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Abstract—In the context of SLAM, the implementation of the
PSPNet architecture has demonstrated efficacy in the removal
of dynamic objects, which subsequently enhances the
localization precision of visual SLAM systems operating within
dynamic environments. Nonetheless, this methodology is
characterized by suboptimal performance in real-time
applications. This study introduces a real-time visual SLAM
system that employs a streamlined PSPNet architecture to
address the identified challenges. This system enhances
real-time performance by optimizing the PSPNet network and
incorporating a key frame selection module. It also utilizes
semantic segmentation results to refine the homography matrix
and optical flow methods to improve system accuracy.
Comparative experiments performed on publicly available
datasets demonstrate that the proposed system not only attains
a high level of localization accuracy in dynamic environments
but also exhibits superior real-time performance, thereby
fulfilling practical requirements.

Index Terms—dynamic environment, PSPNet, semantic
segmentation, VSLAM

I. INTRODUCTION

IMULTANEOUS Localization and Mapping (SLAM)

refers to the process by which a mobile robot
concurrently determines its own position and constructs a
map of its environment, all without relying on any prior
information [1][2]. SLAM has emerged as a prominent area
of research within the domain of artificial intelligence
applications, particularly in relation to unmanned vehicles
and mobile robotics. SLAM can be classified into two
primary categories based on the types of sensors employed:
laser SLAM and visual SLAM (VSLAM). Among these,
VSLAM is predominantly utilized due to its capacity to
gather a greater amount of information regarding the external
environment.
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Currently, researchers have proposed numerous
outstanding VSLAM algorithms tailored for static
environments (SE). Among the various options available, the
ORB-SLAM series has become one of the most extensively
utilized solutions, attributed to its real-time performance on
central processing units (CPUs) and its reliable functionality
[3]. ORB-SLAM [4], introduced by MUR-Artal et al. in 2015,
represents a significant advancement in the field. This
algorithm is considered a notable successor to PTAM [5],
distinguished by its innovative use of three concurrent
threads: tracking, local map building, and loopback detection.
This multi-threaded approach effectively —minimizes
cumulative error and enhances both processing speed and
map-building accuracy, yielding superior results. Building
upon ORB-SLAM, the team has subsequently introduced
ORB-SLAM2 [6] and ORB-SLAM3 [7]. ORB-SLAM2
constitutes a resilient SLAM framework that is suitable for
use with monocular (MON), stereo (STE), and RGB-D
camera systems. This system facilitates the reuse of maps,
detection of loop closures, and the process of re-localization.
ORB-SLAM2 functions in real-time on conventional CPUs,
rendering it applicable to a diverse array of contexts,
including compact handheld devices utilized in indoor
settings, industrial environments, as well as unmanned aerial
vehicles and autonomous transportation systems navigating
urban landscapes. ORB-SLAM3 represents the inaugural
SLAM system that integrates visual, visual-inertial, and
set-value mapping functionalities. The methodology utilizes
both pinhole and fisheye lens models across a range of
camera configurations, which encompass MON, STE, and
RGB-D systems. In comparison to ORB-SLAM?2, its primary
advantage resides in its capacity to proficiently leverage
short-term, medium-term, long-term, and multi-map data,
thereby attaining levels of accuracy that were not attainable
with ORB-SLAM2. Owing to its elevated precision and
immediate operational capabilities in unchanging settings,
ORB-SLAM3 has become a foundational framework for
numerous scholars in recent years. Researchers have utilized
ORB-SLAMS3 as a basis for enhancements, aiming to develop
VSLAM systems that perform robustly in dynamic
environments (DE). In this study, ORB-SLAM3 serves as the
foundational framework for enhancement.

ORB-SLAM3 is fundamentally structured around three
principal threads: the tracking thread, the local mapping
thread, and the thread responsible for loop closure and map
merging. The tracking thread is tasked with the identification
and correspondence of local map feature points. It employs
the Bundle Adjustment (BA) algorithm to reduce the
reprojection error, which facilitates the precise estimation of
the camera's position for each individual frame. The local
map construction process can enhance the optimization of the
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camera position and the feature point cloud by employing the
local BA algorithm, which utilizes the outcomes derived
from the tracking thread. Ultimately, the loopback and map
merge thread is capable of identifying loopback occurrences
and mitigating cumulative drift errors through bitmap
optimization. Following this optimization process, the global

BA algorithm thread is initiated to calculate the optimal

configuration of the entire system and the corresponding

motion results. ORB-SLAM3 demonstrates commendable
performance in SE; however, a significant disparity persists
between the estimated trajectory and the actual trajectory in

DE.

