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Abstract—Six new graphs are defined viz - Edge-Edge graph,
total vertex edge graph, total edge vertex graph, semitotal and
total clique polycliqual vertex graph, semitotal and total clique
vertex graph and semitotal and total clique vertex edge graph
arising from the given graph. Expressions for number of edges
in the newly defined graphs are derived.

Index Terms—VE graph, EV graph, EE graph, Semitotal and
total graphs.

I. INTRODUCTION

The line graph L(H) of a graph H is a graph where
each vertex represents an edge of H , and two vertices in
L(H) are adjacent if and only if the corresponding edges
in H share a common endpoint. The elements of graph H ,
consisting of its edges and vertices, are collectively referred
to as its constituents. The semitotal graph t(H) defined by
Sampathkumar and Chikodimath[11] is constructed from the
graph H by considering a vertex set comprising both the
vertices V (H) and the edges X(H). Two vertices in t(H)
are adjacent if and only if the corresponding vertices in H
are adjacent or if the corresponding elements (vertex and
edge) are incident. M. Behzad’s [4] total graph T (H) of a
graph H is formed by considering a vertex set comprising
both the vertices V (H) and the edges X(H). Two vertices in
T (H) are adjacent if and only if the corresponding elements
(vertex and edge) in H are adjacent or incident.

V.R. Kulli [10] introduced and studied the properties of
semitotal and total-block graphs. The semitotal-block graph
Tb(H) of a graph H is a graph that combines the vertex set of
the original graph H , denoted by V (H), with an additional
set of blocks, denoted by B(H). Each block vertex represents
a connected subgraph, i.e., a block, of the original graph
H . The vertex set of Tb(H) is given by the union of the
original vertices and the block vertices, i.e., V (Tb(H)) =
V (H)∪B(H). The complete block graph TB(H) of a graph
H is a graph that combines the vertex set of the original
graph H , denoted by V (H), with an additional set of blocks,
denoted by B(H). Each block vertex represents a connected
subgraph, i.e., a block, of the original graph H. The vertex
set of TB(H) is given by the union of the original vertices
and the block vertices, i.e., V (TB(H)) = V (H) ∪ B(H).
The edges in TB(H) are determined based on the following
condition: Two vertices, either from the set of block vertices
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B(H) or the original vertex set V (H), are adjacent in TB(H)
if and only if they are adjacent or incident in the original
graph H .

V.R.Kulli [10] defined the block vertex tree of a graph H ,
the block vertex tree bp(g) of a graph H is a tree with a
vertex set consisting of the union of the set of block vertices
B(H) and the set of original vertices V (H). Each vertex
in bp(g) corresponds to either a block from B(H) or an
original vertex from V (H). In other words, there is an edge
between a vertex representing an original vertex and a vertex
representing a block if and only if the original vertex is part
of the corresponding block in the graph H . Later, Surekha R
Bhat [13] created six new graphs originating from the given
graph: semitotal block cutvertex graph, total block cutvertex
graph, semitotal block vertex graph, total block vertex graph,
semitotal block vertex edge graph, and total block vertex
edge graph. The number of edges in the newly created graphs
is expressed as an expression. We now define new graphs that
arise from the provided graph, inspired by these definitions.

Furthermore, a comprehensive investigation into the char-
acteristics of cliques in graph structures has been conducted
by Surekha et.al [14], Sayinath Udupa N. V. [12] and Tana
et. al [15]. In a parallel line of research, Isabel Cristina Lopes
et. al [7] have also explored this intriguing topic.

II. DIFFERENT TYPES OF GRAPHS

Assume H = (V,X) is a graph. For a vertex v and an edge
x, v m-dominates x if x ∈ ⟨N [v]⟩ and x m-dominates v
if v ∈ N [x].

Remark II.1. If v m-dominates x then x m-dominates v; but
not conversely.

For any v ∈ V the open neighborhood N(v) = {u ∈
V |u is adjacent to v} and the closed neighborhood N [v] =
N(v)∪{v}. An induced subgraph of a graph is another graph,
formed from a subset of the vertices of the graph and all
of the edges (from the original graph) connecting pairs of
vertices in that subset and is denoted by ⟨S⟩.

