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Abstract—In the majority of data mining tasks, feature
selection serves as an essential pre-processing step. The most
important attributes are selected to lower the dimensionality
reduction of data set and enhance the precision of classification.
Natural heuristic algorithms are extensively employed in the
realm of encapsulated feature selection. Based on the wrapper
feature selection method, seven natural heuristic algorithms are
used to solve feature selection problems and perform
performance comparison, which include Slime Mold Algorithm
(SMA), Whale Optimization Algorithm (WOA), Harris Hawks
Optimization Algorithm (HHO), Marine Predator Algorithm
(MPA), Butterfly Optimization Algorithm (BOA), Cuckoo
Search (CS) and Firefly Algorithm (FA). At the same time,
performance tests are carried out on 21 standard UCI data sets
to verify the functionality of various algorithms, and the
convergence curves and accuracy hboxplots of 7 natural heuristic
algorithms on 21 data sets are given. The simulation outcomes
were assessed utilizing the mean and standard deviation of
fitness, as well as the number of chosen features, and the
running time, with the optimal value in bold. By comparing the
comprehensive performance indexes, MPA obtained the
maximum mean fitness value in most data sets (16 data sets),
followed by FA (6 data sets). SMA obtained the best
performance and finds the minimum eigenvalues (20 data sets)
in multiple data sets and has an advantage in computing time.

Index Terms—TFeature Selection, Grasshopper Optimization
Algorithm, KNN Classifier, Performance Evaluation

I. INTRCODUCTION

‘N? ITH the continuous upgrading of science and
technology, massive data sets come into being, and
their complexity and diversity are constantly increasing.
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However, multidimensional data has deficiencies such as
duplicate data and excessive modeling duration, which brings
great difficulty to data analysis [1]. Feature selection
occupies a vital role in statistical analysis and artificial
intelligence, which can improve classifier performance,
reduce computational costs and enhance model interpretation
[2]. As an effective means of data preprocessing, feature
selection technology can eliminate redundant and
unnecessary variables, reduce dimension processing of data
sets, improve model generalization ability and reduce
over-fitting [3]. Zhang et al. found that the feature selection
method can significantly enhance the classification
performance of deep neural networks, and also reduce the
network complexity and training time [4]. The study of Li et
al. also shows that the feature selection method can help the
machine learning algorithm better capture important features
in the data and improve the accuracy and stability of the
classifier [5]. Feature selection is a data preprocessing phase
in artificial intelligence methods. Extracting a subset of the
most influential features of the original set can lower the
dimensionality of the data, simplify the intricacy of the
structure, and eliminate the features that interfere with the
learning task, which is an important means to improve the
performance of the algorithm [6]. With the deepening of the
application of large-scale data, the size of the data has
exploded, so dimension reduction has become an
indispensable link in the advanced data preprocessing step.
Feature extraction and feature selection are frequently
employed as dimensionality reduction techniques. Since
feature selection retains the original features of data and has
good interpretability, it has become the main dimension
reduction methods for data [7-8].

Feature selection is a very important problem in the realm
of artificial intelligence and knowledge discovery. In the
actual data analysis task, a significant quantity of samples
and features are usually involved. Selecting the most
important features for classification or regression can not
only improve the classification effect and generalization
performance of the machine learning model, but also reduce
the computing overhead brought by dimensions and enhance
the effectiveness and scalability of the algorithm. However,
the traditional feature selection method has some
shortcomings, such as high computational intricacy and
difficulty to face the problem of high-dimensional data.
Therefore, more and more research is now devoted to solve
these difficult problems by optimizing algorithms. Zou et al.
proposed a feature selection method rooted in genetic
optimization and support vector machination to control the
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variation and crossover of individual features through genetic

algorithm, thus selecting the optimal feature set [9]. Chu etal.

put forth a feature selection method based on genetic
algorithm and classifier integration, and achieved very good
classification effect on multiple data sets [10]. In addition,
integrating particle swarm optimization, simulated annealing,
and differential evolution techniques are also used in the
research and application of feature selection problems. These
algorithms try to reduce the feature dimension, improve the
classification accuracy and avoid over-fitting problems by
optimizing search.

