ(s)), s, r(s))dBH(s)|2

≤ 3|x0|2 + 3|
∫ t

0

f(x(s), x(s− τ(s)), s, r(s))ds|2

+3|
∫ t

0

g(x(s), x(s− τ(s)), s, r(s))dBH(s)|2.

For ∀h > 0 satisfies h2L2
K(1 + h2H−2) < 1

3 and positive
integer κ0, let κ = κ0, κ0 + 1, κ0 + 2, · · · . By using the
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Hölder inequality, we get

E[ sup
κh≤t≤(κ+1)h

|x(t)|2]

≤ 3E[|x(κh)|2]

+3E(

∫ (κ+1)h

κh

|f(x(s), x(s− τ(s)), s, r(s))|ds)2

+3E|
∫ t

0

g(x(s), x(s− τ(s)), s, r(s))dBH(s)|2

≤ 3E[|x(κh)|2]

+3E(h sup
κh≤s≤(κ+1)h

|f(x(s), x(s− τ(s)), s, r(s))|)2

+3E[ sup
κh≤s≤(κ+1)h

|
∫ (κ+1)h

κh

g(x(s), x(s− τ(s)), s, r(s))dBH(s)|2]

≤ 3E[|x(κh)|2] + 3h2L2
KE[ sup

κh≤s≤(κ+1)h

|x(s)|2]

+3h2HL2
KE[ sup

κh≤s≤(κ+1)h

|x(s)|2]

≤ 3
a2
a1
|x0|2e−c1κh

+3h2L2
K(1 + h2H−2)E[ sup

κh≤s≤(κ+1)h

|x(s)|2].

Then, it can be checked that

E[ sup
κh≤t≤(κ+1)h

|x(t)|2] ≤
3a2a1 |x0|

2e−c1κh

1− 3h2L2
K(1 + h2H−2)

. (16)

According to the Chebyshev inequality, we obtain

P( sup
κh≤t≤(κ+1)h

|x(t)| > e
−c1κh

2 )

≤
E[supκh≤t≤(κ+1)h |x(t)|2]

e−c1κh

≤
3a2a1 |x0|

2

1− 3h2L2
K(1 + h2H−2)

.

From the Borel-Cantelli lemma, we obtain

sup
κh≤t≤(κ+1)h

|x(t)| ≤ e
−c1κh

2 . (17)

Thus, for κh ≤ t ≤ (κ+ 1)h, we get

lim
t→∞

sup
log(|x(t)|)

t
< −c1

2
. (18)

The proof is complete.
Remark 1: Under the conditions in Theorem 2, the system

(1) is pth moment exponentially stable.
Since

E[eλtV (x(t), x(t− τ(t)), t, i)]

≤ E[V (x0, x(−τ(0), 0)]

+E
∫ t

0

ec1s[λV (x(s), x(s− τ(s)), s, i)

+LV (x(s), x(s− τ(s)), s, i)]ds

≤ a2|x0|p. (19)

Then,

E[V (x(t), x(t− τ(t)), t, i)] ≤ e−c1ta2|x0|p. (20)

Hence,
a1E|x(t)|p ≤ e−c1ta2|x0|p, (21)

which implies that

E|x(t)|p ≤ a2
a1
e−c1t|x0|p. (22)

Therefore, the system (1) is pth moment exponentially
stable.

III. EXAMPLE

The sub-fractional Brownian motion BH(t) is one dimen-
sional, H = 0.8, m = 1, LK = 1

3 , r(t) ∈ S = {1, 2},
x0 = 2, r0 = 1, Γ = (γij)2×2 =(

−0.6 0.6
0.2 −0.2

)
Consider the following nonlinear Markovian switched de-

lay sub-fractional stochastic systems:

dx(t) = f(x(t), x(t− τ(t)), t, r(t))dt

+g(x(t), x(t− τ(t)), t, r(t))dBH(t),

where

f(x(t), x(t− τ(t)), t, 1) = −1

4
x(t) +

1

6
x(t− τ(t)),

g(x(t), x(t− τ(t)), t, 1) =
1

14
x(t),

f(x(t), x(t− τ(t)), t, 2) = −1

3
x(t) +

1

8
x(t− τ(t)),

g(x(t), x(t− τ(t)), t, 2) =
1

6
x(t),

τ(t) = 1 + 0.2 sin(t),

Hence, τ = 1.2, m2L2
K(1 + m2H−2) = 2

9 < 1
3 . Let

V (x, y, t, i) = x2, i = 1, 2, we get

LHV (x, y, t, 1) ≤ − 1

42
x2,

LHV (x, y, t, 2) ≤ − 1

12
x2.

Then, it is obviously that

LHV (x, y, t, 1) ≤ − 1

42
V (x, y, t, 1),

LHV (x, y, t, 2) ≤ − 1

12
V (x, y, t, 2).

IV. CONCLUSION

This article is concerned with the stability of nonlinear
Markovian switched delay sub-fractional stochastic systems.
We have proved the existence and uniqueness of the global
solution and provided sufficient conditions for the stability.
We will consider the stability of nonlinear fractional stochas-
tic hybrid systems with aperiodically intermittent control in
future.
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