A set S ⊆ V is a vertex-edge dominating set (V ED−
set) if every edge in H is m-dominated by a vertex in S. A
set F ⊆ X is an edge-vertex dominating set (EVD−set)
if every vertex in H is m-dominated by an edge in F . A set
D of elements of H is a mixed dominating set of H if
every element not in D is m-dominated by an element in
D. The vertex-edge domination number γve = γve(H),
edge-vertex domination number γev = γev(H) and the
mixed domination number γm = γm(H) of a graph H are
respectively the cardinality of a minimum VED-set, EVD-set
and a mixed dominating set of H . R. S. Bhat et al. [5] defined
the edge -edge domination number as follows. We say that
an edge y is ee-adjacent to the edge x if y ∈ ⟨N [x]⟩ . A set
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L ⊆ X(H) is said to be edge-edge dominating set (EED-
set) if every edge in X − L is ee- dominated by an edge in
L. The edge-edge domination number γee = γee(H) is
the cardinality of a minimum EED set of H.

A. Handhshaking Lemma

The following are some well known theorems in
Graph Theory for our reference which gives an expression
for the sum of all vertex degrees.

Theorem II.2. For any (p, q) graph H,∑
v∈V (H)

d(v) = 2q.

The edge analogue of the handshaking lemma is discussed
in [1], [2] and [3].

Theorem II.3. For any (p, q) graph H,∑
x∈X(H)

de(x) =
∑

x=uv,x∈X(H)

(d(u) + d(v)− 2)

=
∑

u∈V (H)

(d(u))2 − 2q.

The vertex-edge degree, edge-vertex degree and edge-edge
degree is defined by R. S. Bhat et al. [9]

B. VE- Degree

The V E − degree of a vertex v ∈ V (H), dve(u)
is the number of edges m-dominated by v or equivalently
dve(u) is the number of edges in ⟨N [u]⟩. Then ∆ve(H) and
δve(H) denote the maximum and minimum VE-degrees of
H repectively.

We observe that for any triangle free graph H , d(u) =
dve(u), u ∈ V (H) and hence, ∆(H) = ∆ve(H).

We now give an expresion for the sum of the VE-degrees
of all vertices (a result similar to the Handshaking Lemma)

Proposition II.4. For any graph H of order p and size q
with t triangles ∑

u∈V (H)

dve(u) = 2q + 3t.

Corollary II.4.1. For any triangle free graph H of order p
and size q, ∑

u∈V (H)

dve(u) = 2q.

C. EV- Degree

The EV − degree of an edge x ∈ X(H), dev(x)
is the number of vertices m-dominated by x or equivalently
dev(x) is the number of vertices in N [x]. Then ∆ev(H) and
δev(H) denote the maximum and minimum EV-degrees of
H respectively.

We observe that for any triangle free graph H , dev(x) =
de(x) + 2, x ∈ X(H) and hence, ∆ev(H) = ∆e(H) + 2.

We now give an expresion for the sum of the EV-degrees
of all edges (a result similar to the Handshaking Lemma)

Proposition II.5. For any graph H of order p and size q
with t triangles∑

x∈X(H)

dev(x) =
∑

u∈V (H)

(d(u))2 − 3t.

Corollary II.5.1. For any triangle free graph H of order p
and size q, ∑

x∈X(H)

dev(x) =
∑

u∈V (H)

(d(u))2.

D. EE- Degree

The EE − degree of an edge x ∈ X(H), dee(x) is
the number of edges e-dominated by x together with x or
equivalently dee(x) is the number of edges in ⟨N [x]⟩. Then
∆ee(H) and δee(H) denote the maximum and minimum EE-
degrees of H repectively.

Lemma II.6.∑
x=uv,x∈X(H)

[dve(u) + dve(u)] =
∑

u∈V (H)

[dve(u)d(u)].

Proposition II.7. For any graph H of order p and size q.
Let t1 be the number of triangles in H and t2 be the number
of quadrilaterals without induced triangles. Then,∑

x∈X(H)

dee(x) =
∑

u∈V (H)

[dve(u)d(u)]− q − 6t1 + 4t2.

Corollary II.7.1. If H is a graph which is free from triangles
and quadrilaterals, then∑

x∈X(H)

dee(x) =
∑

u∈V (H)

(d(u))2 − q.

First of all consider VE-graph Hve and EV-Graph Hev

which has been defined by S. S. Kamath [8]

E. VE- Graph Hve

The vertex set of Hve = V (H)∪X(H) and a vertex
v ∈ V (H) and an edge x ∈ X(H) are adjacent in Hve if
and only if x is m-dominated by v.

We find the number of edges in VE-graph. R.S.Bhat
and S.S.Kamath [9] obtained an expression for sum of
VE degrees. Hence the total number of edges in Hve is
q(Hve) = 2q + 3t where t is the number of triangles in
H .
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Fig. 1. A Graph H and its VE-Graph Hve

Example II.1. For the graph H of Fig. 1, q(Hve) = 8 =
2(4) + 3(0).