Grasshopper Optimization Algorithm (GOA) is a
biometric algorithm proposed by Australian scholar Seyedali
Mirjalili in 2017 [11]. It 1s a search algorithm abstracted by
imitating the foraging habits of grasshopper groups in nature.
Based on the action law of grasshopper population and
individual, the distance between grasshoppers is divided into
mutual exclusion zone, attraction zone and suitable zone, and
the solution to the problem is obtained by judging the
distance types between grasshoppers individuals. GOA has
advantages in solving practical problems of unknown search
space. GOA has strong searching ability, but its disadvantage
1s that it tends to converge towards local optima. In 2018,
Arora et al proposed a global optimization Chaos GOA [12],
in which chaotic mapping was used to successfully balance
the exploration and development of grasshoppers and reduce
the repulsion (attraction) among grasshoppers. By using 13
functions to test its feasibility, the findings demonstrate a
significant enhancement in the efficiency of GOA. Aiming at
the disadvantage of poor accuracy of GOA, Li et al. proposed
the curve adaptive and simulated annealing GOA [13]. In this
method, curve adaptive method is introduced to substitute the
linear adaptive approach for the key parameters of GOA,
which increases the global search efficiency of the algorithm.
The simulated annealing algorithm is introduced to receive
the inferior solution of GOA with a certain probability, and
the ability of the algorithm to find the global optimal value is
improved. The discrete GOA is a global optimization
algorithm similar to the ant colony algorithm, which can
efficiently steer clear of the issue of local optimal solution by
adding random disturbance and local search methods [14]. At
the same time, KINN classifier is also widely used in feature
selection problems, which does not require prior knowledge
and distribution hypothesis, and 1s suitable for multiple
classification and nonlinear classification and other situations
[15]. This work introduces a superior feature selection
method with discrete GOA and KNN classifier. Through
experimental verification on multiple datasets, the discrete
GOA can discover the global optimal solution faster, and has
better performance and computational efficiency. The outline
of the paper is presented as below. The second section
presents GOA, while the third section elaborates on the KNN
classifier, fitness function and feature selection architecture.
The fourth section presents experimental simulations and
result examinations. Finally, the conclusion is drawn.

II. GRASSHOPPER OPTIMIZATION ALGORITHM

A. Basic Principles
Algorithm

of  Grasshopper Optimization

GOA is an emerging natural heuristic algorithm that draws

on the social behavior of insects such as grasshoppers,
especially their gathering behavior for searching for food
sources and large-scale migration. By simulating the
movement characteristics of larvae and adults of
grasshoppers, GOA carries out local development and global
search respectively, so as to achieve efficient target search. In
the larval stage, GOA simulates grasshopper jumping and
columnar rotating flight, looking for food sources on the prey
path with small steps and small moving speed.

In the adult stage, GOA uses the search strategy of large
stride length and large moving speed to simulate the
characteristics of large-scale migration of grasshoppers.
Through this simulation of the grasshopper life cycle, GOA is
able to better explore the exploration domain and increase
target search competence. The advantages of this algorithm
are simple operation, easy to implement, less sensitivity to
initial value, and can be applied to various optimization
problems. The experimental results for the standard function
optimization show that the convergence of GOA is superior
to the PSO. The mathematical model of grasshopper
individual location is shown in Eq. (1).

X, =5 +G +4 @

In the equation, &, represents the position of the # -th
grasshopper, S; represents the force between the 7 -th
grasshopper and other grasshoppers, G; signifies the gravity
exerted on the 7 -th grasshopper, and 4; signifies the wind
resistance experienced by the 7 -th grasshopper during flight.
Eq. (1) can be recorded in the form of Eq. (2)

N f
5= st @)

Inthe equation, @; represents the distance between the 7 -th
and J -th grasshoppers, which is calculated by:

di_; :‘XI_XJ‘ (3)

The distance unit vector between individual 7 and
individual J is @) =(x,-x}/d, and the function 5 can
be regarded as the strength of community force.

s(¥)= fe[%] —e’ (4)

In the equation, f is the intensity of attraction, and / is the
step size of attraction. In the process of searching for food,
grasshoppers will establish three types of areas according to
community forces: ease area, attractiveness area, and
exclusion area. When the distance between grasshoppers
gradually increases (more than 10), the function § tends to
be unable to generate social forces, that is, there is no
interaction between individuals. The general practice 1s to
limit the position of individuals to [1,4], while the position
of individuals in the comfort zone will not be updated. G, is
defined as:

G, =-ge, (5)

In the equation, & represents the gravitational constant,
while €, denotes the unit vector pointing towards the Earth's
center. A; is defined as:

4 = ue, (6)

Volume 32, Issue 1, January 2024, Pages 89-100



Engineering Letters

In the equation, # denotes the drift constant, and e}, isthe
wind direction unit vector. Substitute the relevant parameters
into Eq. (1) to obtain:

X e x.i' % ’ ’
= Zj:l,j;&ls(‘xf ~x D g e, 0]
i

In the equation, N denotes the number of grasshoppers in
the population.

