
Abstract—Cost management plays a vital role in ensuring
the successful execution of different engineering projects, with
precise costing serving as the cornerstone of effective cost
management strategies. Recently, the machine learning
technique offers an accurate and efficient method for
forecasting construction expenses, introducing a novel
approach to cost accounting other than conventional
calculation techniques. This paper provides an overview of the
current research landscape in the realm of cost prediction
utilizing machine learning, also addresses some new research
focuses and limitations. By utilizing highway tunnel
engineering as a case study, this study employs an
Interpretative Structural Model (ISM) to analyze the primary
factors influencing construction costs. Subsequently, a
construction cost prediction model is developed, leveraging a
Stacked Sparse Autoencoder (SSAE) network within a deep
learning framework. Last, the proposed model is trained using
real construction projects as samples. Results show that there
are some good prediction outputs with a remarkably low
mean absolute percentage error of 0.71%. Thereby, they
verified the identifying precision of key influencing factors
and the reliability of the cost prediction model.

Index Terms—construction cost, highway tunnel
engineering, Interpretative Structural Model, prediction,
Stacked Sparse Autoencoder

Ⅰ. INTRODUCTION

OST management covers the entirety of project
construction, including planning, decision-making, and

other construction stages. It not only impacts the interests
of project stakeholders but also has significant implications
for governmental bodies, industry associations, and the
broader public. Within the planning and decision-making
stages, the cost minimization goal plays a pivotal role in
guiding investment decisions and selecting implementation
strategies. Throughout the implementation phase, effective

Manuscript received November 24, 2023; revised August 14, 2024.
This work was supported by the Double-First Class Major Research

Programmes GSSYLXM-04, Educational Department of Gansu Province.
Jing-Qun Zhou is a postgraduate student at the School of Traffic and

Transportation, Lanzhou Jiaotong University, LanZhou 730070, China.
(Corresponding author, phone: 6860199, e-mail: 18143773065@163.com).

Qi-Ming Liu is the department head of Gansu Road and Bridge
Construction Group, LanZhou 730070, China. (e-mail:
1850398588@qq.com).

Chang-Xi Ma is a professor at the School of Traffic and Transportation,
Lanzhou Jiaotong University, LanZhou 730070, China. (e-mail:
machangxi@mail.lzjtu.cn).

Dong Li is a postgraduate student at the School of Traffic and
Transportation, Lanzhou Jiaotong University, LanZhou 730070, China.
(e-mail: 854268596@qq.com).

cost management facilitates the rational distribution and
utilization of project resources, aids in the timely
identification of potential risks and challenges, and enables
the coordinated oversight of project schedule, quality,
safety, and environmental considerations. Thereby it
enhances construction progress. Cost management is
essential for successful project execution and the attainment
of project objectives, with precise cost accounting serving
as the cornerstone of effective cost management.

Currently, engineering construction costs are calculated
using customized software, with the basic calculation
principle as follows. Cost indicators for labor, machinery,
and material consumption are determined by selecting cost
indices based on entered quantities. Then, the engineers are
multiplying them by specified labor, machinery, and
material prices to calculate direct costs. Based on the direct
costs, other costs are calculated using rate standards
selected according to the characteristics of the project, and
the total construction cost is obtained by summarizing
direct costs and other costs. The current cost calculation
methods are cumbersome, time-consuming, and inefficient,
with the calculation process being primarily guided by
subjective human understanding, relying on manual data
processing. The resulting calculations frequently exhibit
substantial discrepancies from actual expenditures, while
the static and inflexible nature of these methods fails to
accommodate the dynamic demands of construction
projects [1]. With the advent of the big data era and the
rapid development of artificial intelligence, variable, and
feature selection is conducted from engineering design and
construction parameters and work environment to predict
construction costs [2]. Based on machine learning and
construction cost management theory, these new methods
are providing a new approach to obtaining construction
costs. This predictive method not only provides immediate
and accurate results, promptly capturing project changes for
dynamic cost monitoring but also enables reasonably
accurate cost predictions before commencing design tasks.
The preemptive nature of this approach is of significant
importance in guiding design and construction activities
and cost control.

Over the past three decades, substantial advancements
have been achieved in cost prediction research leveraging
big data and machine learning, which can be succinctly
categorized into three stages. In the first stage, the
prediction of construction cost components such as cost
indicators and material prices was conducted. This was
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done using data sequence-based methods including time
series analysis, exponential smoothing, regression analysis,
and grey system theory, for instance. Wang et al. [3]
employed the GM(1,1) model from grey system theory to
forecast the comprehensive unit cost of residential
construction in the area, using the existing residential
buildings at Qufu Normal University as a case study for the
upcoming decade. Zhang [4] utilized time series analysis to
examine the traits of the unit cost sequence in affordable
housing projects across six regions in Xinjiang, China and
developed an ARIMA model for predictive purposes. In
this stage, researchers also used decision trees, random
forests, and other methods to select calculation parameters
of traditional cost calculation methods in order to achieve
more accurate cost calculations. For instance, An et al. [5]
used the random forest algorithm to select important factors
influencing the construction of power transmission line
projects as calculation parameters for traditional cost
calculation methods and demonstrated the superiority of
this method through examples. In the second stage, cost
prediction models were established using cost data and
information from completed projects, utilizing principles of
shallow algorithms such as Support Vector Regression,
Traditional Hidden Markov Models, and Backpropagation
Neural Networks (BPNN). Jiang et al. [6], for instance,
optimized the initial threshold values of BPNN using
particle swarm algorithm, and based on grey relational
analysis, constructed an index system to establish the
PSO-BPNN. Li [7] utilized Support Vector Machines to
establish the mapping relationship between engineering
costs and influencing factors, optimized the algorithm
parameters of Support Vector Machines through genetic
algorithms and developed a cost prediction model for
comprehensive utility tunnel projects. Yang [8] devised a
cost prediction model for residential building projects using
BP Neural Networks, which simulated and forecasted the
construction costs of 26 residential building projects in
Hangzhou City. Li et al. [9] optimized the parameters of the
Extreme Learning Machine model using the Bird Swarm
Algorithm to develop the BSA-ELM model for predicting
construction costs of building projects. Diana et al. [10]
integrated both the Bromilow's time cost model and
process-based data-driven model to propose an early stage
construction cost prediction model, which has shown the
highest level of prediction accuracy to date. In the third
stage, researchers endeavored to develop innovative
prediction models by applying diverse theoretical principles
in order to discover new methods for better prediction
results. For example, Swei [11] presents an approach for
cost estimation that combines a maximum likelihood
estimator for data transformations with least angle
regression for dimensionality reduction to evaluate
competing transportation investments. Shahrara [12]
employed gene expression programming techniques to
create a prediction model for automating the estimation of
construction costs for water and sewer replacement projects.
Many scholars have summarized the development of cost
prediction based on machine learning. For instance, Duan
[13] summarized the principles, advantages, disadvantages,
and application requirements of commonly used cost
prediction methods. Additionally, the author outlined the