In order to reduce the influence of dynamic objects on
position estimation within ORB-SLAM3 and to improve its
accuracy in environments characterized by dynamic elements,
this study proposes the incorporation of a semantic thread
that operates concurrently with the tracking thread of
ORB-SLAM3. By employing the Pyramid Scene Parsing
Network (PSPNet) [8] semantic segmentation network
(SSNet), input image frames are segmented to identify and
exclude dynamic objects. This approach aims to further
optimize the camera's position estimation. PSPNet is a
pyramidal scene analysis network designed to integrate
contextual information from various regions, thereby
enhancing the model's capacity to comprehend global
contextual data. However, it exhibits suboptimal
performance in real-time applications. To address the issue of
the prolonged duration required for semantic segmentation
using PSPNet, this study proposes a modification to the
PSPNet architecture by substituting its backbone network,
ResNet [9], with the more lightweight deep neural network
MobileNetV2 [10]. This alteration aims to enhance the
efficiency and speed of the semantic segmentation process.
To further enhance real-time performance to meet application
demands, this paper introduces a key frame selection module
preceding the tracking and semantic threads. This module
classifies input image frames into two distinct categories: key
frames and non-key frames. Key frames undergo semantic
segmentation, while non-key frames utilize segmentation
results from key frames and dynamic keypoints from optical
flow tracking to directly generate semantic images. This
approach aims to optimize the efficiency of semantic
segmentation. Given the potential impact of PSPNet's
lightweight design and keyframe selection on subsequent
pose estimation accuracy, this study further refines the
solution of the single response matrix and optical flow
methods. This study incorporates findings from semantic
segmentation into these methodologies to strengthen the
reliability of the derived single response matrix and to
enhance the precision of optical flow detection. The objective
of this approach is to improve the overall accuracy of the
system. The primary contributions of this paper are outlined
as follows:

1) The PSPNet SSNet has been validated and enhanced.
Modifications were made to the PSPNet architecture to
reduce its complexity, thereby increasing the speed of
semantic segmentation processes.

2) A novel keyframe selection strategy has been introduced.
The proposed method filters the input image frames
according to the established keyframe selection criteria,
thereby significantly enhancing the system's real-time

performance.

3) The outcomes of semantic segmentation are utilized in
addressing the single response matrix, thereby enhancing
the robustness of the required matrix and increasing the
localization accuracy of the system.

4) The results of semantic segmentation are incorporated
with the dynamic detection algorithm utilizing the
optical flow method, which subsequently diminishes the
computational burden associated with dense optical flow.
This methodology more effectively retains static feature
points (SFP), resulting in improved accuracy and
real-time performance of the system.

The following sections of this paper are organized in the
manner outlined below. Section II provides an extensive
examination of the current literature related to VSLAM
within DE. Section III provides a detailed discussion of the
architecture of the proposed system. In Section IV, a
comparative analysis is conducted between the proposed
system and other leading VSLAM systems utilizing the TUM
RGB-D dataset, thereby assessing its accuracy and real-time
performance. In conclusion, Section V provides a
comprehensive summary and analysis of the research
findings.

II. RELATED WORK

Traditional VSLAM systems predominantly operate under
the assumption of SE. However, the presence of dynamic
objects is a common occurrence in indoor settings. This
reliance on static scene assumptions significantly constrains
the advancement of VSLAM technology and limits the
practical application of VSLAM systems in real-world
scenarios. The integration of deep learning networks into
VSLAM has demonstrated a significant capacity to filter out
dynamic objects, thereby enhancing the resilience of
VSLAM systems in environments characterized by dynamic
elements. Presently, VSLAM methodologies that leverage
deep learning in dynamic contexts can be primarily classified
into three distinct categories: VSLAM that utilizes target
detection, VSLAM that employs semantic segmentation, and
VSLAM that is based on instance segmentation. The target
detection network is capable of extracting both target and
spatial information from images, enabling the identification
of object categories through the delineation of candidate
bounding boxes [11]. This approach is characterized by its
high efficiency and rapid processing capabilities; however, it
is often constrained by limitations in accuracy. Prominent
examples of target detection networks include R-CNN [12],
Faster R-CNN [13], YOLO [14], and SSD [15]. Furthermore,
VSLAM systems that integrate these networks generally
demonstrate enhanced performance in real-time applications.
Semantic segmentation demonstrates superior accuracy in
comparison to object detection, as it analyzes images at the
pixel level, thereby extracting comprehensive information
about the visual content. However, this process is often
time-intensive. Common SSNet include Deeplabv2 [16],
SegNet [17], PSPNet, ICNet [18], etc. The integration of
SSNet into VSLAM systems can achieve high accuracy in
DE; however, it often falls short in real-time performance,
thereby failing to meet the requirements of practical
applications. Instance segmentation, which provides both
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pixel-level classification and spatial information regarding
distinct objects, is capable of identifying multiple instances
of the same object. Consequently, instance segmentation
demonstrates superior segmentation accuracy compared to
semantic segmentation. Common instance segmentation
networks are Mask R-CNN [19], Yolact [20], PolarMask [21],
and SOLO [22]. The instance segmentation network has the
highest segmentation accuracy among the three networks, but
as with semantic segmentation, real-time performance cannot
be guaranteed. Each of the three deep learning networks
exhibits distinct strengths and limitations. The present
emphasis of research is on the efficient utilization of these
networks to filter dynamic objects, which in turn improves
localization precision and real-time performance in dynamic
settings within VSLAM systems.