In general, individuals are weakly affected by gravity G
and wind A4 , and population individuals only update their
positions according to the influence of community force S .
Therefore, the location update method can be defined as:

N wub, —Ib X = *
Xig=q ZJ:LFIOZ%SG.XJ—X}D dexI +T (8)
In the equation, #b; serves as the upper threshold for
D-dimensional space, Ib; represents the lower boundary of
D-dimensional space, T; 1s the optimal solution found in the
current population, the function $§ is defined by Eq. (4), ¢
and €, are the adjustment coefficients, which are used to
shrink and adjust the comfort area, attraction area and
exclusion area, and this parameter changes linearly with the
iteration.

Clzczzcmax_l'—miﬂ (9)
In the equation, €., represents the maximum adjustment
coefficient, ¢, denotes the mmimum value, ! 1s the
current iteration count, and L signifies the maximum
pseudo-iteration limit.

B. Flowchart of Grasshopper Optimization Algorithm

GOA iteratively solves the optimal solution in the
solution domain by adjusting the position coordinates of the
grasshopper. Its flowchart is presented in Fig. 1.

Initialize population and
al gorithm parameters

¥

Calculate individual
fitness values

Best fitness

Has the number of
iterations
beenreached?

Initial weight
value generation

Update
parameter ¢

Normalized grasshopper

distance 15 [1, 4]
¥
Update Grasshopper
Location
)

Caleulate the fitness of
new populations

Update T Donctupdate T

Is it better
than T?

Update Tterations

¥

Fig.1 Flowchart of Grasshopper Optimization Algorithm.

The detailed steps are outlined below.

(1) Imtialization. Firstly, iitialize the grasshopper
population and the overall parameters of the algorithm, such
as the boundary values €y, and Cni, of parameter ¢, the
iterative count L , and the population quantity N . Define the
fitness function.

(2) Measure the fitness value of each individual based on
the fitness function and select the optimal fitness 7.

(3) Check if the maximum number of iterations has been
reached. If so, the algorithm concludes, and the present
solution turns out to be the optimal one.

{4) Update parameter € according to Eq. (9).

(5) Normalize the distance between grasshoppers to [1.4].

{(6) According to Eq. (8), revise the grasshopper's position
and compute the refreshed individual fitness. Contrast it with
T . If the fitness is better than 7', update T , otherwise it
remains unchanged.

{7) Renew the iteration number and repeat Step (3)-(7)
above.

III. FEATURE SELECTION BASED ON DISCRETE
GRASSHOPPER OPTIMIZATION ALGORITHM AND KNN
CLASSIFIER

A. K-nearest Neighbor Classifier

Discrete grasshopper optimization algorithm (DGOA) 1s
usually used to solve Discrete optimization problems. K
nearest neighbor (KINN) classifier is an instance based
supervised learning algorithm. It selects the nearest K sample
points as the nearest neighbor of the sample points by
computing the remoteness between the sample points to be
categorized and the sample points of the known category.
Then, based on the class information of these K nearest
neighbors, the sample points are classified using majority
voting or weighted majority voting. The description of its
algorithm 1s described as follows.

(1) Calculate the gap between the test data and numerous
training data examples;

(2) Organize based on the ascending distance correlation;

(3) Choose the K points with the minimal distance;

{4) Calculate the repetitiousness of the mmitial K points
within the category;

(5) Select the category that appears most often among the
first K points as the forecast-ed classification for the test data.

In the experiment, KNN serves for classification purposes,
calculating the Euclidean distance Dy between the training
set and test data, and determining the K closest samples, as
shown n Eq. (10).

Dy :‘/ZiI(Tra.inFI —Testy ) (10)

B. Fitness Function

Fitness function is usually determined by the goal function
of the current problem itself, which can be the numerical
value of the objective function or related indicators, or it can
be an evaluation function based on the characteristics of the
problem and individual solutions. The feature subset
involved in the issue is composed of 1 and O, represented by a
binary vector is employed, where 1 signifies the feature is
picked and O signifies it 1s not chosen. In this paper, the
aforementioned two opposing objectives are embodied in the
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fitness function displayed in in Eq. (11).

fitness = yyp (D) + 1y 24

V] (11

In the equation, ¥z({?) stands for the classification mistake
rate associated with the chosen feature subset by the classifier,
| M | indicates the quantity of selected features, | NV | denotes
the overall number of features, and 4 and % are two weight
factors that reflect the classification efficiency and the
subset's length, satisfying # + /4 =1 . Due to the need for an
exact categorization model, the categorization exactness is
assigned a significant inertia weight. In this article, /4 and 4,

are set as 0.99 and 0.01, respectively.