F. EV- Graph Hev

The vertex set of Hev = V (H)∪X(H) and a vertex
v ∈ V (H) and an edge x ∈ X(H) are adjacent in Hev if
and only if v is m-dominated by x.
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Fig. 2. A graph H and its EV- Graph Hev

The total number of edges in Hev is q(Hev) =[∑
u∈V (H)(d(u))

2
]
− 3t where t is the number of triangles

in H .

Example II.2. For the graph H of Fig. 2, q(Hev) = 28 =
34− 3(2).

Definition II.8. The line graph of H denoted by L(H) is a
graph with vertex set as edges of H . Two vertices of L(H)
are adjacent whenever corresponding edges are adjacent in
H .

We define the new graphs as follows.

G. EE- Graph Hee

An edge x is ee-adjacent to y if and only if y ∈
⟨N [x]⟩. The edges of H are vertices of Hee and any two
vertices in Hee are adjacent if they are ee-adjacent. Note
that if x is ee-adjacent to y then y need not be ee-adjacent
to x. Therefore Hee is a digraph.

x
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t

z
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y

Fig. 3. A graph H and its EE- Graph Hee

Lemma II.9. For any graph H, the number of unidirectional
edges k, in Hee is equal to number of induced K3 ◦K2 in
H.

Proof: Let H has a K3 ◦K2 as induced subgraph and
x, y, z be the edges of the triangle in K3 ◦K2 and t be the
edge of K2. Then t ee-dominate z but z doesnot ee-dominate
t. Therefore Hee has a directed edge from t to z.
k =number of directed edges in Hee=number of K3 ◦K2.

Note II.10. If H is free from K3 ◦K2 then Hee is a graph.

Proposition II.11.∑
x∈X(H)

dee(x) =
∑

v∈Hee

d(v) = 2qee +
−→qee.

Note II.12. In The graph Hee of Fig. 4, x2 is ee-adjacent to
x5 but the edge x5 is not ee-adjacent to x2. Similarly x4 is
ee-adjacent to x1 but the edge x1 is not ee-adjacent to x4.

Proposition II.13. For any graph H of order p and size
q with t1 triangles and t2 quadrilateral without induced
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Fig. 4. A Graph H and its EE- Graph Hee and Line Graph
L(H)

triangles, the number of arcs in Hee,

−→q ee =
−→q (Hee) =

 ∑
u∈V (H)

dve(u)d(u)− 2q − 6t1 + 4t2

 .

Proof:
−→qee =

∑
v∈Hee

d(u),

=
∑

x∈X(H)

dee(x),

=

 ∑
u∈V (H)

dve(u)d(u)− 2q − 6t1 + 4t2

 .

Example II.3. For the graph H of Fig. 4, −→q (Hee) =
24=

∑
dee(x).

Total block cutvertex graph has been defined and studied
by Surekha R Bhat et.al. [13]. On similar lines we define
Total VE-graph.

H. Total Vertex Edge Graph

The total vertex edge graph Tve(H) has vertex set
V (H)∪X(H) and two vertices of Tve(H) are adjacent if and
only if the corresponding constituents (vertices and edges)
are ee-adjacent or ve-adjacent or adjacent. It is immediate
that Tve(H) = Hee ∪Hve ∪H .

Proposition II.14. For any graph H of order p and size
q with t1 triangles and t2 quadrilateral without induced
triangles, the number of arcs in Tve is,

−→q (Tve(H)) =
∑

u∈V (H)

dve(u)d(u) + 4t2 + 4q.

Proof:
Then the total number of edges in Tve(H) is

q(Tve) = q(Hee) + q(Hve) + q(H),

−→q (Tve) =

 ∑
u∈V (H)

dve(u)d(u)− 2q − 6t1 + 4t2


+ (2q + 3t1 + q)2,

=
∑

u∈V (H)

dve(u)d(u) + 4t2 + 4q.
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Corollary II.14.1. For any graph H of order p and size q
free from triangles and quadrilaterals,

−→q (Tve(H)) =
∑

u∈V (H)

(d(u))2 + 4q.
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Fig. 5. A Graph H and its Total Vertex Edge Graph Tve(H)

Example II.4. For the graph H of Fig. 5, the number of
triangles=1, the number of quadrilaterals without induced
triangles=1, q = 6,

∑
u∈V (H) dve(u)d(u) = 38. Therefore

q(Tve) = 66 = 38+4+24 =
∑

u∈V (H) dve(u)d(u)+4t2+
4q.