progress of the research on engineering cost prediction
models. Finally, Duan suggested improving the universality
of models and strengthening the establishment of
comprehensive market cost information databases
containing various construction elements. Elmousalami [14]
summarised the existing construction cost prediction
models and emphasized that these models are all
considered as black box models, which makes their
generalization difficult.

In summary, there are two main shortcomings in current
research. Firstly, scholars have not fully utilized more
advanced deep learning theories to build deep neural
networks with better predictive performance [15] for
forecasting engineering construction costs. Secondly, due
to the fixed structural form, minimal construction
interference established technical management methods,
and strong predictability of costs in residential and
small-scale installation projects, current cost prediction
studies based on machine learning mainly focus on building
and installation engineering.

Highway engineering construction is significantly
influenced by the natural environment, characterized by
high site mobility, stringent quality and safety control
requirements, and construction costs constrained by the
level of construction organization management. Predicting
costs for highway engineering presents more significant
challenges compared to building projects, particularly for
highway mountain tunnel projects, which represent the
most intricate aspect of highway engineering due to
numerous uncontrollable construction factors, extensive
organizational coordination challenges, and high technical
demands [16]. To date, no scholar has investigated cost
prediction specifically for highway mountain tunnel
projects. This paper boldly selects the construction cost of
highway mountain tunnel projects as the research focus for
prediction, conducts ISM analysis on the chosen prediction
features, and utilizes SSAE to forecast the construction cost
of highway tunnel projects.

Ⅱ. METHODOLOGY

A. Interpretive Structural Model
The construction environment in highway tunnel

engineering is intricate and dynamic, influenced by various
factors that impact costs. These factors interact and impose
constraints on one another, leading to a complex and
intricate relationship. In employing the empirical method to
choose cost-influencing factors as input variables for
prediction, the unclear relationships and constraints among
these factors can lead to the selection of numerous factors
with overlapping relationships and consistent effects.
Consequently, this results in an excessive selection of
influencing factors, heightened model complexity, and
diminished prediction accuracy. Employing the ISM
method to elucidate the logical structure relationships
among influencing factors, recognize the hierarchical
relationships of each influencing factor, and pinpoint the
key factors governing and determining construction costs
can streamline the prediction process and enhance
prediction accuracy.

The ISM method was proposed by Warfield in 1976 [17]
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and has been used extensively in the analysis of complex
systems in engineering. The ISM method is based on the
principles of interaction, causality and transitivity. It
transforms intricate and disorderly relationships among
system elements into a precise multi-level hierarchical
structural model, facilitating the analysis and disclosure of
complex relationship structures to enhance comprehension
of the system's key factors. The steps in the application of
the ISM method are shown in Figure 1.

Fig. 1. Flowchart of the ISM method usage.

The conceptual system comprises system elements and
the relationships that constrain them. The adjacency matrix,
derived from the conceptual system and referred to as the
original data matrix, is represented as a matrix

a ij n n
A


    . The matrix element a ij is given by (1).

i j

i j

1      C  direcly influences or constrains C . 
a

0      C  doesn't direcly influences or constrains C  ij

 


(1)

where iC or jC represent system elements.
The accessible matrix describes whether there is a path

from one element to another element. Let the accessible
matrix be denoted as the matrix ij n n

P p


    , which can

be expressed as (2).

i j

i j

1      there is a path between C  and  C  

0      there is no path between C  and  Cijp
 


(2)

where iC or jC is still an element of the system.
Common techniques for solving accessible matrices

include the chain multiplication method, the power method,
and the Warshall method. This paper employs the chain
multiplication method to solve the accessible matrix. The
identity matrix is denoted as I , and Boolean operations
are applied to matrix A I until it meets the specified

condition ( 1) 2 ( 1)( ) ( ) ( )k k kA I A I A I P       , then
P matrix is designated as the accessible matrix. The
connectivity of the accessible matrix is computed, leading
to its division into multiple disjoint regions. The
connectivity of the accessible matrix is computed, leading
to its division into multiple disjoint regions. Subsequently,
contraction operations are performed to acquire the strongly
connected components, followed by removing of all
forward edges to derive the skeleton matrix. The
hierarchical division involves initially extracting the system
elements that represent the final results and positioning
them in the topmost layer. The iterative process persists
until all elements have been extracted, completing the
hierarchical division of the system and unveiling the
hierarchical relationships among the elements. Lastly, the
hierarchical relationship diagram of the system is drawn up.
Upon acquiring the hierarchical relationship diagram, the
findings can be analyzed in light of the specific problem
scenario to enhance comprehension and facilitate more
effective problem resolution.