Currently for the problem that traditional VSLAM cannot
adapt to DE, researchers have proposed many VSLAM
systems that perform well in DE in combination with deep
learning networks. In 2018, Berta Bescos and colleagues
developed DynaSLAM [23], a VSLAM system that builds
upon the ORB-SLAM2 framework. DynaSLAM integrates
modules for dynamic object detection and background
reconstruction, thereby improving the system's resilience in
MON, STE, and RGB-D configurations when operating in
DE. In the same year, Chao Yu and colleagues introduced a
resilient semantic VSLAM system, referred to as DS-SLAM,
designed for DE [24]. This system integrates a SSNet with
mobile coherence detection to mitigate the impact of
dynamic objects, thereby enhancing the localization accuracy
of the system in such environments. Additionally, in 2020,
Long X and associates presented the PSPNet network and
developed a semantic SLAM framework, termed
PSPNet-SLAM, which utilizes a pyramid scene parsing
network for the detection of dynamic objects [25]. This study
incorporates semantic threads organized in a pyramid
structure alongside geometric threads utilizing an inverse ant
colony search strategy within the ORB-SLAM?2 framework.
This integration enhances the overall system's localization
accuracy and robustness; however, there remains a need for
improvements in real-time performance. In 2021, Yu et al.
introduced DRSO-SLAM [26], a dynamic RGB-D SLAM
system that leverages semantic information and optical flow.
The system underwent validation utilizing the TUM dataset,
demonstrating an average improvement in root-mean-square
error of 95.02% when compared to ORB-SLAM?2 in highly
DE. In 2023, Wu et al. introduced a dynamic scene VSLAM
system known as AHY-SLAM, which employs adaptive
threshold homogenization for feature extraction and
incorporates YOLOv5 for target detection [27]. In
comparison to ORB-SLAM2, AHY-SLAM demonstrates a
substantial enhancement in the accuracy of position
estimation across various dynamic scene sequences within
the TUM open dataset, achieving an improvement of up to
97% in absolute pose estimation accuracy. However, this
advancement is accompanied by increased computational
time relative to ORB-SLAM?2, attributable to the additional
target detection process involved.

The ongoing advancements in computational capabilities
and deep learning methodologies have led to the emergence
of numerous VSLAM systems that leverage deep learning
techniques. These systems significantly enhance the

localization accuracy and robustness of VSLAM in DE;
however, they still exhibit certain limitations that require
further refinement. Consequently, the challenge of achieving
an optimal balance between accuracy and real-time
performance in VSLAM systems operating within dynamic
contexts has emerged as a prominent area of research interest.

III. SYSTEM DESCRIPTION

Figure 1 presents the architecture of the proposed system,
which enhances ORB-SLAM3 through the integration of
parallel semantic threads, a keyframe selection module, a
homography optimization module, and an optical flow
optimization module. The initial processing of incoming
image frames is conducted by the keyframe selection module.
Subsequently, the selected keyframes are directed to the
semantic and tracking threads for the purposes of semantic
segmentation and feature point extraction, respectively.
Non-keyframes undergo feature point extraction and await
keyframe updates, generating semantic images via optical
flow tracking of dynamic keypoints. Following the execution
of semantic segmentation on keyframes, SFP located outside
the semantic bounding boxes are employed to compute the
homography matrix, thereby augmenting its robustness.
Additionally, dynamic feature points (DFP) situated within
the semantic bounding boxes undergo further filtration via
the optical flow technique to preserve a greater number of
SFP. Ultimately, DFP are eliminated based on the detection
outcomes, and only the residual SFP are utilized for pose
estimation, which enhances the overall localization accuracy
of the system.

