
 

  

Abstract—Current research on human pose estimation often 

focuses on using complex structures to improve task accuracy, 

while overlooking resource consumption and inference speed 

during actual deployment. Based on the LitePose pose 

estimation architecture, this paper proposes a lightweight 

bottom-up pose estimation model, WLitePose, designed to 

better handle complex scenes. Specifically, to address the 

limitations of the MSE loss function, a heatmap weighted loss 

function is proposed to enable the model to focus more on the 

areas surrounding the true keypoint locations during training. 

To enhance the model's ability to handle variations in human 

scale, a lightweight deconvolution module is used after the main 

architecture to generate higher-resolution heatmaps. During 

the inference phase, heatmaps of different resolutions are 

aggregated. Additionally, the DFC-bottleneck block is proposed 

to enhance the backbone network's ability to capture 

long-range dependence between different spatial pixels. 

Experimental results on the COCO and CrowdPose datasets 

demonstrate that the proposed model achieves a good balance 

between task accuracy and computational complexity. 

 
Index Terms—bottom-up human pose estimation, lightweight 

network, multi-resolution heatmap aggregation, long-range 

dependence 

 

I. INTRODUCTION 

UMAN pose estimation aims to perform keypoint 

localization on individuals in images. This technology 

has a wide range of applications, such as action recognition 

[1], abnormal behavior detection [2], [3], [4], and medical 

assistance [5], [6]. Therefore, improving the accuracy of this 

technology is highly beneficial for other downstream tasks. 

Human pose estimation models generally fall into two 

primary categories: top-down approaches and bottom-up 

methods. Top-down frameworks [7], [8], [9], [10] first detect 

individual persons and then perform keypoint localization for 

each person. Conversely, the bottom-up framework [11], [12], 

[13], [14] initially predicts keypoints without identity 
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information, which are then associated with the 

corresponding individuals. In complex and crowded 

scenarios, the bottom-up approach is faster and more robust. 

Multi-scale processing and high-resolution features help 

retain more positional information, which is highly beneficial 

for keypoint localization. This has also been a key focus of 

many recent works. The Hourglass network [15] enhanced 

accuracy by stacking multiple hourglass modules using an 

intermediate supervision strategy. HRNet [9] connects 

multi-resolution subnetworks in parallel, retaining feature 

information at multiple resolution levels to generate 

high-quality heatmaps. HigherHRNet [13] built upon HRNet 

to further enhance task accuracy through heatmap 

aggregation. Furthermore, there are many other methods 

based on HRNet. SWAHR [16] started from the perspective 

of adjusting the standard deviation of the Gaussian kernel, 

while DEKR [17] posited that accurately regressing keypoint 

positions required focusing on the areas surrounding the 

keypoints. These methods have achieved good results in 

improving task accuracy from different angles. However, all 

the aforementioned methods have high computational 

complexity, which affects the speed of model training and 

inference. 

Currently, mainstream research primarily focuses on 

model accuracy while neglecting real-time performance, 

which makes it difficult to run on edge devices. This 

limitation restricts the application scenarios of the models to 

some extent. Therefore, designing lightweight human pose 

estimation methods is also important. Lightweight OpenPose 

[18] modified the two-branch structure of OpenPose and used 

both a lightweight backbone network and small 

convolutional kernels, significantly reducing computational 

effort. ViPNAS [19] advanced the development of 

lightweight models by leveraging Neural Architecture Search 

(NAS) techniques. 

HRNet has become a benchmark model for many works in 

large human pose estimation networks, owing to the 

advantages of its unique structure. It is equally important in 

lightweight networks. EfficientHRNet [20] applied the idea 

of EfficientNet [21] to HRNet to achieve a lightweight 

treatment of HRNet. Lite-HRNet [22] improved HRNet by 

using enhanced shuffle blocks, significantly reducing 

computational costs. Dite-HRNet [23] introduced a dynamic 

inference mechanism, making HRNet more efficient during 

inference, thereby adapting to a wider range of practical 

application scenarios. The aforementioned methods are 

theoretically lightweight, but their performance on edge 

devices is suboptimal due to the parallel multi-branch 

structures. Additionally, computing weights between 

different resolutions can further reduce the model's inference 

speed. LitePose [24] validated through gradual shrinkage 
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experiments that parallel multi-branch structures were not 

suitable for edge devices. It designed an efficient 

single-branch architecture to avoid the redundant refinement 

in the fusion modules of multi-branch architectures. 