B. Stacked Sparse Autoencoder
Deep learning is derived from studies on artificial neural

networks. Currently, learning algorithms for neural
networks are mainly aimed at lower-level network
structures, referred to as shallow structure neural networks,
which consist of a single input layer, one hidden layer, and
one output layer. Conversely, networks with higher levels
of non-linear operations are called deep-structure neural
networks, such as a neural network with one input layer,
three hidden layers, and one output layer. Deep learning
obtains the main driving variables of input data through
layer-by-layer learning algorithms, which can effectively
represent complex high-dimensional functions, such as
high-order functions, with high computational complexity,
good generalization ability, and the ability to obtain
multiple levels of extracted features for repeated use in
similar but different tasks [18]. Typical deep learning
models comprise convolutional neural networks, deep
belief networks, and stacked autoencoder models.
Convolutional neural networks are multi-layer perceptron
neural networks that enforce constraints on network
structure through feature extraction, mapping, and
subsampling. They excel in various pattern recognition
tasks, particularly image processing and computer vision.
Deep trust networks consist of stacks of special forms of
Boltzmann machines and are widely used in data
dimensionality reduction, feature learning, collaborative
filtering, and topic modeling. The cost-influencing factors
in highway tunnel engineering are intricate, and acquiring
engineering characteristics and cost data is challenging.
This problem is label-free, with a small sample size, high
dimensionality, and nonlinearity, where samples are
independent and unrelated, rendering it unsuitable for
prediction using convolutional neural networks and deep
belief network models.

Stacked autoencoder networks comprise stacked
structural units known as autoencoders. Traditional
autoencoders mainly consist of encoding and decoding
stages, and the structure is symmetric. If there are multiple
hidden layers, the encoding and decoding stages contain an
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equal number of hidden layers. The encoding and decoding
processes can be described as (3) and (4).

encoding process: 1 1 1( )eh w x b  (3)
decoding process: 2 1 2( )dy w h b  (4)

where 1w and 1b represent the encoding weights and
biases, 2w and 2b denote the decoding weights and
biases, e signifies the commonly used non-linear
transformations like Sigmoid, Tanh, and Relu, among
others, and d indicates the same non-linear or affine
transformation employed in the encoding process [19].
Traditional autoencoders train by minimizing the
reconstruction error ( , )L x y . The loss function can be

represented as ( , ) ( , )J W b L x y . In addition to
expressing the reconstruction error between x and y in
the form of mean square error, as shown in (5),
cross-entropy can also be an alternative, as illustrated in
(6).

2
2( , ) ( , )J W b L x y y x      (5)

1

( , ) ( , ) ( log( ) (1 ) log(1 ))
n

i i i i
i

J W b L x y x y x y


       (6)

The above encoding and decoding process does not involve
the label information of the input data, so traditional
autoencoders are classified as unsupervised learning
methods.

Based on traditional autoencoders, classical improved
autoencoders include convolutional autoencoders, sparse
autoencoders, shrinkage autoencoders, etc. Sparse
autoencoders constrain the average activation value of
hidden layer neurons' output based on traditional
autoencoders, suppressing most of the outputs of hidden
layer neurons, achieving a sparse effect in the network [20].
Using the KL divergence, it forces the average activation
value of hidden layer neurons' outputs to be close to a given
sparse value and adds it as a penalty term to the loss
function. The penalty term can be defined as (7).

2

1

1( ) log (1 ) log
1

s

j
j

j j

KL     
 



 



  


 (7)

where
j


represents the average activation value of

hidden units for m samples, 2s is the number of hidden
neurons in the hidden layer, and the index j represents each
neuron in the hidden layer in turn. The penalty term is the
relative entropy between two Bernoulli Random Variables

with  as the mean and
j


as the mean. Subsequently,

the loss function of the sparse autoencoder can be
expressed as (8).

1
( ) ( , ) ( )

h

SAE j
j

J W L x y KL  




    (8)

where  is employed to regulate the weight of the sparse
penalty term, being capable of assuming values within the
range of 0 to 1. The lower  is, the more influential the
inhibitory effect, and usually takes a value close to 0.

The structure of the sparse autoencoder is depicted in Fig.
2. The SSAE is a deep neural network comprised of
multiple sparse autoencoder structural units. It employs the
greedy layer-by-layer idea to train each autoencoder model
unsupervised, iteratively initializing the parameters of each
layer, stacking the neural networks of each layer, and
transforming into a deep supervised feedforward neural
network, adjusting all parameters according to the
supervision criteria. As the number of layers of sparse
autoencoders increases, the learned feature representation
of the original data becomes more abstract [21]. The
working process of the SSAE is illustrated in Fig. 3.

Sparse autoencoders can learn the key features of source
data, revealing distinctive characteristics and patterns,
reducing data dimensions, implementing sparse data coding,
and showcasing outstanding noise resistance and
generalization performance. The input data processing in a
stacked autoencoder proceeds sequentially, layer by layer,
with each neural network layer extracting varying levels of
features from the raw data. Features acquired in the higher
neural network layers remain constant regardless of
changing factors. Additionally, the network's learned
function involves a higher level of non-linear operational
combinations, enhancing its capacity to address complex
problems and improve robustness. This study opts for a
SSAE network model to forecast the construction cost of
highway tunnel engineering.

Fig. 2. Sparse autoencoder structure.
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Fig. 3. The SSAE work process.

Ⅲ. DATA

A. Identification of Influencing Factors
Employing methods such as expert interviews, historical

data statistics, and field investigation methods, taking into
account natural conditions like topography, geology, and
hydrology, along with social and economic environments,
tunnel construction conditions, design structure, and
construction organization, comprehensively and completely
identify the influencing factors on the construction cost of
highway tunnel engineering from decision-making,
surveying to completion. During the identification process,
it is essential to adhere to the following principles: First,
prioritize completeness by thoroughly identifying all
factors influencing tunnel construction costs without
omissions. Secondly, focus on low coupling to ensure
minimal correlation between factors and a high degree of
distinction. The identified factors should independently
represent a class of influencing factors. Thirdly, emphasize
conciseness by minimizing the number of factors while
maintaining completeness. This can be achieved by
eliminating weakly effective factors and combining those
with similar effects. Fourthly, maintain objectivity by
accurately defining influencing factors, assessing their
impact on construction costs, and avoiding subjective
speculation about their influence. Lastly, consider
identifiability by ensuring that influencing factors are easily
identifiable, and measurable, and that data collection and
processing are straightforward. During the specific
identification work, parameters such as pavement cross
slope, pavement profile design, and tunnel plane design,
although essential design parameters have a feeble impact
on the construction cost of tunnels. Following the principle
of conciseness, they are not considered influencing factors.
For instance, while climate conditions can influence tunnel
construction costs, they are dictated by the engineering
geographical location. The geographical location has
already been identified as a cost influencing factor,
following the low-coupling principle, climate conditions
are not identified as influencing factors. The paper

concentrates on tunnel engineering costs. Furthermore,
tunnel lighting, power supply, and monitoring fall under
highway electromechanical and traffic safety engineering
per international standards. Thus, they are not within the
scope of this study.