A. PSPNet

Current scene parsing frameworks primarily utilize Fully
Convolutional Networks (FCN) [28] as their foundational
architecture. However, FCN encounters several issues when
performing image segmentation. Firstly, FCN lacks the
capability to infer based on contextual information. Secondly,
it cannot correlate labels through inter-class relationships.
Additionally, FCN models tend to overlook small objects,
and large objects may exceed FCN's receptive field.
Consequently, FCN fails to effectively capture global
information and handle inter-scene relationships [29]. To
address these issues, researchers have proposed the PSPNet.
The PSPNet integrates intricate scene information
characteristics within the FCN prediction framework, thereby
enabling the synthesis of both local and global features.
Furthermore, it implements an optimization approach that
incorporates a moderate supervision loss, which facilitates
the network's ability to assimilate global scene information
and effectively manage inter-scene relationships.

The PSPNet architecture is comprised of four distinct
modules, as illustrated in Figure 2. Initially, an input image
undergoes feature extraction utilizing a pre-trained ResNet
model in conjunction with a null network strategy [30][31],
resulting in a feature map that is scaled to one-eighth the
dimensions of the original input image. The resultant feature
maps are then subjected to a pyramid pooling module, which
is specifically engineered to aggregate contextual
information. This module employs pooling kernels that cover
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fractional, half, and entire image regions, integrating them
into a unified global prior. Finally, this prior is fused with the

original feature maps to enrich their contextual understanding.

Subsequently the final prediction map is generated using
convolutional layer. The PSPNet architecture demonstrates a
high level of segmentation accuracy and exhibits effective
image processing capabilities, even in intricate scenes.
However, its processing time may be excessive, potentially
hindering its suitability for real-time applications in VSLAM.
In order to tackle this issue, the present study enhances the
PSPNet architecture by substituting its backbone network,
ResNet, with MobileNetV2, a more lightweight network,
thereby aiming to increase the efficiency of semantic
segmentation.

B. Lightweight Network MobileNetV2

In 2018, the Google team developed MobileNetV2, which
is an advancement of MobileNetV1 [32]. MobileNetV2
maintains the straightforward architecture of MobileNetV1,
eliminating the necessity for specialized operators, while
markedly improving accuracy and successfully addressing a
range of image classification and detection tasks suitable for
mobile applications. The primary innovations of
MobileNetV2 lie in the introduction of Inverted Residuals
and Linear Bottlenecks, which enhance the network's
representational capacity.

Compared to traditional residual structures, the
transformations in inverted residuals occur in two main
aspects: 1) Alteration of Dimensionality. In conventional
residual architectures, a 1x1 convolution is employed
initially to reduce dimensionality, which is subsequently
followed by a 3%3 convolution aimed at feature extraction,
and ultimately, another 1x1 convolution is applied to increase
dimensionality. Conversely, in inverted residual structures,
the process begins with a 1x1 convolution for dimensionality
enhancement, followed by a 3x3 depthwise convolution for
feature extraction, and concludes with a 1x1 convolution for
dimensionality reduction. This inverts the order of
dimensionality reduction and increase, and replaces the
standard 3x3 convolution with a depthwise convolution. 2)
Variation in Activation Functions. Conventional residual
architectures typically employ the ReLU activation function
uniformly. In contrast, inverted residual structures utilize the
ReLU6 activation function for the initial two convolutional
layers, while the final convolutional layer employs a linear
activation function.

The linear bottleneck architecture pertains to a specific
configuration in which the concluding convolutional layer
employs a linear activation function. This alteration, which
involves substituting the ReLU activation function with a
linear function in the final convolutional layer, represents a
significant advancement introduced in MobileNetV2. The
use of the ReLU function in MobileNetV1 often led to
information loss by zeroing out parts of the convolutional
kernels in the depthwise convolutions. In response to this
issue, researchers implemented a linear activation function
within MobileNetV2 to reduce the loss of information.

