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Abstract—Detecting small objects in aerial drone imagery is 

an extremely challenging research topic. This is primarily 
because the target size is relatively small, the background is 
complex, and occlusion occurs easily, which leads traditional 
object detection models to struggle in achieving ideal detection 
results. To enhance the detection performance of small objects, 
this paper proposes a lightweight small object detection model 
for aerial images captured by drones. Based on YOLOv8, this 
model adds a small object detection layer, introduces the 
FasterNet Block and dynamic upsampling method to optimize 
the network structure, and designs an Inner-WIoU loss to 
improve the localization accuracy of small objects. Evaluations 
on the VisDrone2019 and UAVDT datasets illustrate that the 
LSOD-YOLOv8s model surpasses the original YOLOv8s in 
average precision at an IoU of 0.5 by 6.3% and 3.3%, 
respectively, while achieving a 75% reduction in model 
parameters. Compared to other advanced models, LSOD- 
YOLOv8s not only possesses the fewest parameters and highest 
average precision, but also significantly reduces false detection 
and miss detection rates, meeting the demands of real-time 
detection for UAVs. 

Index Terms—YOLOv8, small object detection, lightweight 
network, UAV, FasterNet 
 

I. INTRODUCTION 

N recent years, the UAV industry has experienced rapid 
development and has been extensively adopted in military, 

agricultural, and traffic management fields due to its low cost, 
easy operation, and good maneuverability [1][2]. As the 
application fields continue to expand, higher demands are 
being placed on the performance of aerial image target 
detection algorithms. Currently, deep learning-based object 
detection algorithms are mainly divided into two categories: 
two-stage detection methods and one-stage detection 
methods. The R-CNN series [3]-[5] is a more typical 
two-stage object detection method, which first generates 
candidate regions and then extracts and classifies the features 
of each candidate region. Although this method performs 
excellently in object detection tasks, processing speed may 
become a limiting factor when faced with real-time 
requirements. The YOLO [6] series is a typical one-stage 
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object detection method. It completes the classification of 
objects and the regression of bounding boxes through a single 
forward propagation. The core advantage of this method lies 
in its exceptional real-time performance, enabling efficient 
object detection on embedded devices and mobile platforms. 
However, it may lose some detection accuracy compared to 
two-stage detection methods. Due to the fact that drones 
capture images from a certain height above the ground, most 
objects in the images are small targets. Additionally, these 
targets are susceptible to environmental and weather 
conditions, resulting in an increased rate of missed detections. 
Consequently, the prevalent detection methodologies are not 
directly applicable to UAV image object detection tasks. In 
order to resolve this issue, this paper proposes a lightweight 
small object detection model for UAVs based on YOLOv8. 
This model solves the problem of traditional models being 
ineffective in detecting small targets.  

The principal contributions of this study are outlined 
below: 

Based on the characteristics of small targets, a small target 
detection layer was constructed to effectively avoid the loss 
of detailed features. Additionally, the redundant deep feature 
extraction modules in the baseline model were removed, 
making the model more lightweight. 

Introducing the lightweight FasterNet Block to replace the 
bottleneck module in the original model’s backbone, 
ensuring efficient feature extraction while making the model 
more lightweight. 

Using DySample as the upsampling method for the neck 
network. This method avoids the computationally expensive 
traditional dynamic convolution and constructs a lightweight 
upsampling process by generating point-wise dynamic scope 
factors through a point-wise sampling generator. It has fewer 
parameters and lower latency. 

Wise-IoUv3 is introduced to combine it with the idea of 
Inner-IoU assisted bounding box. Inner-WIoU is able to 
dynamically adjust the weights of the loss values based on the 
location and size of the bounding box as well as the 
contextual information associated with the target, thus 
enhancing the model’s detection performance for small target 
samples. The addition of auxiliary bounding boxes allows the 
model to converge faster during training, achieving higher 
detection accuracy with fewer training iterations. 

II. RELATED WORK 

A. Small Object Detection 

In the task of object detection, small objects generally refer 
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to an object that occupies a small area in an image or video 
frame, has fewer pixels, and has limited detail information. 
Small objects often have colors and textures similar to the 
background, or are relatively close to adjacent objects, 
making it challenging for the model to distinguish them from 
background noise. In complex scenes, densely packed small 
objects are highly prone to false detections or missed 
detections. Since UAVs often operate at high altitudes far 
from the ground and are limited by camera resolution, this 
results in small objects having extremely low resolution in 
the image and lacking sufficiently detailed features for 
identification. Furthermore, due to the movement of the 
drone itself and the movement of the target during flight, the 
position, size, and shape of the target may rapidly change in 
the image, thereby increasing the difficulty of real-time 
detection. 