According to the above principles and methods, the
following 16 cost-influencing factors have been identified.
Table I delineates each cost impact factor, providing
explanations for their meanings and the scope of content
they encompass. Table I is placed at the end of the content
and before the reference part.

B. Selection of Key Influencing Factors

The ISM is used to analyse and select the key cost
drivers. The process is as follows. Firstly, we have
established the conceptual system. The identified tunnel
construction cost influencing factors are considered as
system elements, numbered sequentially from C1 to C16.
Influence and constraint relationships between the system
elements are determined to establish a conceptual system,
based on the descriptions of each element in the previous
section. It is essential to analyze and discuss the
relationships between each element in detail. For example,
based on daily experience, regional economic and social
development constrain the level of participating
construction units. Higher levels of social and economic
development in a region correspond to increased levels of
participating construction units. However, upon
comprehensive comprehension of investment management
and contracting systems, it is evident that construction units
involved in highway tunnel projects do not exhibit regional
characteristics. All construction units are equally able to
partake in tunnel construction projects across different
regions. In addition, they use advanced production
materials from different regions at a single cost during the
production and construction phases. Therefore, regional
economic and social development does not directly
influence the participation level of construction units. The
ultimate conceptual system established is depicted in Table
Ⅱ . Table Ⅱ is placed at the end of the content and before
the reference part.

A =

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0

0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
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0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
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1
1
1
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0
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0
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0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
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0
1
1
1

0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0

(9)

Second, based on the relationships between elements in
the conceptual system, determine the value of (i=1,2,....,16,
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and j=1,2,....,16), and construct adjacency matrix A, which
can be seen in (9).

Then, using the method of continued multiplication, we
obtain the accessible matrix P, which can be seen in (10).
Based on the accessible matrix, computational software is
utilized for regional division, loop judgment, edge
reduction operations, and hierarchical division to obtain the
hierarchical relationships within the system and the
relationships between various elements in the system,
culminating in the illustration of the system's hierarchical
relationships depicted in Fig. 4.

Finally, by analyzing the distribution of elements across
different levels, with each lower level representing the
cause of the upper level and the bottom level indicating the
initial cause of the system, while the upper level reflects the
outcome of the preceding level, the root cause is identified
as the element at the bottom level. The system's
hierarchical relationship diagram is employed to
reconstruct the hierarchical relationship diagram among
various cost influencing factors [23], as depicted in Fig. 5.
Fig. 5 is placed at the end of the content and before the
reference part.

P =

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0

1
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0

1
1
1
1
1
0
0
0
1
0
0
0
0
0
0
0
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1
1
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0
0
0
0
1
0
0
0
0
0
0

1
1
1
1
1
0
0
0
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0
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0
0
0
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1
1
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1
1
1
1
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0
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0
0
0
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0
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0
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0
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0
0
0
0
0
0
0
0
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0
0
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0
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0
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0
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1

(10)

Fig. 4. Illustration of system hierarchical relationships.

Analyzing the interrelationships and constraints among
various factors in the hierarchical diagram of cost
influencing factors, geographical location, engineering

geological conditions, and other natural conditions
determine the tunnel construction, which in turn determines
the three basic design parameters of tunnel length, tunnel
type, and tunnel cross-section. The basic design parameters
further determine the values of detailed design parameters
such as tunnel portal structure, excavation support, tunnel
trunk structure, and ventilating design. The top four layers
of factors exert control over those beneath them, driving
changes in lower layers and serving as the fundamental
drivers of cost implications. Selecting the geographic
position, engineering geological condition, tunnel length,
tunnel type, and tunnel cross-section from the top 4 layers
of influencing factors as input variables for the prediction
model. Once the top 4 layers of influencing factors have
been selected as input variables, there is no need to
consider their lower-level influencing factors; otherwise, it
will result in redundant model inputs. The level of
participating units is a relatively independent influencing
factor, which, apart from being affected by tunnel length, is
unrelated to other factors. Its impact on cost needs to be
considered separately, thus it is selected as an input variable
for prediction.

C. Data Collection
Seventeen tunnel projects between 2020 and 2022 were

collected and selected as the research sample, with
construction starting in Gansu Province, China. These
tunnels are situated in 17 distinct cities and counties within
Gansu Province, with lengths varying from 214m to 6434m.
They are invested in, designed, supervised, and constructed
by owner units, design units, supervisory units, and
construction units of different levels, ensuring a diverse and
reliable dataset. Review of the design drawings,
construction progress and cost information of the selected
tunnel projects to gather data on key influencing factors.
The original data are extracted and outlined in Table Ⅲ.
Table Ⅲ is placed at the end of the content and before the
reference part.

The chapter initially identifies the factors influencing
tunnel construction costs using expert interviews, historical
data statistics, and field investigations. Subsequently,
employing the ISM, six key influencing factors are
determined from a pool of 16 factors. These key factors
include geographic location, engineering geological
conditions, tunnel length, tunnel type, tunnel clearance
section, and the level of participating units. Finally, sample
tunnels are chosen to gather data on these key influencing
factors.

Ⅳ. EXPERIMENT

A. Data Pre-processing
Six key influencing factors are categorized into

quantitative and qualitative indicators. Ensure the
qualitative index data is dimensionless, and normalize the
quantitative index data.

Geographic position refers to the absolute geographical
position of tunnel construction projects, determined by
latitude and longitude. The geographical location of the
project is divided by latitude and longitude into Central
Gansu, Southern Gansu and Northern Gansu. The
geographical location serves as a qualitative indicator with
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dimensionless units, with Central Gansu, Southern Gansu,
and Northern Gansu corresponding to 1, 2, and 3
respectively.