Therefore, it is evident that research on lightweight human 

pose estimation remains insufficient compared to mainstream 

approaches. 

This paper proposes WLitePose, a lightweight model for 

human pose estimation based on the LitePose architecture, 

aimed at better handling complex and crowded environments. 

Specifically, different pixels in the heatmap have varying 

importance for keypoint localization, whereas the MSE loss 

function assigns equal importance to each pixel, ignoring 

these differences. To address this, a heatmap weighted loss 

function is proposed to differentiate the varying importance 

of different pixels, enabling the model to focus more on the 

pixels surrounding the true keypoint locations. For 

smaller-scale individuals, higher-resolution heatmaps 

contain more detailed keypoint location information. 

Therefore, a lightweight deconvolution module is designed 

after the main architecture to generate higher-resolution 

heatmaps. Although the design of depthwise separable 

convolutions in the backbone network reduces computational 

complexity, it also limits the network's ability to capture 

extensive and complex spatial context information. To 

address this, the basic block of the backbone network has 

been redesigned, proposing the DFC-bottleneck block to 

enhance the network's ability to capture long-range 

dependence between different spatial pixels. These 

improvements allow the proposed model to achieve superior 

performance on the public datasets. The main contributions 

of this paper are summarized as follows: 

⚫ This paper introduces WLitePose, a new lightweight 

human pose estimation model that utilizes a heatmap 

weighted loss function to assign varying weights to 

pixels across the heatmap. This allows the model to 

concentrate more on the areas around the true keypoint 

locations during training. 

⚫ A lightweight deconvolution module is employed after 

the main architecture to generate higher-resolution 

heatmaps. During the inference phase, heatmaps with 

1/4 and 1/2 resolutions are aggregated to better predict 

the keypoints of smaller-scale individuals. 

⚫ The DFC-bottleneck block is proposed to enhance the 

feature extraction capability of the backbone network, 

thereby improving the overall accuracy of the model. 

⚫ The experimental results show that the task accuracy of 

the proposed model outperforms other lightweight 

models. 

 

II. RELATED WORK 

A. Bottom-up Human Pose Estimation 

Given the advantages of the bottom-up approach in 

multi-user scenarios, this paradigm is also more suitable for 

running on edge devices. Currently, the mainstream research 

direction still focuses primarily on improving accuracy. Du et 

al. [25] proposed a new framework from the perspective of 

heatmap encoding and decoding. Jin et al. [26] classified 

keypoints as belonging to a single individual when their 

offsets from the body center exhibit consistency. Yu et al. [27] 

improved task accuracy by adjusting the response area of 

Gaussian distributions. While the aforementioned methods 

demonstrate commendable accuracy, deploying them on 

edge devices proves challenging. Currently, there is a 

noticeable lack of research on lightweight network models. 

 

B. Design of Lightweight Networks 

In industrial research, designing lightweight deep neural 

network architectures has been a prevalent focus. Building on 

the ability of depthwise separable convolutions to 

significantly reduce parameters and computational load, 

MobileNet [28] made its debut.  Following MobileNet, 

MobileNetV2 [29] introduced inverted residual blocks, while 

MobileNetV3 [30] leveraged neural architecture search 

(NAS) techniques to further refine the network structure. 

ShuffleNet [31] introduced channel shuffle operations to 

facilitate information exchange between feature map groups. 

GhostNetV2 [32] integrated self-attention mechanisms into 

Ghost modules to capture dependence between distant pixels. 

The lightweight networks mentioned above have been widely 

applied in visual tasks, providing significant inspiration for 

the work presented in this paper. 

 

C. Attention Mechanism 

Attention mechanisms have garnered significant interest in 

research in recent years. The SE channel attention 

mechanism module proposed by Hu et al. [33] enhances the 

network's representational capacity by dynamically adjusting 

the weights of each channel. Woo et al. [34] introduced the 

CBAM module, which adaptively adjusts the importance of 

channel and spatial dimensions in feature maps. The CA 

module [35] has further promoted the advancement of 

attention mechanisms. The attention mechanism is also very 

helpful for pose estimation. Xu et al. [36] achieved the 

current highest accuracy by integrating the vision transformer 

architecture into the task. 