In recent years, numerous researchers have conducted 
studies on small object detection. Deng et al. [7] proposed an 
extended feature pyramid network (EFPN) to address the 
issues of information loss and ambiguity commonly 
encountered by traditional feature pyramid networks (FPNs) 
when dealing with small objects. The method introduces a 
small-scale feature fusion module to extract detailed 
information from low-level features, along with a 
cross-resolution distillation mechanism to enhance the 
network’s ability to perceive details across different scales. 
These mechanisms effectively enhance the network’s 
accuracy for small object detection and are validated on 
multiple datasets. Hong et al. [8] proposed a scale-selective 
pyramid network for tiny figure detection, which optimizes 
the process of extracting and recognizing features of tiny 
figures in UAV images. Its scale-selective module is able to 
extract features at multiple scales, with a special focus on 
those scale layers that contain tiny figures, thus increasing the 
sensitivity of object detection for tiny objects and 
significantly improving the tiny character detection accuracy. 
YOLOv4_Drone [9], based on YOLOv4 [10], introduces 
hollow convolutions and a lightweight subspace attention 
mechanism to enhance the detection accuracy of small 
objects amidst complex backgrounds in drone imagery. 
MCS-YOLOv4 [11] combines multi-scale contextual 
information and the Soft-CIOU loss function to further 
enhance the model’s performance and stability in small 
object detection. TPH-YOLOv5 [12] is a deep learning 
model used for object detection in drone aerial photography 
scenarios. This model replaces the detection head of 
YOLOv5 with a Transformer [13] detection head and 
integrates the convolutional block attention module (CBAM) 
[14], thereby effectively improving the detection capability 
of small objects and demonstrating good performance in 
drone aerial photography scenarios. MS-YOLOv7 [15] is a 
multi-scale object detection model for aerial images taken by 
drones. This model integrates Swin Transformer [16], SPPFS 
pyramid pooling module, and CBAM attention mechanism 
based on YOLOv7 [17], thereby improving the detection 
accuracy of small objects in complex backgrounds. The 
current inadequacies in small object detection research 
mainly lie in insufficient feature representation, unresolved 
issues of sample imbalance, and difficulties in balancing 
computational costs with detection precision. Moreover, the 
robustness in complex backgrounds and generalization 

capabilities in real-world scenarios still require further 
enhancement. 

B. Lightweight Neural Networks 

Lightweight networks aim to optimize architecture and 
reduce the number of parameters without significantly 
sacrificing performance, resulting in high efficiency and low 
resource requirements. Many complex neural network 
structures, such as ResNet [18], DenseNet [19], and 
Transformer, have received widespread attention. These 
complex structures bring excellent feature extraction 
capabilities but have significantly expanded in network depth 
and width. They usually contain millions or even billions of 
parameters, which not only require more storage space but 
also demand high computational power. Detection 
algorithms need to balance high efficiency and light weight 
for platforms with limited computational resources, such as 
UAVs. 

At present, the more classic lightweight neural networks 
such as MobileNet [20]-[22], ShuffleNet [23][24], and 
GhostNet [25], predominantly use depthwise separable 
convolution (DWConv). Although DWConv is effective in 
reducing FLOPs, in order to achieve functionality similar to 
conventional convolutions, the number of feature channels is 
usually increased to six times prior to using DWConv, 
resulting in more memory access times than conventional 
convolutions when using DWConv, leading to non-negligible 
delays and reduced overall calculation speed. In order to 
resolve this issue, Chen et al. [26] proposed a lightweight 
network called FasterNet. The main module of this network, 
the FasterNet Block, consists of Partial Convolution (PConv) 
with Pointwise Convolution. The PConv module divides the 
channels into two groups according to a certain ratio, using 
either the first or the last channel consecutively to compute 
the entire feature map. The number of channels in the input 
and output feature maps remains unchanged, thereby fully 
utilizing the redundancy of the features. This allows 
FasterNet to maintain excellent feature extraction capability 
while reducing the number of parameters. 