I. Total Edge Vertex Graph

The constituents are vertices and edges. The total
edge vertex graph Tev(H) has vertex set V (H) ∪ X(H)
and two vertices of Tev(H) are adjacent if and only if the
corresponding constituents are ee-adjacent or ev-adjacent or
adjacent. It is immediate that Tev(H) = Hee ∪Hev ∪H .

Proposition II.15. For any graph H of order p and size
q with t1 triangles and t2 quadrilaterals without induced
triangles,

q(Tev(H)) =
1

2

 ∑
u∈V (H)

dve(u)d(u) + 4t2


+

1

2

 ∑
u∈V (H)

(d(u))2

− 6t1.

Proof: Then the total number of edges in Tev(H) is

q(Tev) = q(Hee) + q(Hev) + q(H).

q(Tev) =
1

2

 ∑
u∈V (H)

dve(u)d(u)− q − 6t1 + 4t2


− q

2
+

1

2

 ∑
u∈V (H)

(d(u))2

− 3t1 + q

=
1

2

 ∑
u∈V (H)

dve(u)d(u) + 4t2

− q

2

+
1

2

 ∑
u∈V (H)

(d(u))2

+
q

2

=
1

2

 ∑
u∈V (H)

dve(u)d(u) + 4t2


+

1

2

 ∑
u∈V (H)

(d(u))2

− 6t1.

Corollary II.15.1. For any graph H of order p and size q
free from triangles and quadrilaterals,

q(Tev(H)) =
3

2

 ∑
u∈V (H)

(d(u))2

 .

Proof:
The total number of edges in Tev(H) is q(Tev) =

q(Hee) + q(Hev) + q(H)

q(Tev) =
1

2

 ∑
u∈V (H)

(d(u))2 − q

− q

2

+

 ∑
u∈V (H)

(d(u))2

+ q,

=
3

2

 ∑
u∈V (H)

(d(u))2

 .
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Fig. 6. A Graph H and its Total Edge Vertex Graph Tev(H)

Example II.5. For the graph H of Fig. 6, the num-
ber of triangles=2, the number of quadrilaterals with-
out induced triangle=0 and

∑
u∈V (H) dve(u)d(u) = 48,∑

u∈V (H)(d(u))
2 = 34. Therefore q(Tev) = 47 =

1

2
(48) + 34 − 12 =

1

2

[∑
u∈V (H) dve(u)d(u) + 4t2

]
+∑

u∈V (H)(d(u))
2 − 6t1.

J. EC Degree

The ec-degree (edge clique-degree) dec(x) of an
edge x is the number of cliques containing the edge x.

A vertex of H is called unicliqual if it is incident to only
one clique in H . If v is incident on more than one clique we
call it a polyclical vertex. Let PC(H) denote the set of all
polycliqual vertices of H . By a polycliqual vertex graph
PV (H) we mean a graph with vertex set PC(H) and any
two vertices in PV (H) are adjacent if corresponding vertices
in H have a clique in common.

Proposition II.16. The number of edges in polycliqual vertex
graph is

q(PV (H)) =
∑

k∈K(H)

(
dpc

(k)

2

)
−

∑
x∈X(H)

[dec(x)− 1].
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Proof: Since all the polycliqual vertices incident to a
clique are mutually adjacent, every clique k yields

(
dpc (k)

2

)
edges in PV (H). Thus q(PV (H)) =

∑
k∈K(H)

(
dpc (k)

2

)
.

But each polycliqual edge is counted twice. Thus we subtract
one from

∑
x∈X(H) dec(x). Thus total number of edges in

PV(H) is
∑

k∈K(H)

(
dpc (k)

2

)
−
∑

x∈X(H)[dec(x)− 1].

H
1

H
2

PV( H
1
)= PV(H

2
)

Fig. 7. Graphs H1, H2 and its Polycliqual Vertex Graph

Example II.6. For the graph H1 of Fig. 7, dpc
(k)2 = 21,

dpc(k) = 9 and dec(x) = 2. Thus
∑

k∈K(H)

(
dpc (k)

2

)
−∑

x∈X(H)[dec(x) − 1] = 6 − 3 = 3. Number of edges in
PV(H) is also 3.

Similarly for the graph H2 of Fig. 7, dpc
(k) = 3 and

dec(x) = 3. Thus
∑

k∈K(H)

(
dpc (k)

2

)
−

∑
x∈X(H)[dec(x) −

1] = 9− 6 = 3. Number of edges in PV(H) is 3.