C. Architecture for Feature Selection

FS aims to identify the least representative subset of
features from the original set while mantaining the
classifier's classification accuracy. In essence, FS is a
dimension reduction method that utilizes the classifier's
accuracy to assess the effectiveness of dimension reduction.
The architecture for feature selection is shown in Fig. 2.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. Selection of Experimental Data

Fifteen datasets were selected from the UCI data set for
classification studies. These datasets containing diverse
instances, feature numbers and categories can see the
effectiveness of the suggested feature selection method based
on discrete GOA and KNN separator in various datasets from
different perspectives. Table I provides detailed information
on these datasets. In the simulation process, the K-nearest
neighbor (KINN) algorithm with K=5 was employed to
determine the classification precision in the fitness function,
as KNN has been proven to become faster and more
straightforward. During the experiment, different random
populations were used to repeat 20 times.

Start End

Load Dataset

Obtain the best feature
subset and accuracy

Divide the dataset into
training and testing sets

l NO

Train KINN classifiers

l t<Maximum iteration algebra

Define fitness function

l

Tnitialize various
parameters

l

Various natural

heuristic algorithims
‘ YES

Fig. 2 FS architecture diagram of Feature selection.

In addition, to prevent over-fitting, the fold cross
validation method was adopted, and the dataset was divided
into the training set and the testing set. In the initial iteration,
80% of the feature vectors were allotted for training, with the
remaining 20% reserved for testing. Subsequently, 20% of
the feature vectors were set aside for testing, while the
remaining 80% formed the training set. Repeat the above
process until all feature vectors are used for testing. Finally,
statistical analysis was conducted on the results of 20
independent runs.

All tests were performed utilizing MATLAB R2020a,
running on an Intel Core 15-8300H machine with a CPU of
2.30 GHz, RAM of 8GB and Windows 10 operating system.
In this nvestigation, each algorithm's population was
configured to 10, with a maximum of 100 iterations. The
common parameters of the eight algorithms remained
consistent. The dimension of the searching space is equal to
the total number of features. According to previous research
by scholars, the classifier has the best classification
performance when the hyper-parameter # is set to 0.99[16].

B. Performance Evaluation of Feature Selection

Metrics are commonly employed when assessing and
interpreting the outcomes of feature selection problems.
These evaluation criteria include the fitness value,
classification precision, and the average number of chosen
features. Eq. (12)-(17) are the calculation methods for mean
categorization precision, mean count of chosen features,
mean fitness and standard deviation.

1 20
Mean accuracy — %Z —Accuracy, {(12)
where, Mean _accuracy represents the mean classification
precision achieved by executing the algorithm 20 separate
times, and 4ccuracy; denotes the classification accuracy for
each run. The classification accuracy is computed as follows:

1
Accuracy = v fglmatch(Pli ALY (13)
where, N stands for the quantity of test set-points, that is, the
number of instances of the dataset; P/, is the class label for
the predicted class data point ; , 4L is the reference class
label for the actual class ; in the annotated data, and

match(Pl, AL ) is a comparison discriminant function.

When Pl ==41l match(Pl,, ALy =1 Otherwise,
match(PL,AL)=0
Mean _ feature = %Z 12.:01]‘?2.:15111’2I (14)

where, Mean _ feature is the average of the number of
selected features obtained by running the algorithm A4
times independently, and feature, is the value of the number

of selected features obtained by each run.

1
Mean _ fitness = %Z 2 fitness, (15)

where, Mean_ feature is the average fitness of the
algorithm running independently Af times, and [ is the
best fitness obtained for each run. The fitness value is shown
in Eq. (16).
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| Selected features Count|
| Total features Count |

(16)

Fimmess = 0.99*(1— Aecuracy)+0.01*

where, Accuracy isthe classification accuracy.
Std _ fitness = \/%Z (finess, —Mean _ fitness)* (an

where, Std _ fitness is the standard deviation of the fitness
value, fitness, is the fitness value obtained for the 7-th time
and Mean _ fitness is calculated by Eq. (17).

>

are more intuitively and vividly displayed. The convergence
curves of the 8 natural heuristic algorithms on 15 datasets are
shown in Fig. 3. The horizontal axis of Fig. 3 denotes the
number of iterations for the algorithm, while the vertical axis
indicates the average accuracy figures for each algorithm
following 20 separate executions. The box plot of accuracy
values is shown in Fig. 4. As can be observed in Fig. 4 that
GOA has the best convergence performance in most cases.