The tunnel length refers to the average length of the left
and right tunnels in the case of separate tunnels. If the
tunnel is connected by a cut-and-cover tunnel, the length of
these cut-and-cover tunnels is subtracted. The tunnel length
is a quantitative indicator in meters.

Then, the influence of tunnel type and tunnel cross
section on construction costs is considered, where they are
categorizing the sampled tunnels into three groups. Based
on this classification, detailed consideration is given to the
parts of engineering geological conditions that have a
significant impact on tunnel design, construction process,
and working environment, such as the self-stability of
surrounding rock, the hardness and integrity of rock mass,
and the buried depth of the tunnel. By integrating the rock
quality of the surrounding rock and relevant quality
indicators, the tunnel sections are further categorized into
15 types, detailed in Table Ⅳ. Section engineering
geological conditions in areas with significant deformations
and active faults are unique and should be considered
separately, classified into four types as shown in Table Ⅴ.
Based on a comprehensive consideration of the impact of
engineering geological conditions, tunnel types, and tunnel
cross sections on construction costs, the tunnel sections are
divided into 19 types, which are numbered consecutively.
Subsequently, the length of each section type in the sample
tunnel is determined and utilized as input data for
predictive analysis. The above-mentioned tunnel
classification method is universally applicable, and any
tunnel can be classified into sections using the process, as
the basis for statistical prediction input data. Based on this
classification criterion, statistical prediction input data is
calculated. The length of each section type in the sample
serves as a quantitative indicator, measured in meters.

Since the tunnel project as a sample is located in China,
the classification standard of construction units in China is
used as the basis for determining the grading standard of
the participating units in this paper, as shown in Table Ⅵ,
with excellent, good, fair, and poor grading scores of 1, 2, 3
and 4, respectively. Considering that the management level
of the owner unit has an important influence on the level of
the design, supervision and construction unit, the design
and supervision unit guides and supervises the construction
unit, and the construction unit's own construction
technology and management level has a direct influence on
the construction cost. We awarded the owner unit rating
weight 0.3, design unit rating weight 0.2, supervision unit
rating weight 0.2, construction unit rating weight 0.3. The
overall rating of the engineering participating units is
calculated by summing the weighted scores of the four
components. The level of participating units is a
quantitative indicator.

For quantitative factors, the dimensions of different
quantitative factors are different, and the data differences
within the same quantitative factor are too significant. If
not processed, the data characteristics cannot be reflected.
The dispersion standardization method is employed to
normalizes each quantitative factor [24], limiting the input
and output data from 0 to 1. The formula for the dispersion

standardization transformation is as in (11).

min max min( ) / ( )i ix x x x x


   (11)

where
ix


is the normalized data; ix is the currently

collected data; minx and maxx signify the minimum and
maximum values respectively within the data for that
category.

The non-dimensionalization and dispersion
standardization methods mentioned above were
implemented on the original sample data to prepare for the
prediction work, with the outcomes detailed in Table Ⅶ.
Table Ⅳ, table Ⅴ, table Ⅵ and table Ⅶ are placed at the
end of the content and before the reference part.

B. Modeling Prediction and Result Evaluation
As shown in Table Ⅶ, there are numerous qualitative

indicators in the predicted input data represented by 0 and 1.
However, data represented by 0 and 1 carry less
information, and an excessive focus on these inputs by the
model can lead to a decrease in prediction performance.
Leveraging the principles and benefits of the SSAE detailed
in Section 2, it can avoid interference from noisy data such
as 0 and 1, enhance data feature extraction, and exemplify
its proficiency in addressing complex high-dimensional
non-linear problems. Consequently, employing the SSAE
model for predicting the construction cost of highway
tunnels is highly suitable.

The MATLAB platform is more concise than
implementation platforms such as Python and C++, with
less code, which is helpful for debugging. Therefore, in this
paper we use MATLAB to establish an SSAE prediction
model.

The SSAE prediction model utilized in this paper
consists of an input layer, three autoencoder layers, a
softmax layer, and an output layer. Fig. 6 illustrates the
schematic diagram of this network model.

Fig. 6. The network structure of the prediction model.

The training samples, consisting of 13 training samples
and 4 test samples, were randomly selected. When the
number of neurons in the hidden layers of the three
autoencoders is set to 300, 300, and 200, respectively, the
maximum number of iterations is set to 500, 900, and 1000,
respectively, the coefficients controlling the impact of
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sparse regularization in the cost function are set to 2, 4, and
3 respectively, and the transfer functions of the encoder and
decoder are both set to the Logistic Sigmoid Function. The
sparsity proportion is set to 0.05, and the L2 weight
regularization coefficient in the cost function is set to 0.001.
The model achieves the best training effect. After analysis,
the three autoencoders reach their best training performance
at the 500th, 92nd, and 95th iterations, respectively, with
the corresponding performance values being 0.12502,
0.0018623, and 0.0000000051616. The calculated gradients
are 0.000111, 0.00186, and 0.00000088, respectively. The
training process of the three autoencoders is depicted in
Figs. 7, 8, and 9. The final training results of the model are
presented in Fig. 10, while the testing outcomes are
depicted in Fig. 11. Through the analysis of Figs. 10 and 11,
it is evident that there is a high degree of fit between the
real and predicted values of the training and testing samples.
The model exhibits outstanding performance, effectively
capturing the relationships and trends in the data. It is rarely
affected by noise interference and demonstrates strong
generalization ability.

Fig. 7. Autoencoder1 training process.

Fig. 8. Autoencoder2 training process.

Fig. 9. Autoencoder3 training process.

Fig. 10. The training effect of the SSAE model.

Fig. 11. The testing effect of the SSAE model.

To compare the predictive performance of deep and
shallow neural network structures, we selected the
best-fitting BP Neural Network (BPNN) model from the
shallow structure models. Simulation predictions were
conducted using Matlab with the same testing and training
samples. The BP network structure is a two-layer
feed-forward network with Sigmoid hidden neurons and
linear output neurons. The number of hidden neurons was
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set to 102. Since the input matrix of the model contains a
large number of zero elements and involves solving sparse
linear equations, the conjugate gradient method is the most
excellent iterative solution method for sparse linear
equation groups. The training algorithm is selected as the
Scaled Conjugate Gradient. The finalized testing outcomes
are illustrated in Figure 12.