C. YOLO v8 

YOLOv8 is the latest iteration in the YOLO series of 
algorithms, proposed by the original team of authors who 
developed YOLOv5. YOLOv8 offers five different model 
variants of varying sizes and complexities, based on different 
scaling factors. As the model size increases, the accuracy 
continuously improves, allowing for the selection of network 
models with varying depths and widths according to mission 
requirements. Due to the hardware limitations of drone 
equipment, the YOLOv8s model, which is small in size and 
high in precision, is more suitable for drone object detection 
tasks. The Backbone section of YOLOv8 adopts the new and 
efficient C2f feature extraction module and continues to use 
the spatial pyramid pooling fusion module from YOLOv5. 
This module can extract features at multiple scales, thereby 
enhancing the spatial contextual understanding of the target. 
The Neck section draws on the ideas of PANet, using both 
bottom-up and top-down feature aggregation methods to 
combine deep semantic features with shallow detailed 
features, generating richer feature representations to enhance 
the detection performance for targets of various scales. The 
Head section introduces an anchor-free mechanism to 
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simplify target localization and improves the traditional 
non-maximum suppression (NMS) to adaptive NMS, which 
can dynamically adjust the threshold to adapt to different 
target densities and categories, thus improving detection 
accuracy and reducing false detections and missed 
detections. 
 

III.  METHOD 

A. LSOD-YOLOv8s Model Structure 

LSOD-YOLOv8s model is an improved, lightweight small 
object detection model based on YOLOv8. Fig. 1 shows its 
overall structure. This model optimizes YOLOv8 in three 
aspects. First, an additional small object detection layer is 
included because the detailed information of small objects is 
more completely retained in the shallow feature layer. This 
detection layer can effectively extract the feature information 
of small objects, thereby improving detection accuracy. 
Second, the C2f module in the backbone is redesigned and a 
lightweight FasterNet Block is introduced, forming the 
C2f_FNB module. Lastly, the lightweight and efficient 
dynamic upsampling method DySample, which replaces the 
conventional upsampling layer. 

B. Small Object Detection Layer 

The backbone network of YOLOv8 has a deep hierarchical 
structure, which helps in extracting high-level semantic 
features. However, small objects often contain more detailed 
features, which tend to become more blurred or even lost 
after multiple downsamplings, especially when the network 
has a deep hierarchy. In such cases, the spatial resolution of 

the features is too low to effectively capture the detailed 
information of small objects, leading to a decline in the 
performance of small object detection. To address the 
aforementioned issues, the P5 detection layer, which retains 
less feature information for small objects in the original 
model, and the deep feature extraction module of the 
backbone network, were removed to reduce redundant 
computation, as shown in Fig. 2(a). Furthermore, a P2 
detection layer, suitable for small targets, was added in the 
shallow feature extraction stage where the feature 
information is richer, as shown in Fig. 2(b). The shallow 
feature maps have larger dimensions, so the detailed 
information of small objects is retained more completely. By 
the lateral connections of the FPN, shallow feature maps in 
the backbone network that have high resolution but less 
semantic information are fused with upsampled deep feature 
maps. This fusion effectively combines deep semantic 
information with shallow detail information, enabling the 
generated feature maps to have both rich contextual 
semantics and local details. As a result, the newly added 
small object detection layer can more accurately locate and 
identify small objects, avoiding the issue of feature blurriness 
caused by relying solely on deep features. 

C. C2f_FNB Module 

To minimize redundant computation and memory access, 
while also decreasing the number of model parameters, the 
FasterNet Block from the lightweight network FasterNet is 
introduced to form the C2f_FNB module, replacing the 
feature extraction module of the original model backbone. 
The structure of this modification is illustrated in Fig. 3. The 
C2f_FNB module adopts the idea of feature extraction and 

Fig. 1.  Overall structure of the LSOD-YOLOv8s model. 
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diversion from the cross stage partial network, as well as the 
concept of residual structure. It uses the FasterNet Block to 
replace the Bottleneck module as the primary gradient flow 
branch. The stacking number of FasterNet Blocks is 
controlled by the parameter ‘n’, which varies with different 
scaling coefficients for models of different scales. 

The FasterNet Block combines two efficient operators, 
PConv and pointwise convolution (PWConv). PConv avoids 
unnecessary calculations on invalid or padding regions, 
allowing the model to focus more on processing useful 
feature information, thereby extracting spatial features more 
effectively. PWConv is used for feature transformation and 
channel adjustment of the intermediate layers, effectively 
reducing computational complexity and the number of 
parameters. The FLOPs calculation formula for PConv is as 
follows: 

 2 2
pFLOPs c h w k    , (1) 

where cp represents either the first or the last consecutive 
channel. When it accounts for one-quarter of the total 
channels, the FLOPs for PConv are one-sixteenth of those for 
normal convolution. This means smaller memory access and 
fewer model parameters, making the model more lightweight 
while maintaining its ability to effectively extract target 
feature information. 