The architectural configuration of MobileNetV2 is
presented in Table I. In this context, 't' denotes the expansion
factor, indicating the multiplicative increase of the

convolutional kernel in the initial 1x1 convolutional layer.
The variable 'c' signifies the number of channels, while 'n'
refers to the frequency of bottleneck repetitions. Additionally,
's' represents the stride, with varying stride values
corresponding to distinct modules, as illustrated in Fig. 3.
The MobileNetV2 network architecture comprises 17
bottleneck layers, one standard convolutional layer, and two
pointwise convolutional layers. Each bottleneck layer is
composed of two pointwise convolutional layers and one
depthwise convolutional layer, resulting in a cumulative total
of 54 trainable parameter layers within the model. The
inverse residuals and linear bottleneck structure optimize the
network, making the layers deeper, but the model is smaller
and faster. MobileNetV2 has a reduced amount of parameters
and better results compared to MobileNetV1 in ImageNet
image classification tasks. Figure 4 illustrates the impact of
substituting the backbone network of PSPNet with
MobileNetV2 for the purpose of semantic segmentation. As
depicted in the figure, the PSPNet architecture, following
lightweight optimization, demonstrates a high level of
accuracy in segmenting individuals and objects within the
image.

C. Keyframe Selection Module

To enhance system efficiency, this study introduces a
keyframe selection module preceding the tracking and
semantic threads. Prior to feature point extraction and
semantic segmentation, each image frame is evaluated based
on a predefined keyframe selection strategy. If classified as a
keyframe, it undergoes feature point extraction and semantic
segmentation within the tracking and semantic threads,
respectively. In contrast, non-key frames undergo feature
point extraction and utilize optical flow tracking of dynamic
keypoints based on segmentation results from preceding
keyframes to directly generate semantic images. Given that
the selection of keyframes influences both the processing
duration of subsequent semantic threads and the overall
localization accuracy of the system, this study establishes
specific selection criteria to ensure the appropriateness of
keyframe selection. The selection principles are as follows:
1) The image frame refers to either the initial frame or the
first frame subsequent to a repositioning event.

2) The quantity of DFP present in the preceding frame falls
below a specified threshold.

3) The image frame is the last frame.

4) Images that have passed 5 frames in a row.

Initially, if the image frame is identified as either the
inaugural frame or the first frame subsequent to
relocalization, it ought to be designated as a key frame. In the
absence of timely processing, semantic segmentation is
postponed until five frames have elapsed, leading to a
degradation of information. Furthermore, in instances where
the preceding frame exhibits a lack of DFP or contains a
minimal number of such points, it is advisable to designate
the current frame as a key frame. This is because there are
scenarios where the system might not detect dynamic objects
or potential dynamic objects, necessitating semantic
segmentation to rule out such cases. Additionally, if the
current frame is the last frame, it should also be selected as a
key frame, as it may contain critical information for camera
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pose estimation. Ultimately, the selection of a key frame at  monitored in the present frame is annotated to facilitate the
intervals of every five frames achieves a compromise direct creation of a new segmentation frame that
between precision and real-time operational efficiency. By  encompasses the semantic information of the current frame.
following these principles for key frame selection, the Unlike the semantic segmentation frames of keyframes, the
system's real-time performance can be maximized while semantic segmentation frames of non-keyframes are
ensuring accuracy. efficiently generated without PSPNet segmentation, and the
In instances where an image frame is not classified as a  generated segmentation frames only work in the current
keyframe, the DFP recorded in the most recent keyframe, frame. Therefore, the semantic images generated by optical
along with those in the current frame, are monitored utilizing  flow tracking can quickly detect and eliminate DFP in
the optical flow technique. This process, facilitated by the  non-critical frames [33].
keyframe update module, determines the spatial position of
DFP within the current frame. The 3x3 grid of DFP
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TABLE I
NETWORK ARCHITECTURE OF MOBILENETV2
Input Operator t c n s
2242X3 conv2d - 32 1 2
1122X32 bottleneck 1 16 1 1
1122X 16 bottleneck 6 24 2 2
562X24 bottleneck 6 32 3 2
282X 32 bottleneck 6 64 4 2
142X 64 bottleneck 6 96 3 1
142X 96 bottleneck 6 160 3 2
72X 160 bottleneck 6 320 1 1
72X 320 conv2d 1 X1 - 1280 1 1
72X1280  avgpool 7X7 - - 1 -
1X1X1280 conv2d 1 X1 - k -

Stride=1 block Stride=2 block

"\/// Input \\>7 ’(\/// Input ;\>

Conv 1x1, ReLU6 Conv 1x1, ReLU6

Dwise 3x3, ReLU6
\
v Dwise 3x3, ReLU6
Conv 1x1, Linear
\4 \ 4
Add -

Conv 1x1, Linear

Fig. 3. Different modules for different strides.
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Fig. 4. (a) Image before semantic segmentation. (b) Image after semantic segmentation.
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D. Optimization of the Single Response Matrix Module