TABLE I. 15 DATA SETS USED IN THE SIMULATION EXPERIMENTS

C. Experimental simulation results and analysis Number Datasets Features Instances Classes
For differ.en‘.t 15 UCI datase;ts, GQA aqd 7 commonly gsed 1 Algerian Forest Fires 12 244 2
natural heuristic algorithms, including slime mold algorithm
{SMA), whale optimization algorithm (WOA), Harris Hawk 2 _ Clcanl. _ 167 476 2
algorithm (HHO), marine predator algorithm (MPA), 3 Climate l\gcr);lse}iesslmulatlon 18 540 2
butterfly optimization algorithm (BOA), Cuckoo search (C3) o
: : 4 Connectionist Bench 60 208 2
and Firefly algorithm (FA), are emploved to conduct S
simulation experiments, whose results are shown in Table 5 Dmbcgc;&ggg;pamy 20 1151 2
[O-IV. The bold figures denote the optimal outcomes. Table I p Forest tve manpilt - 126 .
presents the mean and standard deviation of fitness for the Sbe Mappiis
eight natural heuristic algorithms. Tables HI-IV respectively 7 Heart 13 303 2
prov1_de a comparison of the accuracy values of different 8 Im 270 1000 20
algorithms and the mean of the number of selected features.
In the above table, the outstanding results are emphasized in 9 Ionosphere 34 351 2
bold type. In Table I, GOA achieved the maximum average 10 Page Blocks Classification 10 5473 5
fitness value across the majorty of datasets (8 datasets). y _
From Table I, it can be seen that GOA has a significant i Parknson Disease 734 736 2
advantage in accuracy. Table IV shows the number of 12 Pima Indians Diabetes 8 768 2
features s§lected by all natural heuristic algorithms, n which 5 Planning Relax " 182 5
GOA wins by absolute advantage. By drawing the
convergence curves and precision box plot of the optimal 14 QSAR biodegradation 41 1055 2
cl.assification accuracy cglculated by the KNN f:lassifie.r, the 15 Semeion 256 1593 ’
differences between 8 different natural heuristic algorithms
TABLE II. STANDARD DEVIATION OF AVERAGE FITNESS AND ACCURACY
Dataset Measure SMA WOA HHG MPA BOA 8 FA GOA
AVG 0.0050 0.0104 0.0212 0.0008 0.0273 0.0033 0.0036 0.0019
Algerian
STD 0.0127 0.0144 0.0195 0.0000 0.0156 0.0065 0.0064 0.0006
| AVG 0.1064 0.0924 0.0970 0.0601 0.1066 0.0729 0.0825 0.0842
Cleanl
STD 0.0126 0.0156 0.0158 0.0112 0.0095 0.0078 0.0113 0.0097
AVG 0.0579 0.0693 0.0763 0.0436 0.0744 0.0508 0.0438 0.0512
Climate
STD 0.0129 0.0162 0.0105 0.0045 0.0080 0.0092 0.0084 0.0057
AVG 0.1280 0.1255 0.1387 0.0612 0.1380 0.0849 0.1000 0.0400
Connectionist
STD 0.0220 0.0371 0.0266 0.0213 0.0291 0.0143 0.0122 0.0118
AVG 03227 0.3221 0.3400 02976 0.3355 0.3077 0.3026 0.2469
Diabetic
STD 0.0134 0.0140 0.0209 0.0098 0.0155 0.0101 0.0132 0.0077
AVG 0.0827 0.0873 0.0919 0.0681 0.0944 0.0683 0.0683 0.0959
Forest
STD 0.0072 0.0085 0.0093 0.0071 0.0063 0.0040 0.0072 0.0075
AVG 0.1458 0.1500 0.1703 0.1159 0.1729 0.1169 0.1153 0.0837
Heart
STD 0.0234 0.0313 0.0411 0.0064 0.0241 0.0065 0.0043 0.0081
AVG 02104 0.1880 0.1876 0.1484 0.2100 0.1660 0.1819 0.1905
Im
STD 0.0082 0.0150 0.0181 0.0119 0.0128 0.0112 0.0085 0.0089
AVG 0.0786 0.0997 0.1037 0.0526 0.1153 0.0921 0.0967 0.0879