D. DySample 

YOLOv8 uses nearest neighbor interpolation as the 
upsampling method, enhancing the resolution of the feature 
map by directly copying the values of neighboring pixels. 
Small objects usually contain fewer salient features, and if 
nearest-neighbor interpolation is used for image scaling, vital 
detail information may be lost, making the already 
insignificant features difficult to identify and further 
increasing the difficulty of small object detection. To this end, 
LSOD-YOLOv8s introduces an efficient dynamic up- 
sampling method called DySample [27], as shown in Fig. 
4(a). This method distinguishes itself from the kernel-based 
dynamic upsampling method [28] by reconstructing the 
upsampling process from the perspective of point sampling. 
It features fewer parameters, FLOPs, and delays, thus 
facilitating an increase in image resolution without imposing 
an additional burden. The sampling point generator in 
DySample, depicted in Fig. 4(b), processes the input feature 
X through two linear layers to generate the initial upsampling 
position. To prevent the overlapping of point sampling  

Fig. 3.  Structure of C2f_FNB Module. 
 

 
(a) (b) 

Fig. 2.  (a) YOLOv8s detection layer structure; (b) LSOD-YOLOv8s detection layer structure. The green dashed box indicates the removed deep feature 
extraction module as well as the P5 detection layer, and the red dashed box indicates the added P2 small object detection layer. 
 

 
(a) 

 
(b) 

Fig. 4.  (a) Structure of dynamic upsampling; (b) Sampling point generator. 
‘σ’ denotes the sigmoid function. 
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positions from affecting the prediction near the boundary 
between the object and the background, one of the initial 
offsets is multiplied by the learnable parameter dynamic 
scope factor. The dynamic scope factor takes values in the 
range of [0, 0.5], which ensures that the sampled points do 
not move out of a reasonable range. Finally, the offset grid O 
is generated by pixel shuffling and added to the original grid 
G to get the set of sampling points S, as shown in 
 
 1 1 2 20.5 sigmoid( ) ( ))O W X b W X b     , (2) 

 S G O  . (3) 

E. Inner-WIoU Loss Function 

During training, YOLOv8 employs various loss functions 
to optimize model performance. Among them, the regression 
loss functions are the distribution focal loss and CIoU loss. 
The CIoU is defined as  
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where bpred and bgt represent the center points of the predicted 
bounding box and the ground truth box, respectively. α is a 
trade-off parameter, and V is used to measure whether the 
aspect ratios of the two boxes match. 

Although CIoU enhances the convergence speed and 
positioning accuracy by considering the center distance and 
aspect ratio of the bounding boxes, it becomes less sensitive 
to adjustments in the position of the bounding boxes when the 
aspect ratio is the same. This is especially true in cases of 
high IoU, where the gradient approaches zero. This situation 
weakens the model’s capability in fine-tuning and further 
optimizing the predicted boxes. For targets with significant 
size differences, such as very large and very small targets, 
CIoU appears to be inadequate. Unlike traditional IoU loss, 
Wise-IoU [29] does not lead to gradients approaching zero. It 
can adopt different strategies to balance the gradient updates 
in situations of low IoU and high IoU, allowing the model to 
obtain effective gradients throughout the training process. 
The formula for WIoU v1 loss is shown in 

 
 1WIoUv WIoU IoUL R L , (7) 
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where Wg and Hg represent the dimensions of the smallest 
enclosing box. To prevent RWIoU from producing gradients 
that could impede convergence, Wg and Hg are separated from 
the computation graph (i.e., they do not participate in 
backpropagation, denoted by *). 

WIoU v3 introduces a dynamic non-monotonic focusing 
mechanism that adjusts gradient allocation based on the 
quality of anchor boxes, as shown in 
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where β represents the outlier degree. r denotes the gradient 
gain factor. α and δ are hyperparameters, with α controlling 
the shape of the gradient gain curve, and δ specifying the 
peak position of the gradient gain curve. 

