
 

 

Abstract—The road adhesion coefficient is significant in 

vehicle safety control systems. The road adhesion coefficient 

plays a key role in vehicle safety systems. To estimate this 

parameter, this paper formulates a seven-degree-of-freedom 

vehicle dynamics model. The normalization of tire force is 

achieved by integrating the Dugoff tire model. Based on this, an 

adaptive unscented Kalman filter (AUKF) algorithm is 

proposed. To reduce the 'non-local effect' in the sampling 

process, a proportional correction coefficient is used in the 

unbiased transformation. Additionally, an adaptive coefficient 

is incorporated into the standard unscented Kalman filter 

(UKF), and the updated covariance matrix is utilized to 

dynamically regulate the filtering gain. This enhancement 

significantly improves the algorithm's adaptability to the 

evolving states. Joint simulations of various road conditions are 

conducted using Carsim and Simulink. Experimental results 

indicate that the proposed adaptive unscented Kalman filter 

algorithm can reduce computational complexity and improve 

convergence speed while maintaining algorithm accuracy. 

 

Index Terms—vehicle safety system, road adhesion 

coefficient estimation, unscented Kalman filter, unbiased 

transformation 

I. INTRODUCTION 

ith fast improvements in intelligent vehicle 

technologies, it becomes more and more important to 

estimate the road adhesion coefficient is very important. 

Precise estimation of this coefficient can mitigate tire wear, 

enhance vehicle stability, and reduce the likelihood of 

vehicular accidents [1]. The methodologies for estimating the 

road adhesion coefficient can be broadly categorized into 

cause-based and effect-based approaches. Cause-based 
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methodologies rely on direct measurements obtained through 

various equipment and sensors for monitoring and recording 

both road and vehicle operational conditions, thus offering 

real-time insights. However, these methods are limited by 

notable drawbacks, including high costs and a heavy reliance 

on specialized equipment. 

In contrast, effect-based methodologies deduce the road 

adhesion coefficient by analyzing the dynamic responses of 

the vehicle to avoid direct measurements [2-4], which 

demonstrate efficacy in cost reduction without compromising 

estimation accuracy.  Recently, Ref. [5] proposed an 

estimator for road surface adhesion coefficient by integrating 

the Extended State Observer (ESO) and Adaptive Kalman 

Filter (AKF) algorithms. This method uses piecewise 

identification techniques and evaluation metrics to estimate 

the road surface adhesion coefficient accurately, making the 

process simpler and more efficient. Even though efforts are 

made to make the computation simpler and more efficient, 

delays can still happen, especially when road conditions 

change quickly. Ref. [6] developed an LMI-constrained UKF 

for accurate state estimation of unmanned vehicles under 

nonlinear conditions. This filter addresses the limitations of 

traditional Kalman filters by framing the state estimation as 

an optimization problem. The instability of traditional neural 

network weight updates can lead to low precision in 

estimating road surface adhesion coefficients. Ref. [7] 

proposed a method for estimating road surface adhesion 

coefficients based on Particle Swarm Optimization 

(PSO)-Elman neural networks. This estimation method 

incorporates the PSO algorithm into the Elman neural 

network model to reduce training absolute errors. 

Additionally, a linear weight decay strategy is employed to 

balance the weight changes in the PSO algorithm, enhancing 

both global and local search capabilities of particles to 

optimize the network weight matrix. This method makes the 

estimation of the road surface adhesion coefficient more 

precise. Ref. [8] argued that existing methods for estimating 

road surface adhesion coefficients have not fully leveraged 

the advantages of integrating image recognition and dynamic 

models. To Address the limited applicability of traditional 

estimation methods, they proposed a road surface adhesion 

coefficient estimation method based on the fusion of image 

recognition and dynamics. Ref. [9] primarily investigated the 

problem of trajectory tracking for vehicles under 

variable-speed steering and varying road surface adhesion 

coefficients. In their road surface adhesion coefficient 

estimation module, they utilized a genetic algorithm (GA) to 

optimize a BP neural network model. The estimation results 

were then transmitted as variables related to tire slip angle 

constraints to an MPC controller. This approach, employing 
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the GA-BP neural network optimized road surface adhesion 

coefficient estimation method, demonstrated high estimation 

accuracy. However, BP neural networks also have drawbacks. 