Tonosphere
STD 0.0163 0.0221 0.0234 0.0148 0.0115 0.0105 0.0108 0.0055
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AVG 0.0381 0.0388 0.0397 0.0376 0.0394 0.0376 0.0379 0.0352
Fage STD 0.0005 0.0007 0.0021 0.0002 0.0010 0.0000 0.0004 0.0008
AVG 0.1895 0.1948 0.1915 0.1505 0.2121 0.2554 0.2380 0.1021
Parkinson
STD 0.0152 0.0269 0.0188 0.0142 0.0271 0.0392 0.0370 0.0045
) AVG 02213 0.2276 02331 0.2141 0.2295 0.2143 0.2150 0.1922
Fima STD 0.0085 0.0072 0.0141 0.0049 0.0129 0.0054 0.0061 0.0024
AVG 0.2291 0.2467 0.2501 0.2020 0.2432 02114 0.2013 0.1843
Planning
STD 0.0231 0.0204 0.0263 0.0119 0.0212 0.0164 0.0139 0.0137
AVG 0.1120 0.1205 0.1204 0.0925 0.1249 0.0963 0.1018 0.1054
Q5AR STD 0.0071 0.0084 0.0076 0.0054 0.0081 0.0088 0.0046 0.0041
AVG 0.0214 0.0192 0.0133 0.0058 0.0198 0.0111 0.0131 0.0101
Semeion
STD 0.0029 0.0042 0.0046 0.0017 0.0033 0.0026 0.0017 0.0018
TABLE IIT. COMPARISON OF ACCURACY VALUES BETWEEN DIFFERENT AL GORITHMS
Dataset SMA WOA HHO MPA BOA CSs FA GOA
Algerian 0.9958 0.9906 0.9802 0.9698 09750 0.9563 0.9500 1.0000
Cleanl 0.8958 09111 0.9063 09416 0.8963 08732 0.878% 0.9211
Climate 0.9435 0.9333 0.9259 0.9532 0.9287 0.9157 0.9167 0.9537
Connectionist 0.8720 0.8768 0.8634 09256 0.8634 08134 0.8220 0.9655
Diabetic 0.6754 0.6774 06596 0.6883 0.6643 0.6433 0.6430 0.7561
Forest 0.9192 0.9159 0.9115 0.9332 0.9087 0.9014 0.9048 0.9076
Heart 0.8556 0.8528 0.8315 0.8676 0.8287 0.7981 0.7824 0.9231
Im 0.7920 0.8168 0.8160 0.8515 0.7920 0.7735 0.7760 0.8140
Tonosphere 0.9214 0.9007 0.8971 0.9243 0.8857 0.8536 0.8564 09171
Page 0.9664 0.9666 0.9651 09672 0.9663 0.9657 0.9658 0.9683
Parkinson 0.8086 0.8036 0.8070 0.8480 0.7871 0.6901 0.6957 0.9033
Pima 0.7817 0.7775 0.7706 0.7807 0.7732 0.7542 0.7631 0.8110
Planning 0.7708 0.7542 07514 0.7750 0.756% 0.7167 0.7125 0.8181
QSAR 0.8898 0.8829 0.8834 0.9092 08777 0.8664 0.8654 0.9002
Semeion 0.9835 0.9863 0.9890 0.996% 0.9841 0.9781 0.9800 0.9961
TaBLE IV. AVERAGE NUMBER. OF SELECTED FEATURES
Dataset SMA WOA HHO MPA BOA CSs FA GOA
Algerian 1.1000 1.5000 2.1500 1.0000 3.3500 1.5500 1.9500 2.6500
Cleanl 53.1500 72.6000 71.7000 63.6500 65.8000 77.1000 81.0500 101.6000
Climate 4.0000 6.6000 6.0000 4.7500 7.7000 7.1500 7.9000 10.7500
Connectionist 7.6000 21.3500 21.1500 12.3000 16.6000 243000 27.4500 34.7500
Diabetic 2.6500 5.2500 5.6500 4.7500 6.0000 5.6500 5.6500 10.9000
Forest 7.3500 10.9500 11.8000 9.2000 10.8000 11.0000 10.9000 12.5500
Heart 3.7000 5.5000 44500 4.0500 4.2500 54000 5.7000 10.6000
Im 119.9000 179.0500 146.9500 131.3500 110.3000 131.0000 1341500 172.6000
Tonosphere 2.6500 4.7000 6.2500 3.2500 7.3500 10.2000 11.4000 19.8000
Page 4.8500 5.8000 5.1500 5.0500 6.1000 5.2000 5.3500 3.8000
Parkinson 3.2500 31.6000 27.2500 54.4500 101.2000 325.4500 371.4000 480.0500
Pima 4.1500 5.8000 4.7500 4.0500 4.0000 4.2000 4.3000 4.1000
Planning 2.6500 4.0000 4.7500 3.1500 3.1000 4.5500 4.0000 5.0500
QSAR 12.0500 18.9500 20.4000 13.9500 15.8000 17.7500 20.0000 27.7500
Semeion 132.7500 148.6500 117.7000 100.9000 106.8500 121.3500 131.5500 166.6000