Fig. 12. The testing effect of the BPNN Model

Due to the large order of magnitude of the sample data,
the prediction error is small relative to its volume, and the
prediction error cannot be directly observed from Figures
11 and 12. To better compare the prediction performance of
the models, the linear fit diagrams of the SSAE and BPNN
models are plotted with the actual values as the horizontal
axis and the predicted values as the vertical axis, as shown
in Figures 13 and 14, respectively. It is clear from the linear
fit diagrams that the Pearson's r of the SSAE model is 1 and
the Pearson's r of the BPNN model is 0.9997, and the
SSAE model has a better fit.

To precisely quantify and compare the prediction
accuracy and specific disparities between the two
prediction methods, the prediction outcomes of both
approaches were de-normalized. Subsequently, the absolute
error, relative error, root mean square error (RMSE), and
mean absolute percentage error (MAPE) of the two models
were computed and detailed in Table Ⅷ . Table Ⅷ is
placed at the end of the content and before the reference
part. The mean absolute percentage error of the prediction
results from the BPNN model is below 5%, and the root
mean square error is under 5 million yuan. Compared with
its fitting effect on other cost datasets [8], the RMSE and
MAPE of this dataset are significantly reduced, which
verifies that selecting key influencing factors for cost is
appropriate and plays an essential positive role in
improving prediction accuracy. The SSAE model's
predicted absolute error falls within the range of
[-295923.32, 1297151.97], with a relative error between
[-0.0075, 2.4827], an RMSE of 675842.24 ten thousand
yuan, and a MAPE of 0.71%. The BPNN model exhibits an
absolute error within the range of [-3199795.17,
7539099.72], a relative error between [-0.3886, 14.4293], a
MAPE of 3.7349%, and an RMSE of 4131027.35 ten
thousand yuan. The SSAE has a more stable prediction

effect and higher prediction accuracy. The SSAE model has
three sets of test samples with a predicted relative error
controlled within 0.30%, and the most minor relative error
of the sample is only 0.0075%. For a sample with an actual
cost of 1.36 billion yuan, the error margin is merely 10.3
ten thousand yuan, which is nearly insignificant in actual
engineering project construction. Please refer to Figure 15
and Figure 16 for a comparative visualization of the
predicted relative and absolute errors from the two models.
The error curve representing the prediction effect of the
BPNN model has large ups and downs and a wide range of
fluctuations, while the error curve representing the
prediction effect of the SSAE model has small fluctuations,
with the maximum relative error not exceeding 2.5% and
the maximum absolute error not exceeding 129.72 ten
thousand yuan. The comparison results show that the SSAE
model is more stable and reliable.

Based on the above analysis, the tunnel construction cost
prediction model established in this paper using SSAEs
yielded an RMSE of 675,842.24 million RMB and a MAPE
of 0.71%, with a minimum absolute relative error value of
only 0.0075%. The prediction accuracy is high, reliable,
and stable, surpassing models established on conventional
shallow networks such as the BPNN.

Fig. 13. Linear fitting of SSAE model predictions

Fig. 14. Linear fitting of BPNN model predictions
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Fig. 15. Comparison of the predicted relative errors of the two models.

Fig. 16. Comparison of the predicted absolute errors of the two models.

Ⅴ. CONCLUSION

This paper explores a new approach to determining
construction costs for highway tunnel engineering using
ISM methods and SSAE models. Firstly, the factors
influencing tunnel construction costs were comprehensively
identified, and using the ISM method, the influencing
factors that play a controlling and determining role were
identified and used as input variables for the predictive
model. Secondly, an analysis was carried out to compare
the advantages and disadvantages of shallow and deep
neural network structures, to assess the suitability of
common deep learning models, and ultimately to select the
SSAE model for predicting tunnel construction costs.
Finally, using real engineering projects as research samples,
we extracted and processed the prediction input data,
trained the prediction network model, derived the
prediction results, and compared the prediction effect with
the model constructed based on the principle of the BP
neural network.

The main research findings are as follows:
1) The predictive model input variables selected by the

interpretive structural model method have a strong
correlation with construction costs, and they are
comprehensive, concise, and have low coupling,
thereby simplifying the predictive structural model and
enhancing prediction accuracy.

2) The model, based on the SSAE, with a MAPE of
0.71%, shows that prediction accuracy is high, stable,
and reliable.

TABLE I
INTRODUCTION TO THE SELECTED IMPACT FACTORS

Serial
Number

Name of Cost Impact
Factor Definition of Impact Factor

C1 Geographical location. The absolute geographical location where the tunnel project is located to determine natural conditions such as
topography and climate.

C2 Engineering geological
conditions.

Encompass three components. The first pertains to topography, lithology, geological structure, bad geology and
special rocks and soils. The second component includes hydrogeological conditions such as hydrological conditions,
water corrosivity evaluation, and predicted water inflow. The third component relates to the earthquake and
neotectonic activity, primarily focusing on fault activity and seismic activity.

C3 Tunnel types. Categorized based on the tunnel's cross-sectional layout, it includes single tunnel with bidirectional traffic, separated
tunnel with unidirectional traffic, small interval tunnel, double arch tunnel, and bifurcated tunnel.

C4 Tunnel length. The distance between the end wall and the wall surface of the tunnel entrance and exit doors.

C5 Tunnel clearance
section. Denotes the area and shape of the section on the inside of the tunnel lining.

C6 Tunnel portal structure.
Refers to the tunnel portal type, structure, and engineering. Tunnel portal types include end wall, wing wall, column,
among others. Tunnel portal engineering encompasses the side slope, retaining wall, and drainage engineering of the
portal.

C7 Excavation support and
tunnel structure [22].

Pertains to tunnel excavation blasting, advance support, initial support, primary lining, secondary lining, inverted
arch lining, and inverted arch backfill.

C8 Ventilation design. Involves calculating tunnel air demand and developing a ventilation scheme, which may encompass natural
ventilation, fans, shafts, inclined shafts, etc.