K. Semitotal Clique-Polycliqual Vertex Graph and Total-
Clique-Polycliqual Vertex Graph

The Semitotal clique polycliqual vertex graph
Tkpc(H) of a graph H is a graph with vertex set K(H) ∪
PC(H) and any two vertices in Tkpc(H) are adjacent if and
only if the corresponding polycliqual vertices are adjacent or
the corresponding constituents are incident. It is immediate
that Tkpc

(H) = CPV (H) ∪ PV (H).
The total clique polycliqual vertex graph TKPC

(H) of a
graph H is a graph with vertex set K(H) ∪ PC(H) and
any two vertices in TKPC

(H) are adjacent if and only if the
corresponding constituents are adjacent or incident. Again
we note that TKPC

(H) = CV (H) ∪ PV (H) ∪KH(H).

Theorem II.17. Let H be a graph with k cliques and pc
polycliqual vertices. Let qkpc

denote number of edges in
Tkpc

(H). Then,

k + pc − 1 +
1

2

∑
k∈K(H)

[(dpc(k))
2 − dpc(k)]

−

 ∑
x∈X(H)

dec(x)− 1

 ≤ qkpc
≤ kpc

+
1

2

∑
k∈K(H)

[(dpc(k))
2 − dpc(k)]−

 ∑
x∈X(H)

dec(x)− 1

 .

Proof: For a clique complete graph, the clique polycli-
qual vertex graph, CPV(H) is a complete bipartite graph. The
number of edges in a bipartite graph is kpc. This yields the
upper bound.

If the given graph is a clique tree, then the graph is a
block graph. Thus the number of edges in a clique tree is

k + pc − 1. This yields the lower bound. Thus

qkpc
= q(CPV (H)) + q(PV (H))

≥ k + pc − 1 +
∑

k∈K(H)

(
dpc(k)

2

)
−

∑
x∈X(H)

[dec(x)− 1]

≥ k + pc − 1 +
∑

k∈K(H)

[(dpc
(k))2 − dpc

(k)]

−
∑

x∈X(H)

[dec(x)− 1].

Similarly,

qkpc = q(CPV (H)) + q(PV (H)),

≤ kpc +
∑

k∈K(H)

(
dpc

(k)

2

)
−

∑
x∈X(H)

[dec(x)− 1],

≤ kpc +
∑

k∈K(H)

[(dpc(k))
2 − dpc(k)]

−
∑

x∈X(H)

[dec(x)− 1].

Theorem II.18. Let H be a graph with k cliques and pc
polycliqual vertices. Let qKPC

denote number of edges in
TKPC

(H). Then,

k + pc − 1 +
1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

+
1

2

[∑
(dpc

(k)2 − dpc
(k)

]
−

 ∑
x∈X(H)

dec(x)− 1

 ≤

qKPC
≤ kpc +

1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

+
1

2

[∑
(dpc

(k)2 − dpc
(k)

]
−

 ∑
x∈X(H)

dec(x)− 1

 .

Proof: The number of edges in TKPC
(H) is,

qKPC
= q(CPV (H)) + q(KH(H)) + q(PV (H))

≤ kpc +
∑

pc∈PC(H)

(
dvc(pc)

2

)
+

∑
k∈K(H)

(
dpc

(k)

2

)

−

 ∑
x∈X(H)

dec(x)− 1


≤ kpc +

1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

+
1

2

[∑
(dpc

(k)2 − dpc
(k)

]
−

 ∑
x∈X(H)

dec(x)− 1

 .
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Similarly,

qKPC
≥ k + pc − 1 +

∑
pc∈PC(H)

(
dvc(pc)

2

)

+
∑

k∈K(H)

(
dpc(k)

2

)
−

 ∑
x∈X(H)

dec(x)− 1


≥ k + pc − 1 +

1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

+
1

2

[∑
(dpc

(k)2 − dpc
(k)

]
− ∑

x∈X(H)

dec(x)− 1

 .

Corollary II.18.1. For a block graph the above theorem
holds.
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v

v

v
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Fig. 8. A Graph H and its Semitotal and Total clique-
polycliqual vertex graph

Example II.7. For the graph Tkpc of Fig. 8, qkpc = 23.
k = 8, pc = 7,

∑
k∈K(H)(dpc

(k))2 = 32,
∑

k∈K(H) dpc
=

16,
[∑

x∈X(H) dec(x)− 1
]

= 1. Therefore k + pc − 1 +

1

2

∑
k∈K(H)[(dpc

(k))2−dpc
(k)]−

[∑
x∈X(H) dec(x)− 1

]
≤

qkpc
≤ kpc +

1

2

∑
k∈K(H)[(dpc

(k))2 − dpc
(k)] −[∑

x∈X(H) dec(x)− 1
]

gives 8 + 7− 1 +
1

2
[32− 16]− 1 =

21 ≤ 23 ≤ 8 ∗ 7 + 1

2
[32− 16]− 1 = 69.