Volume 32, Issue 1, January 2024, Pages 89-100



Engineering Letters

Average Fitness for Climate Model Dataset Average Fitness for Algerian Dataset

Average Fitness for Diabetic Dataset

0.025

0.023

0.015%,

o
o
=

0.005

GOA

BOA

SMA
—de— WOA
== HHO
—4— MPA
—*— BOA
—*—CS

FA
—i— GOA

40

50 60 70 80 90

Number of iterations

(a) Algerian

0.055

0.05

0.045

0.04 -

0.035

0.03 |

g L

e ke k- A— GOA H

WOA

40

50 60 70 80 90

Number of iterations

(¢) Climate

033
0.32
031

03

0.29 X

0.28

40

50 60 70 80 90
Number of iterations

(e) Diabetic

Average Fitness for Clean1 Dataset

Average Fitness for Connectionist Dataset

Average Fitness for Forest Dataset

10 20 30 40 50 60 70 80 90 100
Number of iterations

{b) Cleanl

50 60 70
Number of iterations

(d) Connectionist

0.07 L 1 1 L 1 1
10 20 30 40 50 60 70 80 90 100

Number of iterations

(f) Forest

Volume 32, Issue 1, January 2024, Pages 89-100



Engineering Letters

Average Fitness for Heart Dataset
Average Fitness for Im Dataset

10 20 30 40 50 60 70 80 90 100
Number of iterations
(g) Heart
£ T
0.12 SsvA |
—— WOA

o

s

Y
e

o
=N

b
o
©

o
o
@

Average Fitness for lonosphere Dataset
o
o
=]

Average Fitness for Page Blocks Dataset

-
o
=

40 50 60
Number of iterations

10 20

30

(i) Ionosphere

o
)
]

o
N
5

o
)
N

o
(]

o
"%
@

e
~
=)

Average Fitness for Parkinson Dataset
Average Fitness for Pima Indians Dataset

o

s

s
b

o
Y
N
[
P
2
2
3
3
3
n

40 50 60 70
Number of iterations

80 90 100

(k) Parkinson

0.24
0.23
0.22
0.21
0.2
0.19
0.18
0.17
0.16
1 I L 1 L L I ¢ c
10 20 30 40 50 60 70 80 90
Number of iterations
(h) Im
0.054 ; ' 1
) SMA
0.048 —*— WOAS
- -¢-- - HHO
0.046 —6— MPA |
—k— BOA 1
0.044 —*—CS
FA
0.042 —d— GOA |
0.04 4
0.038 B
0.036 - q
0.034[ b
0.032 7
0.03 7
10 20 30 40 50 60 70 80 90
Number of iterations
(i) Page
¢ T T T T
02475 4
\ BOA SMA
\ —*— WOA
\ 4 & b - - -0---HHO | |
0.235 —*'\—-ﬁ—\_*__ NPk
e e ==
e
0.23 A
—a— GOA

0.225 ||

0.22

0.215

0.21

Number of iterations

(1) Pima

Volume 32, Issue 1, January 2024, Pages 89-100




Engineering Letters

Average Fitness for Planning Dataset

Accuracy

0.24

0.23

0.22

1.005

0.995

0.99

0.985

0.98

0975

0.97

0.965

0.96

01754,

% 0.17
&
+ 0.165
)
e
= 0.16
%)
T 0.155
s
o 0.15
%]
(0]
£ 0.145
(T
S
3 0.14
2
z 0.135
0.13
—tn TR p— 0.125 . MPAT ; ‘ ! g
50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of iterations Number of iterations
(m) Planming (n) QSAR
L SMA | |
0.03 GOA WoA
5 | = =0 -HHO | |
E 0.028 . o— MPA
© MA —*— BOA
a
= / 4
ke
9]
£
[0}
(5]
ke
w
(0]
]
E
[
o
o
o
@
>
>3
Number of iterations
{0) Semeion
Fig. 3 Convergence curves of eight natural heuristic algorithms on fifteen datasets.
T T T T T T
R 098 - 1
[
= + L —_
s — T S —— |
0.96 | - ! g Q .
| | | = :
1 o094t ' ’ & 1
>
[&]
- E T
3 092 4
8 g T T
B f + — . 1< ] ! !
! 1 | T 1 1
| 09r ! 1 | { | b
: L 1 |
1 ! ! 1
I B L == |
! 088 | -
1 =
! 1
| | ==
i | o086 . |
+ L -+ F
SMA  WOA HHO MPA BOA CS FA GOA SMA WOA HHO MPA BOA CS FA GOA
Algorithm Algorithm
(a) Algerian (b) Clean1