 

III. METHODOLOGY 

Figure 1 illustrates the network structure of the proposed 

lightweight model, WLitePose. The backbone network 

adopts the MobileNetV2 architecture, with the basic block 

replaced by the proposed DFC-bottleneck block. Through 

stages 1 to 4, feature maps with a resolution of 1/32 of the 

original input image size are obtained. Subsequently, 

multiple scales of feature fusion and deconvolution are 

performed to obtain feature maps with a resolution of 1/4 of 

the input image size. These feature maps are then input into 

the lightweight deconvolution module designed in this study 

to generate feature maps with a resolution of 1/2 of the input 

image size. During the training phase, a multi-resolution 

supervision strategy is employed, calculating the loss 

between ground truth heatmaps and predicted heatmaps 

separately at these two resolutions. During the inference 

phase, the predicted heatmaps at 1/4 and 1/2 resolutions are 

aggregated and averaged to obtain the final heatmap. 

Keypoint position information is then obtained via heatmap 

decoding. Keypoint grouping is done using the Associative 
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Embedding [11] method. 

 

A. Heatmap Weighted Loss Function 

Since the MSE loss function is continuous and 

differentiable, it is very suitable for supervising the training 

of neural networks. Therefore, in the field of human pose 

estimation, the most commonly used loss function in the 

training phase of network models is the MSE function, which 

is expressed as follows: 

 
2

regression 2
L P H= −  (1) 

where P is the value of the predicted heatmap and H is the 

value of the ground truth heatmap. Human pose estimation 

models based on heatmap regression generate ground truth 

heatmaps using Gaussian functions to cover the surrounding 

areas of each keypoint. The closer a pixel is to the actual 

keypoint location, the closer its corresponding ground truth 

heatmap value is to 1. Using the traditional MSE loss 

function, equal weights are assigned to each pixel in the 

heatmap, ignoring the varying contributions of different 

pixels to the keypoint localization task. This paper argues that 

pixels in different locations on the heatmap have varying 

levels of importance for keypoint localization. The weights of 

pixels at different positions on the ground truth heatmap 

should be distinguished, with the model paying more 

attention to pixels with higher values on the ground truth 

heatmap, which are closer to the actual keypoint positions. 

Inspired by Focal Loss [37], this study proposes a heatmap 

weighted loss function by adding a weighting coefficient to 

the MSE loss function as follows: 

 
2

regression 2
L W P H=  −  (2) 

The weight W is defined as follows: 

 
 

 
, ,

, ,

1 P      , ,  is positive sample 
W

P           , ,  is negative sample

−
= 



k i j

k i j

k i j

k i j
 (3) 

where {k, i, j} represent the pixel positions in the predicted 

heatmap P. The heatmap values are continuous, which makes 

it difficult to define the boundaries between positive and 

negative samples. Therefore, the weight W is defined as 

follows: 

 ( )( ) ( )W P 1 H 1 P H
τ τ

=  − + −   (4) 

||∙|| is an absolute value function. Define τ as a 

hyperparameter governing the position of the soft boundary, 

with the ground truth heatmap value θ serving as the 

threshold for distinguishing the soft boundaries between 

positive and negative samples, where 1 − θτ = θτ. In the 

ground truth heatmap, the closer a pixel is to the actual 

keypoint location, the higher its corresponding heatmap 

value. For samples with ground truth heatmap values greater 

than the threshold θ, the (H)τ value approaches 1, and its loss 

weight is closer to (1−P). This indicates that the pixels in this 

region are positive samples, and the closer they are to the 

actual keypoint position, the more the model will focus on 

those pixels. For samples with ground truth heatmap values 

less than the threshold θ, the loss weight is closer to P. This 

indicates that the pixels in this region are negative samples, 

and the model's attention to these pixels will decrease. By 

assigning different weights to pixels in various locations on 

the heatmap, the model focuses more on the regions closer to 

the actual keypoint locations, thereby enhancing keypoint 

localization accuracy. In the experiment, the value of τ was 

taken as 0.01. 