When β is relatively small, it indicates that this is a 
high-quality anchor box; conversely, it might be a 
low-quality anchor box or even an outlier. Low-quality 
anchor boxes are assigned smaller gradient gains to avoid 
negatively impacting the model, while high-quality anchor 
boxes also reduce gradient competition. When β equals δ, the 
gradient gain r reaches its maximum value, making the model 
focus the most and perform the greatest gradient updates. 
Thus, WIoUv3 better balances attention to both high-quality 
and regular-quality anchor boxes at different stages of 
training, thereby enhancing the stability and generalization 
ability of the model. 

Inner-IoU [30] is an enhanced IoU loss function based on 
auxiliary bounding boxes, designed to accelerate bounding 
box regression and enhance localization accuracy. This 
method controls the generation of auxiliary bounding boxes 
of different sizes for calculating IoU loss by adjusting the 
scaling ratio, as shown in 
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where ratio [0.5,1.5] . In different scenarios, appropriately 

choosing the ratio can provide the model with better 
generalization capabilities. For example, in detection tasks 
with high precision requirements, a smaller ratio can be used 
to optimize the fine bounding box positioning; in scenarios 
requiring rapid convergence, using a larger ratio helps handle 
difficult samples.  

Inner-IoU can refine the regression process of high-IoU 
samples through adjusting the size of the auxiliary bounding 
box, thereby enhancing localization accuracy. Meanwhile, 
WIoUv3’s dynamic focusing mechanism assigns greater 
weight to small objects, further strengthening the attention on 
small objects. Therefore, combining the two can significantly 
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improve the localization accuracy of small targets, reduce the 
incidence of missed detections, and thus enhance the 
detection precision of small targets. The expression for 
Inner-WIoU is given by equation (19).  
 
 Inner WIoU WIoU Inner IoUL rR L   (19) 

 

IV. EXPERIMENTS 

A. Experiment Overview 

(1) Dataset 

This study utilizes the VisDrone2019 [31] and the 
UAVDT [32] as the experimental datasets. Both are typical 
drone aerial image datasets used for object detection tasks. 
The VisDrone2019 dataset serves as the primary 
experimental dataset, while the UAVDT dataset facilitates 
further validation of the model’s applicability. 

The VisDrone2019 dataset consists of 10,209 images, with 
6,471 used for training, 548 for validation, and 3,190 for 
testing. These images were captured by drones of different 
models under various environmental conditions. They 
encompass a broad range of real-world scenes, including 
various terrains such as cities and countryside, and various 
target categories like pedestrians, vehicles, bicycles, 
motorcycles, etc. The dataset also includes challenging 
factors such as weather changes, target occlusions, and scale 
variations. 

The UAVDT dataset contains 40,735 images, all of which 
are extracted frames from videos captured by drones. Of 
these, 24,206 images are designated for the training set, while 
16,529 images are allocated to the validation set. Due to the 
dataset covering diverse scenarios, such as different weather 
conditions, flying altitudes, camera perspectives, and vehicle 
categories, the targets in this dataset may face challenges 
such as scale variations, occlusions, cluttered backgrounds, 
etc., posing high demands on the algorithm’s robustness and 
accuracy. 

(2) Experimental parameters and evaluation indicators 

All experiments were conducted using an NVIDIA 4070 
(12GB) graphic processor for both training and inference. We 
chose Pytorch 2.2 as the deep learning framework and used 
Python 3.8 and CUDA 11.8. During the training phase, the 
size of all input images was set to 640×640. The initial 
learning rate was set to 0.01, the momentum parameter to 
0.937, the weight decay coefficient to 5×10-4, and the batch 
size to 8, with the stochastic gradient descent (SGD) 
optimizer. All training was done from scratch without the use 
of pre-trained weights, with a total of 200 training iterations. 

To evaluate the detection performance of the proposed 
model, we use Precision, Recall, mAP (mean Average 
Precision), Parameters, FLOPs, and FPS as evaluation 
metrics. 

B. Experimental Results 

(1) Comparison with YOLOv8s 

To verify the effectiveness of the proposed model for small 
target detection, we compared the detection accuracy of the 
proposed model with the YOLOv8s model on each category 

in the VisDrone2019 dataset. The experimental results, as 
shown in Table I, indicate that the detection accuracy of the 
proposed model is higher than that of the YOLOv8s model 
across 10 categories. Notably, there is a significant increase 
in average precision for extremely small objects, including 
Pedestrian, People, and Motor, with an improvement of 6.3% 
in mAP at IoU of 0.5, reaching 45.2%. These results fully 
validate the effectiveness of LSOD-YOLOv8s for small 
object detection tasks. 