For the graph TKPC
of Fig. 8, qKPC

=
33.k = 8, pc = 7,

∑
k∈K(H)(dpc(k))

2 =

32,
∑

k∈K(H) dpc
= 16,

[∑
x∈X(H) dec(x)− 1

]
=

1 and
∑

pc∈PC(H)(dvc(pc))
2 = 38,

∑
pc∈PC(H) dvc(pc) =

16.

Therefore, k + pc − 1 +
1

2

[∑
(dvc(pc))

2 − dvc(pc)
]
+

1

2

[∑
(dpc

(k)2 − dpc
(k)

]
−

[∑
x∈X(H) dec(x)− 1

]
≤

qKPC
≤ kpc +

1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

+

1

2

[∑
(dpc

(k)2 − dpc
(k)

]
−

[∑
x∈X(H) dec(x)− 1

]
gives

8+ 7− 1+
1

2
[38− 16] +

1

2
[32− 16]− [2− 1] = 32 ≤ 33 ≤

8 ∗ 7 + 1

2
[38− 16] +

1

2
[32− 16]− [2− 1] = 74.

L. Semitotal Clique Vertex Graph and Total Clique Vertex
Graph.

The Semitotal clique vertex graph Tkv(H) of a graph
H is a graph with vertex set K(H) ∪ V (H) and any two
vertices in Tkv(H) are adjacent if and only if the correspond-
ing vertices are vv-adjacent or the corresponding constituents
(cliques and vertices) are incident. It is immediate that
Tkv(H) = PH(H) ∪ CV (H).

The total clique vertex graph TKV (H) of a graph H is a
graph with vertex set K(H) ∪ V (H) and any two vertices
in TKV (H) are adjacent if and only if the corresponding
constituents are vv-adjacent or adjacent or incident. It is
immediate that TKV (H) = PC(H) ∪ CV (H) ∪KH(H).

Theorem II.19. Let H be a graph with k cliques and p
vertices. Let qkv denote number of edges in Tkv(H). Then,

k + p− 1 +
1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)


≤ qkv ≤ kp+

1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)

 .

Proof:

qkv = q(PH(H)) + q(CV (H))

≥
∑

h∈B(H)

(
dbv(h)

2

)
+ k + p− 1

≥ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)

+ k + p− 1.

To establish the upper bound we have

qkv = q(PH(H)) + q(CV (H)),

≤
∑

h∈B(H)

(
dbv(h)

2

)
+ kp,

≤ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)

+ kp.

Theorem II.20. Let H be a graph with k cliques and p
vertices. Let qKV denote number of edges in TKV (H). Then

k + p− 1 +
1

2

[∑
(dbv(h))

2 − dbv(h)
]

+
1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

≤ qKV ≤ kp+
1

2

[∑
(dbv(h))

2 − dbv(h)
]

+
1

2

[∑
(dvc(pc))

2 − dvc(pc)
]
.
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Proof:

qKV = q(PH(H)) + q(CV (H)) + q(KH(H)),

≥
∑

h∈B(H)

(
dbv(h)

2

)
+ k + p− 1,

+
∑

pc∈PC(H)

(
dvc(pc)

2

)

≥ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1))


+ k + p− 1

+
1

2

 ∑
pc∈PC(H)

(dvc(pc))
2 − dvc(pc)

 .

To establish the upper bound we have

qKV = q(PH(H)) + q(CV (H)) + q(KH(H))

≤
∑

h∈B(H)

(
dbv(h)

2

)
+ kp+

∑
pc∈PC(H)

(
dvc(pc)

2

)

≤ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)

+ kp

+
1

2

 ∑
pc∈PC(H)

(dvc(pc))
2 − dvc(pc)

 .
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Fig. 9. A Graph H and its Semitotal and Total Clique
Vertex Graph

Example II.8. For the graph Tkv of Fig. 9, qkv = 38. k =
8, p = 10,

∑
h∈B(H)(dbv(h))

2 = 52 and m = 3. Therefore

k+ p− 1 +
1

2

[∑
h∈B(H)(dbv(h)

2 − (p+m− 1)
]
≤ qkv ≤

kp+
1

2

[∑
h∈B(H)(dbv(h)

2 − (p+m− 1)
]

gives 8 + 10−

1 +
1

2
[52− 12] = 37 ≤ 38 ≤ 8 ∗ 10 + 1

2
[52− 12] = 100.