C9 Pavement design. Encompasses tunnel pavement types, pavement structure design, and related aspects.
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CONTINUATION OF TABLE I
INTRODUCTION TO THE SELECTED IMPACT FACTORS

Serial
Number

Name of Cost Impact
Factor Definition of Impact Factor

C10 Auxiliary structures.
Refers to structures constructed for operation management, maintenance, water supply, drainage, ventilation, and
safety. It mainly refers to the length and design structure of the open-cut tunnel, the traversing tunnel of the car, the
traversing tunnel of the pedestrian and the emergency parking strip.

C11
Dynamic design and

information
construction.

Primarily focuses on tunnel site monitoring measurements and advanced geological predictions for the tunnel.

C12 Material prices. Encompasses the prices of major outsourced materials like steel bars and cement, comprehensive outsourced
materials such as iron wire and coatings, and local materials like sand and gravel.

C13 Waste soil and concrete
transportation distance.

Refers to the distance from the tunnel entrance and body excavation site to the waste disposal site or spoil ground.
The distance from the concrete mixing station to the construction site for tunnel invert, primary lining, secondary
lining, and other concrete engineering tasks.

C14 Local economic and
social development.

Encompasses the economic development level, local policy requirements, and social environment of the construction
site area.

C15 Level of participating
units.

Indicates the design, construction, organization, and management proficiency of the owner unit, design unit,
supervision unit, and construction unit.

C16 Construction period. The project completion deadline, which is the duration from the commencement of construction to the project's
completion.

TABLE Ⅱ
CONCEPTUAL SYSTEM

Serial
Number

Systematic
Element Elements of Direct Impact or Direct Constraint Serial

Number
Systematic

Element

Elements of Direct
Impact or Direct

Constraint

C1 Geographic
position

Engineering geological condition, Tunnel type, Tunnel
length, Tunnel cross section, Tunnel portal structure,
Excavation support and tunnel trunk structure,
Material price, Local economic and social
development, Construction period

C9 Pavement design Construction period

C2
Engineering
geological
condition

Tunnel type, Tunnel length, Tunnel cross section,
Tunnel portal structure, Excavation support and tunnel
trunk structure, Ventilating design, Ancillary
structures, Dynamic design and informative
construction, Construction period

C10 Auxiliary
structures Construction period

C3 Tunnel type

Excavation support and tunnel trunk structure,
Ventilating design, Pavement design, Ancillary
structures, Dynamic design and informative
construction, Construction period

C11
Dynamic design
and informative
construction

Construction period

C4 Tunnel length

Excavation support and tunnel trunk structure,
Ventilating design, Pavement design, Ancillary
structures, Dynamic design and informative
construction, Waste soil and concrete transportation
distance, Level of participating units, Construction
period

C12 Material price

C5 Tunnel cross
section

Excavation support and tunnel trunk structure,
Ventilating design, Pavement design, Ancillary
structures, Dynamic design and informative
construction, Construction period

C13

Waste soil and
concrete
transportation
distance

Construction period

C6 Tunnel portal
structure Construction period C14

Local economic
and social
development

Material price,
Construction period

C7

Excavation
support and
tunnel trunk
structure

Construction period C15 Level of
participating units

Material price, Waste soil
and concrete,
Transportation distance,
Construction period

C8 Ventilating
design Construction period C16 Construction

period Material price

TABLE Ⅲ
ORIGINAL DATA

Tunnel
Number

GeographicPosition
Total

Tunnel
Length(m)

SectionLength(m)

O
w

nerLevel

D
esign

Level

Supervision
Level

C
onstruction

Level

Construction
Cost( ten

thousandyuan)Latitude Longitude F5a F5b F5c F5d .... XK5a XK5b XK4a

1 100.46 38.94 5254.42 23 394 1195 0 .... 0 0 0 1 1 1 1 79316.18

2 105.74 34.58 3753.50 0 79 1146 0 .... 0 0 0 2 1 1 1 68565.31
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CONTINUATION OF TABLE Ⅲ
ORIGINAL DATA

Tunnel
Number

GeographicPosition Total
Tunnel

Length(m)

SectionLength(m)

O
w

nerLevel

D
esign

Level

Supervision
Level

C
onstruction

Level

Construction
Cost( ten

thousandyuan)Latitude Longitude F5a F5b F5c F5d .... XK5a XK5b XK4a

3 102.09 38.44 410.5 0 0 0 0 .... 311 490 0 2 1 1 2 11675.78

4 104.94 33.43 2402.50 5 251 251 0 .... 0 0 0 2 2 1 1 35269.15

5 96.00 40.42 440.00 0 0 0 0 .... 342.6 520 0 1 2 1 1 10842.35

6 103.70 36.44 693.50 15 0 0 0 .... 0 0 0 3 2 2 2 14143.34

7 104.51 36.85 373.50 0 0 0 0 .... 179 0 567 3 2 3 3 7022.98

8 103.22 35.60 2223.50 0 0 2995 0 .... 0 0 0 2 2 1 1 37486.37

9 105.15 34.22 234.00 0 0 0 0 .... 187 116 140 2 2 2 2 5401.88

10 104.88 34.69 346.00 0 0 0 0 .... 0 409 0 2 1 2 2 8184.48

11 103.03 37.90 2326.50 0 331 1112 0 .... 0 0 0 2 1 1 1 26933.91

12 104.63 35.06 2231.50 16 72 448 169 .... 0 0 0 2 2 1 1 26088.81

13 99.84 39.14 745.00 10 128 113 0 .... 0 0 0 1 1 1 1 10350.94

14 95.77 40.51 214.00 0 0 0 0 .... 252 160 0 2 1 1 2 5224.85

15 105.08 35.72 550.50 0 0 0 0 .... 0 0 0 3 2 2 3 7295.99

16 98.92 39.97 545.00 24 505 0 0 .... 130 0 0 2 1 2 1 8782.14

17 104.70 32.95 6434.00 4 267 859 666 .... 0 0 0 1 1 1 1 136014.55

TABLE Ⅳ
CLASSIFICATION OF TUNNEL SECTIONS BASED ON COST-INFLUENCING FACTORS

Classification by Type of Tunnel Classification by Engineering Geological Conditions Numbering