Typically, the optimal number of hidden layer nodes in a BP 

neural network cannot be explicitly calculated by formula 

during network topology design, potentially leading to the 

training process getting stuck in local minima. Ref. [10] 

addressed the challenge of enhancing the control 

effectiveness of the Traction Control System (TCS) in 

automobiles, specifically focusing on improving acceleration 

performance while ensuring driving stability. In the process 

of estimating road surface adhesion coefficients, they 

introduced fuzzy control and decay memory filtering into the 

Unscented Kalman Filter (UKF). They designed an 

Unscented Kalman Filter estimation algorithm based on 

fuzzy forgetting factors to improve the tracking performance 

of the filtering algorithm. However, the inclusion of fuzzy 

control and decay memory filtering led to an increase in the 

computational complexity of the UKF, resulting in longer 

convergence times. 

In response to the aforementioned questions, this study 

constructs a comprehensive seven-degree-of-freedom 

vehicle dynamics mode [11], integrating the Dugoff tire 

model alongside formulas for calculating normalized tire 

forces. Extending this groundwork, an adaptive Unscented 

Kalman Filter (AUKF) algorithm is introduced. During the 

unscented transformation phase, a proportional correction 

coefficient is introduced to mitigate “non-local effects” 

inherent in the sampling process [12]. With the conventional 

UKF framework, an adaptive coefficient is integrated to 

dynamically regulate the filter gain utilizing the updated 

covariance matrix, thereby augmenting the algorithm's 

capacity to accommodate sudden state transitions [13]. 

Simulation outcomes demonstrate that in comparison to the 

conventional UKF approach, the AUKF algorithm 

showcases enhanced filtering performance, characterized by 

swifter convergence and heightened accuracy. 

This paper is organized in the following way. Section II 

gives the mathematical descriptions of tire and vehicle 

dynamics models. Section III mainly presents the improved 

AUKF algorithm. Section IV shows simulation results. 

Finally, Section V makes a summary of the main findings. 

 

Fig. 1.  Dugoff tire model 

II. TIRE AND VEHICLE DYNAMICS MODELS 

A. Dugoff tire model 

As a staple in automobile tire modeling, the Dugoff model 

primarily addresses slip rate and stiffness while disregarding 

factors such as radial deformation, yaw angle, and wheel 

speed in the computation of normalized tire force [14]. In 

contrast to the more intricate magic tire model, the Dugoff 

tire model demands fewer parameters and involves less 

computation. Fig. 1 is given to illustrate the force analysis 

conducted within the Dugoff tire model.  

The expressions for longitudinal force and lateral force of 

the tire can be delineated in (1) and (2): 
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where
xF is the longitudinal force of the tire, yF is the lateral 

force of the tire,  is the road adhesion coefficient,  is the 

side deflection angle of the tire, and
xC , yC are the 

longitudinal and lateral stiffness of the tire.  
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where  is the speed influence coefficient and L is the 

boundary value, which is used to describe the nonlinear 

characteristics caused by the slip rate. A new Dugoff tire 

model formula can be obtained by normalization of the above 

formula:  
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where 0

xF and 0

yF represent the normalized representation of 

the longitudinal and lateral forces of the tire respectively, and 

the influence of the road adhesion coefficient can be ignored.  

The normalized force of the tire can be solved by the 

following formula: 
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During vehicle operation, the formula for computing the 

slip rate is given by: 
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where
ij

v is the longitudinal speed of each wheel, 
ij

 is the 

angular speed of each wheel, 
wR is the effective rolling 

radius of the wheel. The calculation formula of the wheel 

center speed is:  
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where
cFLv , 

cFRv , 
cRLv and

cRRv are the speeds at the center of 

the left front wheel, right front wheel, left rear wheel and 

right rear wheel; 
FL , 

FR , 
RL and

RR are the angular 

velocities of the left front wheel, right front wheel, left rear 

wheel and right rear wheel, respectively. 
xv is the 

longitudinal speed of the car and yv is the lateral speed of the 

car. 