To accurately estimate the camera position and calculate
the corresponding optical flow vectors, it is essential to
understand the mapping relationship among the matched
feature points. The single response matrix delineates the
correspondence between two distinct planes, for example:
Consider a rectangular box situated in space, with the central
point of its front face designated as point O. When two
photographs are captured from distinct angles, point O is
identifiable in both images. The pixel coordinates of point O
in the first image are represented as X;(us, v;), while in the
second image, they are denoted as X>(uz vz), Then the
relationship between the two coordinates is a uni-responsive
transformation, i.e.:

X, = HX, @

where H is called the singular response matrix, which is
converted to chi-square coordinates:

u, u, @
v, |=H| v,
1 1

In summary, the calculation of the homography matrix is
crucial for accurately estimating camera pose and for the
subsequent derivation of optical flow vectors. The existence
of multiple DFP and noise within the image can undermine
the stability of the computed homography matrix. In order to
mitigate the impact of dynamic features and noise on the
computation of the homography matrix, this study integrates
the results of semantic segmentation into the tracking
methodology. Feature points situated within the semantic
bounding box are primarily characterized by their dynamic
properties; therefore, these points are categorized as
hypothesized DFP. Conversely, points located beyond the
semantic bounding box are classified as proposed SFP, as
illustrated in Figure 5.

In addition to SFP, areas outside the semantic box may
also contain noise points generated during camera pose
transformations. In order to mitigate the impact of noise
points, this research utilizes the Random Sample Consensus
(RANSAC) algorithm to enhance the removal of outliers.
RANSAC is especially proficient in handling datasets
characterized by a substantial presence of outliers, as it
iteratively approximates the mathematical model of the data
while systematically excluding the outliers.

Assuming that the homography matrix H serves as the
mathematical model to be optimized through the RANSAC
algorithm, the process involves the iterative refinement of
this model by systematically incorporating random pairs of
points that are selected from outside the defined semantic
boundaries. RANSAC employs an iterative processing
approach to identify and exclude feature point pairs that do
not align with the established mathematical model,
categorizing them as noise points. This approach guarantees
that the feature points selected for pose estimation exhibit
reduced vulnerability to noise interference, consequently
enhancing the overall robustness and precision of the
VSLAM system.

Following the removal of DFP pairs and noise point pairs,
it is essential to utilize the remaining feature point pairs to fit

the single response matrix in order to formulate the error
equation:

H +H +H
&= Zi((xt _ X TR T
Hyx,  +Hy,y,  +H,

Hyx +Hyuy +H )

23 ))

+(y, -
+Hy,y,  +H,

t

Hyx,

In this context, ¢ signifies the reprojection error associated

with a pixel, while x; and y; denote the pixel coordinates in

frame ¢, and x:; and y:; correspond to the pixel coordinates in

frame #-/. At this juncture, the resolution of the single

response matrix is reformulated as a least squares problem

aimed at minimizing the error. Subsequently, the single

response matrix undergoes optimization through the

Levenberg-Marquardt (L-M) algorithm, with its incremental
equation articulated as follows:

(J,(TJk +[)AX=—ka(X)

“

H ~J'J +1 (%)

In this context, f(x) denotes the cost function, while Ax
signifies the incremental change during the iterative solution
process. The L-M algorithm employs the first derivative of
f(x) with respect to Jx to approximate the second derivative of
f(x) concerning H. Subsequently, a confidence matrix,
denoted as 7, is incorporated to guarantee the reversibility of
the computed matrix. Through this approach, the optimized
single response matrix, referred to as H, can ultimately be
derived. The detailed procedural flow of the algorithm is
illustrated in Figure 6(a).

E. Optimized Optical Flow Method Module

The presence of SFP on dynamic objects poses a challenge,
as the complete removal of all feature points within the
semantic frame via semantic segmentation may inadvertently
lead to the exclusion of numerous SFP. This unintended
consequence results in the loss of valuable static feature
information, which can subsequently compromise the
accuracy of position estimation [34]. In order to improve the
precision of positioning and the real-time functionality of the
system, this research utilizes an optimized single response
matrix to reduce the impact of camera motion occurring
between two consecutive frames. Subsequently, the
methodology establishes the rejection threshold for feature
points by analyzing the optical flow values of pixel points
confined to the semantic frame. This approach not only
diminishes the computational load associated with dense
optical flow, thereby enhancing the system's real-time
performance, but also preserves a greater number of SFP,
which contributes to an increase in the accuracy of pose
estimation. The detailed algorithmic process is illustrated in
Figure 6(b).