 

B. Lightweight Deconvolution Module 

To enhance the model's ability to handle variations in 

human scale and better predict keypoints for smaller-scale 

individuals, this paper, inspired by HigherHRNet [13], 

designs a deconvolution module after the LitePose [24] 

architecture to generate higher-resolution heatmaps. Without 

changing the Gaussian kernel standard deviation and without 

affecting the keypoint localization accuracy of larger 

individuals, this approach improves the localization accuracy 

of keypoints for medium and small-scale individuals, thereby 

enhancing the overall performance of the model. The final 

feature map generated by the main architecture has a 

resolution of 1/4 of the input image, which is used as the 

input for the added deconvolution module to generate a new 

feature map at half the original image's resolution. These two 

high-resolution feature maps at different scales form a feature 

pyramid. For smaller-scale individuals, the 1/8 resolution 

heatmap contains less keypoint position information 

compared to the 1/2 resolution heatmap. Therefore, during 

the inference phase, the proposed model's aggregation of the 

1/4 and 1/2 resolution heatmaps performs better than the 

original framework's aggregation of the 1/8 and 1/4 

resolution heatmaps. 

In the deconvolution module, a 4×4 convolutional kernel is 

used for the transposed convolution, followed by batch 

normalization (BN) and ReLU activation applied to the 

 
Figure 1. The architecture of WLitePose 
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upsampled feature maps. To obtain high-quality feature maps, 

four residual blocks are added after the deconvolution to 

further refine the features. Considering the computational 

cost, the deconvolution module and the residual blocks are 

designed to be lightweight. The parameters of a standard 

deconvolutional layer are defined by the convolutional kernel 

K's size, represented as DK × DK × Cin × Cout. Its 

computational cost depends mainly on the size of the 

convolutional kernel DK × DK, the number of input channels 

Cin, the number of output channels Cout, and the size W × H of 

the feature map. The computational cost of the l-layer 

deconvolutional layer can be expressed as: 

 
i i i i

l

K K in out i i

i

D D C C W H      (5) 

Inspired by MobileNet [28], this paper applies the idea of 

depthwise separable convolution to the deconvolution 

module. The standard deconvolutional layer is replaced with 

a depthwise deconvolutional layer, followed by a pointwise 

convolutional layer, as shown in Figure 2. The depthwise 

deconvolutional layer applies a convolutional kernel to each 

channel for upsampling, followed by a pointwise 

convolutional layer for cross-channel feature fusion. The 

computational volume of the lightweight deconvolution 

module is expressed as: 

 
i i i i i

l

K K in i i in out i i

i

D D C W H C C W H    +     (6) 

In the added deconvolution module of this paper, there is 

only one deconvolutional layer, so l = 1. The convolution 

kernel has a size of 4×4, with 66 input channels and 32 output 

channels. Therefore, the ratio of computational volume 

between the lightweight deconvolution and the original 

deconvolution is approximately: 

 
4 4 66 66 32 1 1 3

4 4 66 32 32 16 32

i i i i

i i

W H W H

W H

    +   
= + =

    
 (7) 

Figure 3 illustrates the structure of the lightweight residual 

block. Inspired by ShuffleNet [31], the 1×1 convolution in 

the residual block can be replaced with 1×1 pointwise group 

convolution (GConv). By dividing the channels into 3 groups, 

the computational cost of pointwise convolutions after 

grouping is approximately 1/3 of the original. After pointwise 

group convolutions, the output result is subjected to channel 

shuffle, where subgroups between different color channels 

are rearranged into a new grouping. The following 3×3 

convolution can be substituted with a 3×3 depthwise 

convolution (DWConv). 

 

C. DFC-bottleneck Block 

In the inverted residual module of the backbone network 

MobileNetV2, LitePose uses 7×7 convolutional kernels to 

expand the receptive field, achieving notable results. In the 

inverted residual module, the feature channel dimensions are 

expanded using 1×1 pointwise convolution. However, during 

this process, the 1×1 convolutional layer only considers the 

information at each position in the feature map independently, 

lacking interaction with other pixels. Although the 7×7 

depthwise convolution can expand the receptive field within 

a single channel, it operates solely within the respective 

channel, capturing only local spatial features within each 

channel. The absence of cross-channel interactions limits the 

network 's ability to capture complex spatial contextual 

information, preventing direct access to global information. 

This is detrimental to keypoint localization tasks in complex 

scenes or for small-scale targets. This paper introduces a 

novel bottleneck module, the DFC-bottleneck block, 

designed to improve the network's capacity to capture 

long-range dependencies between spatial pixels, thereby 

enhancing overall model accuracy. 

The DFC attention was proposed by GhostNetV2 [32]. 

Given an input feature Z ∈ RH×W×C, treat it as HW tokens, i.e. 