The formula for calculating the tire's side deflection angle 

is expressed as follows: 
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B. Vehicle dynamics model 

Since the longitudinal, lateral, and yaw motions of the 

vehicle is imperative for accurately estimating both the 

motion state parameters and the road adhesion coefficient 

[15], the state of the tire directly influences the road adhesion 

coefficient. Thus, taking the inclusion of the rotation of all 

four wheels into consideration. this paper adopts the seven 

degree of freedom model as the dynamic model, as illustrated 

in Fig. 2. The vehicle's center of mass is the starting point for 

the coordinate system in this model. The vertical axis aligns 

with the forward direction of the vehicle, with forward 

motion designated as positive. The horizontal axis 

corresponds to the vehicle's lateral direction, with leftward 

movement denoted as positive. Furthermore, torque within 

the horizontal plane is deemed positive in the 

counterclockwise direction. For the simulation, the vehicle 

dynamics model assumes several things: no aerodynamic 

effects, no vertical movement, no pitch and roll motions, and 

all tires have the same physical properties.  model are as 

follows: 

Longitudinal movement: 

 x x ya      (14) 
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Lateral movement: 

 y y xa      (16) 
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Yaw movement: 

 
1
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Fig. 2.  Seven degree of freedom vehicle dynamics model 
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Wheel rotation equation: 
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where
xa and ya are longitudinal and lateral acceleration 

respectively,  is the yaw speed of the vehicle,  is the angle 

of the front wheel of the vehicle, m is the mass of the vehicle, 

the inertia of the vehicle rotating around the Z axis is 

denoting
zI , and the yaw moment of the vehicle around the Z 

axis is denoting Γ . J is the rotational inertia of the wheel 

and R is the rolling radius of the tire. Subscripts FL, FR, RL 

and RR represent the left front, left rear, right front and right 

rear wheels respectively, then
xiF and yiF represent the 

longitudinal and lateral forces on the corresponding tires 

respectively, 
iw represents the angular acceleration of the 

corresponding wheels, dT and bT represent the driving torque 

and braking torque of the corresponding wheels respectively. 

III.  ROAD ADHESION COEFFICIENT ESTIMATION 

A. Estimation of road adhesion coefficient based on 

AUFK 

(1) Improved unbiased transformation 

The unbiased transformation is a key part of the standard 

Unscented Kalman Filter (UKF) method, especially good for 

solving nonlinear problems [16]. Initially, Sigma points are 

meticulously chosen to approximate the statistical 

characteristics of the original state. Subsequently, nonlinear 

transformations are applied to these points, yielding the 

statistical properties of the transformed state. Ultimately, the 

mean and covariance of these transformed points are 

judiciously weighted to yield the optimal estimation of the 

nonlinear problem. 

The nonlinear system in this paper can be represented 

by ( )y f x , assuming that x and
xP are the mean and 

variance of the state vector x , respectively. To satisfy the 

statistical characteristics of calculating y , a Sigma vector
i , 

2 1i L  is first set, and then weighted to obtain the 

corresponding mean and covariance weights ( )m

iW and ( )c

iW . 

Where L is the number of Sigma points of the sampling 

strategy. The UT transformation process for the symmetric 

sampling strategy is as follows: 
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where  is a scale parameter,  is used to calculate the 

distribution range of Sigma points near x ,  is a 

second-order scale parameter,  is the combination of 

previous states related to x distribution, 

and ( ( ) )x iL P represents the value of the i row of the 

square root of the matrix. 

However, in this UKF algorithm, the distance between the 

Sigma point and the mean point ( )L P grows as the 

dimension grows, which causes a 'non-local effect' during 

sampling [17]. The measurement function's nonlinearity 

directly impacts the filtering accuracy of the algorithm.  In 

order to solve this "non-local effect" and ensure the 

semi-positive quality of the covariance matrix, this paper 

considers the proportional sampling correction of the Sigma 

point set obtained previously. The revised formula is as 

follows:  
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where
1a is the scaling correction parameter, and its value 

is  0,1 , ( ) ( 1| )iX k k is the one-step prediction of Sigma 

point set, and f is the nonlinear transformation of the system 

state quantity.  

Put the assumed Sigma points into the nonlinear 

relation  ·f to obtain the transformed Sigma point set iy : 

   , 0,1,2..., 2i iy f i L   (28) 

Then the transformed Sigma points are weighted to 

estimate the mean and variance of the y approximation. 
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(2) AUK filter flow 

This paper proposes an AUK filter flow based on the 

'modified unbiased transform: 

 
1 ( , , )
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k k k k

k k k
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y h x v
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
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 (30) 

where kx is the state variable, ku is the input variable, ky is 

the output variable, kw and kv are the process noise and 

output noise respectively.  

1) Filter initialization, 0k  : 

  0 0x̂ E x  (31) 

   0 0 0 0 0
ˆ ˆ

T
P E x x x x   

 
 (32) 

where( (0 0)x )is the initial value of 0x . 