Let us denote the optical flow value of a given pixel point
as P. This value can be mathematically represented as:

P=u’+V’ )
In this context, u and v represent the velocity vectors
corresponding to the optical flow along the x-axis and y-axis,
respectively. Prior to determining the optical flow value for a
given pixel, a mask matrix is generated, which is of identical
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dimensions to the image matrix of the current frame. All
entries within this mask matrix are initialized to a value of 1.
Due to the significant disparity in optical flow values
between pixel points associated with moving objects and
those linked to stationary objects, a threshold () is
established. If the optical flow value (P) exceeds this
threshold (P > 6), the pixel point is classified as dynamic, and
the corresponding value in the mask matrix is assigned a
value of zero. Upon analyzing all the pixels within the image,
a comprehensive optical flow mask representing the dynamic
objects can be generated. If the feature points identified in the
current frame are located within this optical flow mask, they
will be discarded, while the SFP that remain will be preserved
for future position estimation.

IV. EXPERIMENTATION AND ANALYSIS

To assess and quantify the enhancements realized by the
system presented in this paper within DE, comparative
experiments were performed between the proposed system
and ORB-SLAM3, along with other notable VSLAM
systems in dynamic scenarios, utilizing the TUM RGB-D
dataset [35]. All experiments were executed on a computer
equipped with an Intel i7 CPU, an RTX3060 GPU, and 16
GB of RAM.

A. TUM RGB-D Dataset

The TUM RGB-D dataset serves as a valuable resource for
assessing the precision of camera localization. It comprises
several sequences captured in DE, each recorded by an
RGB-D camera operating at a frame rate of 30 frames per
second and a resolution of 640x480 pixels. This study
involves the selection of five sequences to assess the system's
performance within a dynamic environment. Among these,
one sequence is characterized as low-dynamic, while the

remaining four are classified as high-dynamic. The
sequences  utilized are  fr3 sitting static  (f s_s),
fr3_walking xyz (f w x), fr3 walking static (f w_s),

fr3_walking rpy (f w_r), and fr3 walking half (f w_h).
The designations xyz, static, rpy, and half correspond to four
distinct categories of camera self-motion; for instance, "xyz"
denotes movement of the camera along the x, y, and z axes.

To quantitatively assess the performance of the system
presented in this paper, the Root Mean Square Error (RMSE)
of the Absolute Trajectory Error (ATE) for each sequence is
employed to facilitate comparisons among various VSLAM
systems. The ATE serves as an indicator of the global
consistency of the trajectory, while its RMSE provides a
measure of the system's accuracy. The computation of the
RMSE can be expressed as follows:

n

7
ZI:(Xg,i_Xc,i)z ( )
RMSE =\|-=

n
where n represents the total number of observations; i is
the ith observation; Xg; is the ground truth of the ith
observation; X.; is the calculation result of the ith
observation.

B. Experimental Results

To demonstrate the advancements made by the algorithm
presented in this paper, three VSLAM systems are selected to
compare with this paper's system for the experiments, namely:
ORB-SLAM3, DS-SLAM, and PSPNet-SLAM.
ORB-SLAM3 is recognized as one of the most effective
SLAM systems for SE, and the system presented in this paper
builds upon its framework. Additionally, DS-SLAM
incorporates the SSNet SegNet, positioning it as one of the
leading SLAM systems for highly DE. PSPNet-SLAM
adopts the same SSNet PSPNet as the system in this paper,
and achieves high accuracy in DE. The four systems were
subjected to experimentation across each of the
aforementioned five sequences, and the resulting
experimental data are presented in Table II.

As demonstrated in Table II, the system presented in this
study markedly enhances the localization accuracy of
VSLAM in highly DE when compared to ORB-SLAM3,
achieving improvements between 91.7% and 95% across
four distinct highly dynamic sequences. In comparison to
DS-SLAM, the system presented in this study demonstrates
superior localization accuracy in high dynamic sequences.
Additionally, when evaluated against PSPNet-SLAM, which
similarly employs the PSPNet architecture for semantic
segmentation, the proposed system achieves localization
accuracy that is on par with that of PSPNet-SLAM in high
DE. Nevertheless, in sequences characterized by low
dynamicity, the accuracy of the proposed system is
marginally inferior to that of ORB-SLAM3. This discrepancy
is due to the fact that the system is designed for high DE and
may mistakenly remove SFP as DFP in low dynamic
conditions, leading to reduced localization accuracy.
Furthermore, to improve the system's real-time capabilities,
the proposed approach optimizes PSPNet and integrates a
key frame selection module. While these improvements
reduce the system’s time consumption, they also have a
certain impact on accuracy. Figure 7 illustrates a comparison
of the estimated trajectories between the proposed system
and ORB-SLAM3, indicating that the proposed system
markedly improves localization accuracy in environments
characterized by high dynamics.