Volume 32, Issue 1, January 2024, Pages 89-100



ineering Letters

Eng

T

HHO

WOA

s S S

b 7

GO

BOA

Algorithm

Shis

0.9+

088t

095
094 -
083+
082

]
h
=

Aorinooy

cs Fa GOA

MPA BOA
Algorithm

SMA

FA

c8

HHO  MPA

WA

{dy Connectionist

{c) Climate

o BE e

6.94

G893}

4.82
&

g.8r
[eR

Q78 F

AoBIoDY

0.7
0.68 -

0.66

SMa

HHO

WOA

HHO MBPA BOA o8 FA 304
Algorithm

WOA

BOA Cs Fa GOA

MPA
Algorithm

SMA

(f) Forest

{e) Diabetic

Wl i /,J.\\W L
H - ] L i
[€x] bt o f=43 o0 jrs3 il
& & a0 o P = s
s Ll fonr) fod o e
foemooy

GOA

- e R 1
e
r m\\w./f w 4 1
. U R
r L Mr[,asiA v 4
L Wi — w) 4
R T SR B RS- B (B < B S
e R T T T e B
fang 2 23 = ] fand o (o] (=3
AaeInony

WOA  HHO wFA BOA Ccs A GOA
Algorithm

SMA

WOA  HHO MPA BOA CH FA
Algorithm

SMA

(h) Im

{g) Heart

Volume 32, Issue 1, January 2024, Pages 89-100



ineering Letters

Eng

(.86

488
0.84 -
383

, _
o L o f=x] owF o o]
B om o @ @ oW 9
% o o i L g L

Aomivony

e
&
‘ MEPEE F
o,
‘ S Y
£
- T g
£
L 4
=
! o
b i E
H x
X
= 40
=
=<
r 12
7
- ~ m
g [+>3 L]
o o [t
o
i 18
o
T8
L PO
&)
™ E30, S
T e <
;;;;;;; o
Lok . :
i ¢ z
e ¥
g <
S e 18
A i

Algorithm

Algorithm

(j) Page

(i) Tonosphere

ag

088

Koeireny

| et
o]
i W
SRRt s S S B K-
SR s il '8
v L
i I .
‘ wz Lﬁ\?,f SA %
e LS
= 5 + b 4
it &
S fn]
I P W\v L LE
ET e <L
L [ w o
[ Mf; 1 w
. =2
- - . m
O e wm e wm e m
o "~ ™ = = ~ = re
el 2 (=] fad fued o3 =]
Axemony
i3
£
i 1w
[
T <
- F-- --4 13
. e} =t
- S -
boed i
R — a
et - T
F 1 ! I
o
- Q
2
<L
A
I

Algorithm

Algorithrm

(1) Pima

(k) Parkinson

't <L
o ] 4
RIS g
L ey
Ed
[=53
&
=
(o3
48]
e 3
P HEE S 4o
b # I &
o
- i E
z
S <
nw.a £ L) ey @ Ped “F i3 b 4_...
o | m w8 ey 4y a3 @y
L) <3 g [=] [ar] o [ f [
Anpinnoy
s, i A
3 foowond £ m i85
I . 133
;;;;; : e ] g
-t bl t
V o | i
k ek i aiil = 18
- =l
Pl - P i . 1g
S <
;;;;;;;;;;; o
w %EIL im &
; o
3 i
; il
L e
f SUI Seeeeh 18
W R
oo s z
fond 8 A Nl N forw fead a3
o= ~ *y . fy o & e
[a) <o [w] o o o
Aneinoog

Mgorithm

Algorithm

(m) QSAR

(m) Planming

Volume 32, Issue 1, January 2024, Pages 89-100



Engineering Letters

0838+ B g ‘ ‘1 N 8
PR : 1
B d . ‘
5 1
H (r——L—
0985 - i I ]|
= { Lo |
& I v/ : i
= e 4 i \ e b
g o088+ AN E E
<< ! 1 Voo
oL i L = ,
/ VoY A
D875 - i i
H
H
i
087 - : 8
.

SMA  WOA  HHO

BOA c3 FA GOA

{0) Semeion

Fig. 4 Box-plot of classification accuracy for eight natural heuristic algorithms.

V. CONCLUSION

Based on the wrapper feature selection method, this paper
compares the grasshopper optimization algorithm (GOA)
with seven natural heuristic algorithms, that is SMA, WOA,
HHO, MPA, BOA, CS, FA. The convergence curves and
box plots of accuracy values of 8 natural heuristic algorithms
on 15 datasets were presented. The comprehensive
performance indicators are compared. Combining various
natural heuristic algorithms proposed, the results are
evaluated based on the mean and variation of fitness values,
the number of selected features and accuracy. Through
algorithm comparison, this paper finds that GOA obtains the
highest average fitness value on most datasets. In the
number of selected features, GOA wins with absolute
advantage, and also holds an advantage in accuracy. The
mean and standard deviation data of fitness, selected feature
quantity data, accuracy, convergence curve and box plot of
accuracy values obtained from 8 algorithms through 15
datasets have great reference value for subsequent research.
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