2) For 1,2,k  : 

(a) 2 1n  Sigma points are obtained according to UT 

transformation theory: 

      1 ( 1) 1 1ˆ , ,2 ,ik x k n P k i n         
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(33) 

where  is the scale parameter and n is the number of 

sampling points. 
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(b) Time update 

Take the obtained Sigma point set and calculate the 

transformed Sigma point set through the equation of state: 

  ( 1) ( 1), ( 1)k k f k u k    ∣  (34) 

According to UT transformation theory, the mean weight 

is carried out to calculate the predicted mean of the state: 
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where ( 1)i k k ∣ is column i of matrix ( 1)k k ∣ , 

0,1,.. 2i N . 

According to UT transformation theory, covariance 

weighting is performed to calculate the predicted variance of 

the state: 
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Bring the transformed Sigma point into the observed 

equation for nonlinear analysis: 

    1 ( 1)k k h k   ∣  (37) 

Then the weighted summation method is used to estimate 

the predicted values of the observed variables: 
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where ( 1)i k k ∣ is column i of matrix, 0,1, , 2i N  . 

(c) Measurement updates 

Within the UT transformation, a proportional correction 

coefficient is incorporated to mitigate the "non-local effect" 

encountered during the sampling process. While this 

correction proves efficacious, practical implementation 

reveals that the UKF algorithm is highly sensitive to initial 

filter values, potentially leading to filter divergence [18]. 

Hence, this study introduces a noise adaptive coefficient to 

enhance the original algorithm by augmenting the 

proportional correction. This noise adaptive coefficient 

estimates and corrects noise and statistical parameters of 

uncertain system models. It also adjusts predicted values 

based on observations. Consequently, the traditional forecast 

covariance undergoes the following update: 

Calculate the updated state covariance: 
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Calculate the cross-correlation matrix: 
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where k is the noise adaptive coefficient, and the value range 

is 0 1k  . 

Choosing the right adaptive coefficient is crucial. It 

balances the weight between the estimated and observed 

values and reduces the impact of interference on the results. 

The value of k is as follows: 
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where, the predicted residual: 

 ( ) ( 1| ) ( 1| )i

k Z k k Z k k   m  (42) 

Calculate the updated filter feedback gain: 

   1( 1)xy yyK k P k k P ∣  (43) 

Calculate the filter value after the status update: 

 ( | ) ( | 1) ( )( ( ) ( | 1))ˆ ˆ ˆx k k x k k K k y k y k k      (44) 

Check the difference matrix after calculating the state: 

        yy| | 1
T

P k k P k k K k P K k    (45) 

(3) Road adhesion coefficient estimation model 

In this study, a co-simulation approach utilizing Carsim 

and Simulink is employed to validate the algorithm's 

accuracy. Parameters such as vehicle mass, front wheel 

distance, and rear wheel distance are configured within the 

vehicle model in Carsim. Meanwhile, the Dugoff tire model, 

seven-degree-of-freedom vehicle dynamics model, and 

algorithm are implemented in Simulink. Through the 

integration of Carsim and Simulink, the comparative 

advantages of the Adaptive Unscented Kalman Filter (AUKF) 

in estimating pavement adhesion coefficient, in terms of 

convergence and estimation accuracy, are demonstrated 

across diverse road conditions when juxtaposed with the 

traditional UKF algorithm. The overarching framework of 

the model is illustrated in Fig. 3. 

 

 
Fig. 3.  Model framework 

IV.  SIMULATION RESULTS 

To evaluate the efficacy of the proposed method under 

actual braking scenarios, a series of experiments are 

meticulously designed in this study. These experiments 

encompass diverse road conditions, including low adhesion 

coefficient surfaces, high adhesion coefficient splice roads, 

and transitional roads. Through systematic experimentation, 

a comparative analysis of the performance between the UKF 

and AUKF algorithms is conducted. 

To facilitate a comprehensive comparison, high and low 

adhesion coefficient conditions are concurrently simulated 

through splice pavement experimentation. Splice pavement 

entails partitioning the road into distinct sections, each 

assigned a specific adhesion coefficient. Specifically, when 

the vehicle's speed exceeds 48 km/h, the adhesion coefficient 

for dry cement and dry asphalt surfaces is set at 0.8, while in 

wet conditions, it is adjusted to 0.5. Simulation is commonly 

represented as depicted in the Fig. 4. 
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Fig. 4. Road conditions of simulation. 