VSLAM systems are developed for practical applications,
wherein real-time performance is of paramount importance.
The system introduced in this study strikes a balance between
accuracy and real-time efficiency, resulting in a notable
enhancement of the system's real-time capabilities while
preserving a high level of accuracy. The execution time of the
proposed system is evaluated in comparison to ORB-SLAM3,
DS-SLAM, and PSPNet-SLAM, as presented in Table III.
The data clearly indicate that the proposed system
demonstrates a significant decrease in execution time relative
to both DS-SLAM and PSPNet-SLAM. Specifically, in
comparison to PSPNet-SLAM, which employs an identical
SSNet, the proposed system demonstrates a reduction in
execution time exceeding 100 milliseconds across all five
sequences, achieving times that are consistently below 90
milliseconds. This performance aligns with the criteria for
real-time processing. Nevertheless, the execution duration of
the proposed system remains greater in comparison to that of
ORB-SLAM3. This occurs due to the implementation of
semantic threading within the system, which serves to
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remove dynamic objects, thereby resulting in an increase in
the overall execution time.

® Hypothesized Dynamic Characterization Points
[l Hypothesized static feature points

A Assumed Noise Points

previous frame current frame

Fig. 5. The feature points from the preceding frame are mapped onto the current frame utilizing a singular response matrix.
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Fig. 6. Flowchart of the optimization algorithm.
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TABLE II
RMSE OF ABSOLUTE TRAJECTORY DEVIATIONS ACROSS VARIOUS SYSTEMS
Sequences ORB-SLAM3  DS-SLAM  PSPNet-SLAM Ours

fss 0.0093 0.0072 0.0310 0.0107
fwx 0.6238 0.0348 0.0263 0.0311
fws 0.4360 0.0117 0.0091 0.0103
fwr 0.7652 0.0634 0.0472 0.0501
fwh 0.5367 0.0510 0.0413 0.0448

TABLE III

TIME CONSUMPTION OF DIFFERENT SYSTEMS (UNIT:MS)

Sequences ORB-SLAM3 DS-SLAM  PSPNet-SLAM Ours
fss 48.73 141.12 175.32 71.60
fwx 54.61 140.73 273.26 82.41
fws 51.20 143.26 194.13 74.12
fwr 55.36 141.67 221.73 80.53
fwh 53.81 146.56 256.17 86.32
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Fig. 7. A comparative analysis of the projected trajectories generated by the system presented in this paper and those produced by ORB-SLAMS3 (the left
portion of the figure presents a comparison between ORB-SLAM3 and the actual trajectories, while the right portion illustrates a comparison between the
system proposed in this paper and the real trajectories).
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V. CONCLUSION

This study presents a real-time VSLAM system that is
founded on a lightweight PSPNet. To improve the efficiency
of image semantic segmentation, the original backbone
network, ResNet, of the PSPNet is substituted with the more
lightweight MobileNetV2. The outcomes of the semantic
segmentation process are subsequently employed within the
tracking component of the system. Feature points located
outside the semantic segmentation boundary are utilized to
address the single response matrix, thereby enhancing its
robustness. Simultaneously, feature points situated within the
semantic segmentation boundary undergo additional
screening through the optical flow method, which effectively
discards DFP while preserving a greater number of SFP. In
conclusion, the retained SFP are employed for subsequent
position estimation, thereby enhancing the localization
accuracy of the system within DE. Comparative experiments
were performed between the proposed system and other
prominent VSLAM systems using the TUM RGB-D dataset.
The results of these experiments indicate that the proposed
system not only achieves high localization accuracy in
dynamic settings but also satisfies real-time operational
requirements.

The system presented in this paper exhibits potential for
enhancement. While it demonstrates superior real-time
performance compared to other VSLAM systems in DE,
there remains a need for further improvement in its accuracy
to effectively address more intricate dynamic scenarios.
Conversely, the system's applicability across various contexts,
including outdoor settings, requires enhancement to fulfill
diverse practical requirements. Future research endeavors
will focus on addressing these two dimensions.
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