For the graph TKV of Fig. 9, qKV = 48,
k = 8, p = 10,

∑
h∈B(H)(dbv(h))

2 = 52, m = 3

and
∑

pc∈PC(H)(dvc(pc))
2 = 32,

∑
pc∈PC(H) dvc(pc) = 16.

Therefore k + p − 1 +
1

2

[∑
(dbv(h))

2 − dbv(h)
]

+

1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

≤ qKV ≤ kp +

1

2

[∑
(dbv(h))

2 − dbv(h)
]

+
1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

gives 8 + 10 − 1 +
1

2
[52 − 12] +

1

2
[32 − 16] = 45 ≤ 48 ≤

8 ∗ 10 + 1

2
[52− 12] +

1

2
[32− 16] = 108.

Definition II.21. A clique edge graph Ce(H) is a bigraph
with vertex set as K(H) ∪ X(H) and a clique k ∈ K(H)
and an edge x ∈ X(H) are adjacent in Ce(H) if and only
if the edge x is contained in the clique k.

Thus the number of edges in Ce(H) is
∑

x∈X(H) dec(x)

2 2

2
1

1

1

2 2 1 1

1

1

1

1

1

H
C (H)e

1

Fig. 10. A Graph H and its Clique Edge Graph Ce(H)

Example II.9. The EC-degree of different edges is shown in
the Fig. 10. Adding all those we get

∑
x∈X(H) dec(x) = 21.

The total number of edges in Ce(H) is also 21.

Definition II.22. A vertex edge graph Ve(H) is a bigraph
with vertex set as V (H) ∪ X(H) and a vertex v ∈ V (H)
and an edge x ∈ X(H) are adjacent in Ve(H) if and only
if the vertex v is incident on the edge x.

M. Semitotal Clique Vertex Edge Graph and Total Clique
Vertex Edge Graph

The cliques, vertices and edges are called its con-
stituents. The Semitotal clique vertex edge graph Tkve(H) of
a graph H is a graph with vertex set K(H)∪V (H)∪X(H)
and any two vertices in Tkve(H) are adjacent if and only
if the corresponding vertices are vv-adjacent or the cor-
responding constituents are incident. It is immediate that
Tkve(H) = PH(H) ∪ Ce(H) ∪ Ve(H) ∪ CV (H).

The total clique vertex edge graph TKVE(H) of a graph
H is a graph with vertex set K(H) ∪ V (H) ∪ X(H) and
any two vertices in TKVE(H) are adjacent if and only if
the corresponding constituents are vv-adjacent or adjacent or
incident. It is immediate that TKVE(H) = Tkve ∪ L(H) ∪
KH(H).

Theorem II.23. Let H be a graph with k cliques and p
vertices. Let qkve denote number of edges in Tkve(H). Then,
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1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)

+
∑

x∈X(H)

dec(x)

+2q + k + p− 1 ≤ qkve ≤

1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)


+

∑
x∈X(H)

dec(x) + 2q + kp.

Proof: Since each edge is incident on two vertices, there
are 2q edges in vertex edge graph Ve(H). Then

qkve = q(PH(H)) + q(Ce(H)) + q(Ve(H)) + q(CV (H)),

≥
∑

h∈B(H)

(
dbv(h)

2

)
+

∑
x∈X(H)

dec(x) + 2q

+ (k + p− 1),

≥ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − dbv(h)

+
∑

x∈X(H)

dec(x)

+ 2q + k + p− 1.

Similarly

qkve ≤
∑

h∈B(H)

(
dbv(h)

2

)
+

∑
x∈X(H)

dec(x) + 2q + (kp)

≤ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − dbv(h)

+
∑

x∈X(H)

dec(x)

+ 2q + kp.

Fig. 11. A Graph H and its Semitotal Clique Vertex Edge
Graph

Example II.10. For the graph H of Fig. 11 q(PH(H)) = 19,
q(Ce(H)) = 21, q(Ve(H)) = 32, q(CV (H)) = 21 and
qkve = 93.

∑
h∈B(H)(dbv(h))

2 = 50,
∑

h∈B(H) dbv(h) =
12,

∑
x∈X(H) dec(x) = 21, q = 16, k = 7 and

p = 10. Thus
1

2

[∑
h∈B(H)(dbv(h)

2 − (p+m− 1)
]
+∑

x∈X(H) dec(x) + 2q + k + p − 1 ≤ qkve ≤
1

2

[∑
h∈B(H)(dbv(h)

2 − (p+m− 1)
]
+
∑

x∈X(H) dec(x)+

2q + kp gives 19 + 21 + 32 + 7 + 10 − 1 = 88 ≤ 93 ≤
19 + 21 + 32 + 70 = 142.