(2) Comparison with other versions of YOLO 

 To further verify the superiority and applicability of the 
model, we used the same experimental parameters to 
compare the LSOD-YOLOv8s model with other versions of 
the YOLO model on the VisDrone2019 dataset and the 
UAVDT dataset.  The other versions of YOLO network 
models used in the experiment include: YOLOv3 [33], which 
is based on the Darknet-53 architecture; YOLOv5, which 
adopts CSPNet and Focus structures for a more concise and 
efficient network design; YOLOv6 [34], which is designed 
with a more concise and efficient decoupled head; YOLOv7, 
which utilizes the efficient ELAN structure, as well as 
different scales of YOLOv8.  
 The comparison results on the VisDrone2019 dataset are 
shown in Table II. The experimental results indicate that, 
compared to previous versions of the YOLO model, the 
YOLOv8n model, which has fewer parameters, performs 
well in terms of detection accuracy and has the lowest FLOPs. 
The YOLOv3-tiny has the fastest detection speed, but the 
accuracy is too low to perform the task of UAV object 
detection. The LSOD-YOLOv8s model not only has the 
fewest parameters but also the highest detection accuracy 
among all models. The FLOPs have decreased compared to 
the YOLOv8s model, which has improved the model’s 
operational efficiency to some extent. Although the FPS 
metric is relatively lower compared to other YOLO models, it 
still satisfies the performance requirements for real-time 
drone detection. 
 The comparison results on the UAVDT dataset are shown 
in Table III. The experimental results indicate that the 
LSOD-YOLOv8s model performs the best in terms of 
detection accuracy. Compared to the YOLOv8s model, the 
mAP50 value has increased by 3.3%, while the FPS is second 
only to the best-performing YOLOv3. This further demon- 
strates that the network model proposed in this paper has 
good applicability. 

 
TABLE I 

DETECTION RESULTS FOR EACH CATEGORY ON THE VISDRONE2019 

DATASET 

Category YOLOv8s LSOD-YOLOv8s 

People 31.6 42.6 
Pedestrian 42.1 52.4 

Bicycle 13.0 17.9 
Van 44.9 49.2 
Car 79.5 84.2 

Truck 36.4 39.1 
Bus 55.8 63.0 

Motor 43.1 52.9 
Tricycle 28.0 32.3 

Awning-Tricycle 15.5 18.4 
All 38.9 45.2 
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(3) Comparison with other small object detection models 

 Table IV compares the experimental results of the 
LSOD-YOLOv8s model with seven other small object 
detection models on the VisDrone2019 dataset. Due to 
missing Precision and Recall data for some models, these 
evaluation metrics were excluded in this experiment. The 
data in the table indicates that the CPAM-YOLO model 
shows considerable improvement in detecting small objects; 
however, its extensive computational demand makes it 
unsuitable for target detection tasks on drone platforms. The 
MPE-YOLO model performs well in terms of lightweight 
characteristics, but the overall detection accuracy is 
unsatisfactory. The LSOD-YOLOv8s model proposed in this 
paper not only features a lightweight design but also exhibits 
excellent detection accuracy. 

(4) Comparison of different loss functions 

 To validate the convergence of the proposed Inner-WIoU 
and its improvement on model localization accuracy, we 
conducted comparative experiments using the YOLOv8s 
model with multiple loss functions on the VisDrone2019 
dataset. The loss functions involved in the comparison 
include CIoU, EIoU, SIoU, and WIoUv3. The results are 
shown in Table V. Both EIoU and SIoU improved the 
average precision by 0.2% compared to the default CIoU. 
Among the various classical loss functions, WIoUv3 

performed the best, with its average precision improving by 
0.7% compared to CIoU. The proposed Inner-WIoU achieves 
the highest mean precision, with a mean precision reaching 
40.1% when the ratio value is 1.2. This demonstrates that 
incorporating the auxiliary bounding box concept into 
Inner-WIoU can significantly improve the localization 
accuracy of small targets, thereby enhancing the detection 
precision of small targets. 