 

For simulation purposes, a dedicated vehicle model within 

Carsim is selected and configured based on pertinent 

parameters outlined in TABLE I. 
TABLE I 

VEHICLE PARAMETERS 

argument value 

Vehicle mass (kg) 1765 
Front wheel distance (m) 1.6 
Rear wheel distance (m) 1.6 

Distance from center of mass to front axis (m) 1.2 

Distance from center of mass to rear axis (m) 1.4 
Effective rolling radius of the wheel (m) 0.354 

Moment of inertia (kg/m2) 3234 

(1) Low adhesion road simulation verification 

For simulation verification of low adhesion road surface, 

the road adhesion coefficient of left front wheel and left rear 

wheel  is set as 0.5, the initial vehicle speed is 16m/s, and 

the simulation time is 1s. The simulation results are shown 

from Fig. 5 to Fig. 9. 

 
Fig. 5.  Longitudinal acceleration 

 
Fig. 6.  Friction coefficient of the tires (FL) 

 
Fig. 7.  Friction coefficient of the tires (FR)
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Fig. 8.  Estimation error of the tires (FL) 

 
Fig. 9.  Estimation error of the tires (FR)

Through analysis and comparison of simulation curves, 

both the AUKF and UKF algorithms demonstrate a tendency 

to converge towards the predefined standard value. However, 

the AUKF algorithm exhibits notably swifter convergence 

and heightened precision when juxtaposed with the UKF 

algorithm. Building upon the foundation of the standard UKF, 

this study introduces the noise adaptive coefficient to 

mitigate anomalous disturbances, thereby refining the 

estimated outcomes of the system. 

In tests for estimating the road adhesion coefficient of the 

left front and rear wheels, the AUKF method shows much 

smaller errors than the UKF method, with about 2% 

difference. 

(2) High adhesion road simulation verification 

Keeping all other Carsim parameters the same, the road 

adhesion coefficient is set to 0.8. Then, simulations are done 

on the right front and rear wheels. The simulation outcomes, 

depicted from Fig.10 to Fig.14, emonstrate similarities to 

those observed on pavements with low adhesion coefficients. 

Notably, the convergence speed is accelerated, albeit 

accompanied by a modest increase in estimated error, ranging 

from 2% to 3%. Furthermore, the maximum estimated error 

experiences a significant reduction. 

 

 
Fig. 11.  Friction coefficient of the tires (RL)

 
Fig. 10.  Longitudinal acceleration 

 
Fig. 12.  Friction coefficient of the tires (RR) 
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Fig. 13.  Estimation error of the tires (RL) 

 

 
Fig. 14.  Estimation error of the tires (RR) 

(3) Simulation verification of transition road 

To simulate the abrupt variation in road adhesion 

coefficient, this study establishes a scenario wherein the 

coefficient transitions from 0.8 to 0.5 in the 5th second, 

symbolizing an instance where the vehicle encounters sudden 

rain while in motion. Other parameter settings remain 

unaltered, and the simulation outcomes are illustrated from 

Fig. 15 to Fig. 20. 

 

 
Fig. 15.  Friction coefficient of tires (FL & FR) 

 
Fig. 16.  Magnified view 

 
Fig. 17.  Friction coefficient of tires (RL & RR) 

 
Fig. 18.  Magnified view 
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Fig. 19.  Estimation error of the tires (F2) 

 
Fig. 20.  Estimation error of the tires (R2) 

 

When there are sudden changes in the road adhesion 

coefficient, the proposed AUKF algorithm quickly converges 

to the set value, with slight improvements in estimation error. 

V.  CONCLUSIONS 

Based on by a seven-degree-of-freedom vehicle dynamics 

model and the Dugoff tire model, this study presents a 

comprehensive approach to estimate the pavement adhesion 

coefficient. An AUKF algorithm is proposed for this purpose. 

Initially, the algorithm employs a proportional correction 

coefficient in the unbiased transformation stage to mitigate 

the "non-local effect" inherent in the sampling process. 

Subsequently, an adaptive coefficient is integrated into the 

standard UKF, and the updated covariance matrix is 

employed to dynamically regulate filtering gain in real time, 

which enhances the algorithm's adaptability to abrupt states. 

Experimental verification corroborates the efficacy of the 

proposed approach, leading to the following conclusions.  

(1) The proposed AUKF algorithm can achieve precision 

estimation of the road adhesion coefficient, effectively 

capturing variations across diverse road conditions. 

(2) Under identical conditions, owing to the correction of 

the "non-local effect" and the incorporation of the adaptive 

coefficient in the unbiased transformation stage, the proposed 

AUKF outperforms the traditional UKF in terms of filtering 

accuracy and convergence speed. 
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