Theorem II.24. Let H be a graph with k cliques and p
vertices. Let qKVE denote number of edges in TKVE(H).
Then,

1

2

∑
h∈B(H)

(dbv(h))
2 +

1

2

 ∑
pc∈PC(H)

(dvc(pc))
2 − dvc(pc)


+

1

2

∑
u∈V (H)

d(u))2 +
1

2
(p−m− 1) +

∑
x∈X(H)

dec(x)

+ q + k ≤ qKVE ≤ 1

2

∑
(dbv(h))

2

+
1

2

[∑
(dvc(pc))

2 − dvc(pc)
]
+

1

2

∑
u∈V (H)

d(u)2

− 1

2
(p−m+ 1) +

∑
x∈X(H)

dec(x) + q + kp.

Proof: We know that q(L(H)) =
∑

u∈V (H)

(
d(u)
2

)
(see

Harary [6]). Then,

qKVE = qkve(H)) + q(KH(H)) + q(L(H))

≥ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)


+

∑
x∈X(H)

dec(x) + 2q + k + p− 1+

∑
pc∈PC(H)

(
dvc(pc)

2

)
+

1

2

 ∑
u∈V (H)

(d(u))2 − 2q

 ,

≥ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − (p+m− 1)


+

∑
x∈X(H)

dec(x) + 2q + k + p− 1+

∑
pc∈PC(H)

[
(dvc(pc)

2 − dvc(pc)
]

+
1

2

 ∑
u∈V (H)

(d(u))2 − 2q

 ,

≥ 1

2

∑
h∈B(H)

(dbv(h))
2+

1

2

 ∑
pc∈PC(H)

(dvc(pc))
2 − dvc(pc)


+

1

2

∑
u∈V (H)

d(u))2 +
1

2
(p−m− 1)+

∑
x∈X(H)

dec(x) + q + k.

Similarly
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qKVE = qkve(H)) + q(KH(H)) + q(L(H))

≤ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − dbv(h)


+

∑
x∈X(H)

dec(x) + 2q + kp+
∑

pc∈PC(H)

(
dvc(pc)

2

)
+

1

2

 ∑
u∈V (H)

(d(u))2 − 2q


≤ 1

2

 ∑
h∈B(H)

(dbv(h)
2 − dbv(h)

+

∑
x∈X(H)

dec(x) + 2q + kp+

∑
pc∈PC(H)

[
(dvc(pc)

2 − dvc(pc)
]

+
1

2

 ∑
u∈V (H)

(d(u))2 − 2q


≤ 1

2

∑
(dbv(h))

2 +
1

2

[∑
(dvc(pc))

2 − dvc(pc)
]

+
1

2

∑
u∈V (H)

d(u))2 − 1

2
(p+m− 1) + q + kp.
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Fig. 12. A graph H and its Total Clique Vertex Edge Graph

Example II.11. For the graph H of Fig. 12, q(PH(H)) = 7,
q(Ce(H)) = 7, q(Ve(H)) = 14, q(CV (H)) = 8,
q(KH(H)) = 2 and q(L(H)) = 10. Thus qKVE = 48.∑

h∈B(H)(dbv(h))
2 = 22,

∑
h∈B(H) dbv(h) = 8,∑

x∈X(H) dec(x) = 7, q = 7, k = 3, p = 6,∑
u∈V (H) d(u)

2 = 34,
∑

pc∈PC(H)(dvc(pc))
2 = 8 and∑

pc∈PC(H) dvc(pc) = 4.

Thus,

1

2

∑
h∈B(H)

(dbv(h))
2 +

1

2

 ∑
pc∈PC(H)

(dvc(pc))
2 − dvc(pc)


+

1

2

∑
u∈V (H)

d(u))2 +
1

2
(p−m− 1) +

∑
x∈X(H)

dec(x)

+ q + k ≤ qKVE ≤ 1

2

∑
(dbv(h))

2+

1

2

[∑
(dvc(pc))

2 − dvc(pc)
]
+

1

2

∑
u∈V (H)

d(u)2

− 1

2
(p−m+ 1) +

∑
x∈X(H)

dec(x) + q + kp

gives

1

2
[22 + 8− 4 + 34 + 6− 3− 1] + 7 + 7 + 3 = 48 = 48

≤ 1

2
[22 + 8− 4 + 34− 6− 3 + 1] + 7 + 7 + 18 = 58.
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