Standard section separation tunnel

Grade V surrounding rock semi-bright and semi-dark section and

Grade V surrounding rock portal shallow buried bias section
F5a

Grade V surrounding rock portal shallow buried reinforced section F5b

Grade V surrounding rock tunnel trunk normal section F5c

Grade V surrounding rock fault fracture zone section F5d

Grade IV surrounding rock shallow buried section F4a

Grade IV surrounding rock tunnel trunk normal section F4b

Grade IV surrounding rock deep buried section F4c

Grade III surrounding rock tunnel trunk normal section F3a

Small interval tunnel with standard

sections

Grade V surrounding rock portal shallow buried bias section and

Grade V surrounding rock shallow buried reinforced section of 10-20 m interval
X5a

Grade V surrounding rock tunnel trunk normal section X5b

Grade V surrounding rock portal shallowly buried reinforced section of 6-10m interval XX5a

Grade Ⅳ surrounding rock tunnel trunk normal section X4a

Small interval tunnel of the same

width as the subgrade

Grade V surrounding rock semi-bright and semi-dark section and

Grade V surrounding rock portal shallow buried reinforced section
XK5a

Grade V surrounding rock tunnel trunk normal section XK5b

Grade IV surrounding rock tunnel trunk normal section XK4a
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TABLE Ⅴ
CLASSIFICATION OF TUNNEL SECTIONS BASED ON COST-INFLUENCING FACTORS

Classification by Geological Structure Classification based on Residual Engineering Geological Conditions Numbering

Large deformation and active fault sections

Grade V surrounding rock strong large deformation section BX5a

Grade V surrounding rock medium large deformation section BX5b

Grade IV surrounding rock slightly large deformation section BX4a

Grade V surrounding rock passes through mobile moving fault section BX5c

TABLE Ⅵ
GRADING STANDARD FOR PARTICIPATING UNITS

Name of
Participating Units Excellent Good Fair Poor

Owner's unit Government unit Central enterprises State-owned enterprises

Design unit
Grade A Design

Qualification for Highway
Industry

Grade A Professional
Design Qualification for

Highway Tunnel

Grade B Professional
Design Qualification for

Highway Tunnel

Grade C Professional
Design Qualification
for Highway Tunnel

Supervisory unit
Grade A Comprehensive

Qualification
Grade A Professional

Qualification
Grade B Professional

Qualification

Construction unit
Special Grade General

Contracting Qualification
for Construction Projects

Grade A General
Contracting Qualification
for Construction Projects

Grade A Professional
Contracting Qualification
for Tunnel Engineering

Grade B Professional
Contracting

Qualification for
Tunnel Engineering

TABLE Ⅶ
PREPROCESSED DATA

Tunnel
Number

Total
Tunnel
Length

(m)

Position
Level of
Participating
Units

F5a F5b F5c F5d ... XK5a XK5b XK4a

Construction
Cost ( ten
thousand

yuan )

1 0.810 3.000 0.000 0.958 0.780 0.399 0.000 ... 0.000 0.000 0.000 79316.18

2 0.569 2.000 0.120 0.000 0.156 0.383 0.000 ... 0.000 0.000 0.000 68565.31

3 0.032 3.000 0.240 0.000 0.000 0.000 0.000 ... 0.908 0.942 0.000 11675.78

4 0.352 2.000 0.200 0.208 0.497 0.084 0.000 ... 0.000 0.000 0.000 35269.15

5 0.036 3.000 0.080 0.000 0.000 0.000 0.000 ... 1.000 1.000 0.000 10842.35

6 0.077 1.000 0.600 0.625 0.000 0.000 0.000 ... 0.000 0.000 0.000 14143.34

7 0.026 1.000 1.000 0.000 0.000 0.000 0.000 ... 0.522 0.000 1.000 7022.98

8 0.323 1.000 0.200 0.000 0.000 1.000 0.000 ... 0.000 0.000 0.000 37486.37

9 0.003 2.000 0.520 0.000 0.000 0.000 0.000 ... 0.546 0.223 0.247 5401.88

10 0.021 2.000 0.440 0.000 0.000 0.000 0.000 ... 0.000 0.787 0.000 8184.48

11 0.340 3.000 0.120 0.000 0.655 0.371 0.000 ... 0.000 0.000 0.000 26933.91

12 0.324 1.000 0.200 0.667 0.143 0.150 0.254 ... 0.000 0.000 0.000 26088.81

13 0.085 3.000 0.000 0.417 0.253 0.038 0.000 ... 0.000 0.000 0.000 10350.94

14 0.000 3.000 0.240 0.000 0.000 0.000 0.000 ... 0.736 0.308 0.000 5224.85

15 0.054 1.000 0.720 0.000 0.000 0.000 0.000 ... 0.000 0.000 0.000 7295.99

16 0.053 3.000 0.200 1.000 1.000 0.000 0.000 ... 0.379 0.000 0.000 8782.14

17 1.000 2.000 0.000 0.167 0.529 0.287 1.000 ... 0.000 0.000 0.000 136014.55
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TABLE Ⅷ
COMPARISON OF PREDICTION RESULTS FROM DIFFERENT MODELS

Test Sample
Number

Actual Construction
Costs (yuan)

Projected Construction Costs (yuan) Absolute Error (yuan) Relative Error (%)

SSAE BPNN SSAE BPNN SSAE BPNN

13 269339133.99 269554464.95 268292414.80 215330.96 -1046719.20 0.0799 -0.3886

5 108423515.00 108127591.69 105223719.83 -295923.32 -3199795.17 -0.2729 -2.9512

10 1360145463.01 1360042946.27 1359846777.34 -102516.75 -298685.67 -0.0075 -0.0220

16 52248518.00 53545669.97 59787617.72 1297151.97 7539099.72 2.4827 14.4293

RMSE 675842.24 4131027.35

MAPE(%) 0.7108 4.4478

Fig. 5. Illustration of cost influencing factors hierarchical relationships.
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