C. Ablation Experiment 

 To evaluate the performance of each module, this section 
conducts ablation experiments on the proposed model using 
the VisDrone2019 dataset. This experiment enumerates in 
detail the impact of the added P2 detection layer, C2f_FNB 
module, DySample dynamic downsampling layer, and the 

 
TABLE V 

 COMPARISON OF DETECTION RESULTS OF DIFFERENT LOSS FUNCTIONS 

ON THE YOLOV8S MODEL 

Loss Function mAP0.5(%) mAP0.5:0.95(%) 

CIoU 38.9 23.3 
EIoU 39.1 23.2 
SIoU 39.1 23.3 

WIoUv3 39.6 23.4 
Inner-WIoU(ratio=1.15) 39.7 23.3 
Inner-WIoU(ratio=1.20) 40.1 23.7 
Inner-WIoU(ratio=1.25) 39.7 23.6 

 

TABLE II 
COMPARISON WITH OTHER VERSIONS OF THE YOLO MODEL ON THE VISDRONE2019 DATASET 

Model Precision (%) Recall (%) mAP0.5(%) mAP0.5:0.95(%) Params(M) FLOPs(G) FPS 

YOLOv3-tiny 39.5 24.1 23.6 12.9 12.1 18.9 245.2 

YOLOv5n 44.1 32.1 32.2 18.5 2.5 7.1 105.6 
YOLOv5s 48.6 38.0 38.5 22.8 9.1 23.8 159.2 
YOLOv6s 39.8 29.4 29.1 17.0 16.3 44.2 151.7 

YOLOv7-tiny 42.3 37.8 33.9 17.4 6.0 13.3 85.2 
YOLOv8n 44.5 33.1 33.2 19.1 3.0 8.1 164.1 
YOLOv8s 48.0 39.2 38.9 23.3 11.1 28.5 152.7 

LSOD-YOLOv8s 54.9 43.4 45.2 27.4 2.7 23.5 126.9 

 
TABLE III 

COMPARISON WITH OTHER VERSIONS OF THE YOLO MODEL ON THE UAVDT DATASET 

Model Precision (%) Recall (%) mAP0.5(%) mAP0.5:0.95(%) Params(M) FLOPs(G) FPS 

YOLOv3-tiny 49.3 39.7 38.3 23.2 12.1 18.9 328.3 

YOLOv5n 47.0 37.7 40.2 25.5 2.5 7.1 238.2 
YOLOv5s 50.9 40.7 45.5 30.6 9.1 23.8 242.9 
YOLOv6s 37.8 54.3 44.3 30.0 16.3 44.2 243.2 

YOLOv7-tiny 42.5 46.8 43.0 24.3 6.0 13.3 164.4 
YOLOv8n 44.8 42.7 39.5 24.8 3.0 8.1 245.2 
YOLOv8s 49.1 40.8 45.0 30.4 11.1 28.5 251.3 

LSOD-YOLOv8s 55.9 49.6 48.3 30.7 2.7 23.5 259.3 

 
TABLE IV 

COMPARISON WITH OTHER SMALL OBJECT DETECTION MODELS 

Model mAP0.5(%) mAP0.5:0.95(%) Params(M) FLOPs(G) FPS 

UN-YOLOv5s [35] 40.5 22.5 / 37.4 / 

LAI-YOLOv5s [36] 40.4 / 6.3 29.0 51.3 
CPAM-YOLO [37] 43.0 25.0 27.5 106.4 / 
DM-YOLOX [38] 41.9 / 9.6 27.9 78.3 

PDWT-YOLO [39] 41.2 22.5 6.4 24.2 / 
Li et al. [40] 42.2 / 9.6 / 167.0 

MPE-YOLO [41] 37.0 21.4 4.4 / / 
LSOD-YOLOv8s 45.2 27.4 2.7 23.5 126.9 

 

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2073-2082

 
______________________________________________________________________________________ 



 

Inner-WIoU loss function on the model performance. Table 
VI shows the performance evaluation results of the baseline 
model after combining different modules. Experimental 
results indicate that after adding the P2 small target detection 
layer, the model’s feature extraction capability for small 
targets is significantly improved, and the mAP value is also 
noticeably enhanced. In addition, removing the deep feature 
extraction module and the P5 detection layer from the 
baseline model substantially reduces the number of 
parameters in the model. Then, replacing the loss function of 
the baseline model with Inner-WIoU resulted in a 0.9% 
increase in mAP0.5, which is attributable to the Inner-WIoU 
loss function’s ability to dynamically adjust gradient gains. 

Although the addition of the DySample upsampling method 
results slightly increases the number of parameters, it 
effectively avoids the loss of detail information compared to 
the traditional feature downsampling modules. The FasterNet 
Block seeks to minimize feature redundancy and reduce the 
number of model parameters. This effect is verified in the last 
row of the table, showing an improvement in detection 
accuracy while the number of parameters is reduced.  

D. Visualization Analysis 

In addition to the aforementioned comparison of 
experimental data, this section will also visualize the 
detection results to intuitively demonstrate the small target 

TABLE VI 
ABLATION EXPERIMENTS ON THE VISDRONE2019 DATASET  

Baseline P2 Inner-WIoU DySample C2f_FNB mAP0.5(%) mAP0.5:0.95(%) Params(M) 

YOLOv8s 

    38.9 23.3 11.1 
√    43.6 26.5 3.3 
√ √   44.5 26.8 3.3 
√ √ √  44.7 26.9 3.3 
√ √ √ √ 45.2 27.4 2.7 

  

  
(a1) (b1) 

  
(a2) (b2) 

  
(a3) (b3) 

Fig. 5.  Visual comparison of detection results on the VisDrone2019 test set: (a1-a3) YOLOv8s, (b1-b3) LSOD-YOLOv8s 
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detection performance of the LSOD-YOLOv8s model. We 
selected three representative sets of comparative images from 
the experimental results of the VisDrone2019 test dataset, 
which include a crowded basketball court, dense traffic, and 
scenes where detection targets are easily obscured. 

In Figure 5, the areas of comparison are marked with red 
rectangular boxes. From the first set of basketball court 
images, it is evident that the YOLOv8 model incorrectly 
detects the red block on the basketball court as a bus and 
misses detecting two crowd areas. However, the improved 
model proposed in this paper accurately detects the crowd in 
the basketball court and avoids any false detections. The 
same is true for the second and third sets of images; in dense 
traffic, every vehicle and its type were accurately identified. 
Overall, the LSOD-YOLOv8s model proposed in this paper 
enhances the detection performance of small objects in 
complex backgrounds, improving the issues of false 
detections and missed detections, thereby proving the 
effectiveness of the model. 
 In addition, the confusion matrix of the LSOD-YOLOv8s 
model on the VisDrone2019 dataset is shown in Fig. 6. In this 
matrix, the rows represent the predicted classes by the model, 
the columns represent the actual classes, and the values on the 
diagonal indicate correct predictions by the model, i.e., the 
predicted classes are consistent with the actual classes. 
Through observation, it can be found that the model performs 
best in detecting cars, while categories such as bicycles, 
tricycles, and people are more likely to be misjudged as 
background. The primary reason for this phenomenon is that 
the model might be influenced by factors such as resolution, 
occlusion, or target size when detecting these extremely 
small targets, leading to an inability to effectively distinguish 
small targets from the background. Additionally, the dataset 
used for training has an uneven distribution in terms of the 
number and position of each category, with fewer samples of 
extremely small targets and significant positional deviations 
in the images. Consequently, the model encounters 
difficulties in adequately learning the features of these 
extremely small targets during training. 

V. CONCLUSIONS 

In the task of small object detection, the detection 
efficiency of traditional models is greatly reduced due to 
factors such as target size, occlusion, and complex 
environmental backgrounds. Therefore, this paper proposes a 
lightweight small object detection model for aerial images 
captured by drones. Firstly, considering the characteristics of 
small targets, a small object detection layer was constructed, 
and the redundant deep feature extraction module in the 
baseline model was removed, making the model more 
lightweight. Secondly, the feature extraction module of the 
YOLOv8 backbone was improved, and a lightweight Faster- 
Net Block was introduced to construct a new C2f_FNB 
module. Meanwhile, in the neck part of the model, the 
traditional upsampling method was replaced with the 
DySample dynamic upsampling method. Lastly, Inner-WIoU 
was used as the bounding box regression loss function, 
dynamically adjusting the loss weights for targets of different 
sizes by evaluating the quality of anchor boxes through 
outlier assessment, thereby enhancing the model’s 
generalization and localization accuracy. The comparative 
and ablation experiments conducted on the VisDrone2019 
dataset substantiate the effectiveness of LSOD-YOLOv8s. 
This model strikes an optimal balance between detection 
accuracy and the number of parameters, significantly 
reducing the missed detection rate of small targets. 
Nevertheless, there remains potential for improvement in the 
detection accuracy of extremely small targets. Future 
research will continue to optimize the detection accuracy and 
efficiency of the model, further balancing detection speed 
and accuracy to address more complex small object detection 
scenarios in drones. 
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