 
Figure 2. The structure of the lightweight deconvolution module 

 

 
Figure 3. The structure of the lightweight residual block 
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zi ∈ RC, Z = {z11, z12, ⋯ , zHW}. The formula for generating 

the attention map using a fully connected (FC) layer is: 

 
whw hw,h h w

h ,w

a F z=  ' ' ' '

' '

 (8) 

where the symbol ʘ denotes element-wise multiplication, 

F represents the learnable weights in the fully connected (FC) 

layer, and A = {a11, a12, ⋯ , aHW} denotes the generated 

attention map. During the computation of attention output ahw 

for each position, information from all other positions is 

integrated. Therefore, the equation above aggregates all 

tokens and learnable weights together to capture global 

information. Considering that feature maps in CNNs are 

typically low-rank, it is unnecessary to densely connect all 

input and output tokens from different spatial positions. Eq. 

(8) can be decomposed into two FC layers, denoted as: 

 
,

1

,  = 1, 2, , ,  = 1,  2, ,  
=

= 
H

H

hw h h w h w
h

a F z h  H w W' '

'

'  (9) 

,
1

,  = 1, 2, , ,  = 1,  2, ,  
=

= 
W

W

hw w hw hw
w

a F a h  H w W' '

'

'  (10) 

where FH and FWare the transformation weights. With the 

original feature Z as input, Eq. (9) and Eq. (10) capture 

long-range dependence along the horizontal and vertical 

directions, respectively.  

In this paper, the 7×7 convolutional kernel is still used. 

However, to better balance the relationship between accuracy 

and computation, and inspired by ConvNeXt [39], the 7×7 

depthwise convolutional layer is moved before the 1×1 

convolutional layer. While this approach may not achieve 

optimal accuracy, it appropriately reduces computational cost. 

The DFC attention mechanism takes a parallel structure with 

the 7×7 depthwise convolutional layer. The input feature X 

∈ RH×W×C is fed into two separate branches. One branch is 

the 7×7 depthwise convolutional layer, and the other branch 

is the DFC module that generates the attention map A. The 

input feature X is transformed into the DFC's input Z using a 

1×1 convolution. The final output O ∈ RH×W×C is the product 

of the outputs from the two branches, as follows: 

 ( ) ( )SigmoidO A ν X=  (11) 

where ⊙  denotes element-wise multiplication, and the 

purpose of the Sigmoid function is to normalize the output of 

the attention map A to the range of (0,1). Figure 4 illustrates 

the structure of DFC attention. To lower the computational 

cost of the parallel structure, the input features of the DFC 

branch are downsampled via average pooling, reducing the 

original width and height by half. Subsequent vertical FC and 

horizontal FC operations are then performed on these 

downsampled features. The resulting feature maps are 

upsampled to their original size to align with the resolution of 

the features from the other branch. Bilinear interpolation is 

employed for upsampling. 

The structure of the DFC-bottleneck block is shown in 

Figure 5. In the DFC-bottleneck block, the DFC attention 

branch runs in parallel with the 7×7 depthwise convolutional 

layer. Subsequently, this paper is inspired by ConvNeXt [39] 

to fine-tune the module. The activation function is changed 

from ReLU to GELU, retaining only one GELU layer 

between the two 1×1 convolutional layers. Additionally, two 

BN layers are removed, leaving only one BN layer in front of 

the 1×1 convolutional layer. The accuracy loss caused by 

moving the 7×7 depthwise convolutional layer forward is 

appropriately compensated by these adjustment strategies 

above. 

 

IV. EXPERIMENTS 

A. Datasets 

1) Microsoft COCO: The MS-COCO dataset [38] consists 

of over 200K images, featuring 250K human body instances 

annotated with 17 keypoints. The training set consists of 57K 

images, with the validation and test sets containing 5K and 

20K images, respectively. 

2) CrowdPose: The CrowdPose dataset [8] contains 20K 

images. The human body instance is annotated with 14 

keypoints. The ratio of the training, validation, and test sets is 

5:1:4. The detection difficulty of this dataset is greater. 

Utilizing the approach of HigherHRNet [13], the training 

occurs using both the training and validation datasets, with 

subsequent evaluation conducted on the testing dataset. 

 

B. Evaluation Metrics 

This paper adopts the Object Keypoint Similarity (OKS) 

provided by the Microsoft COCO dataset [38] as the 

 
Figure 4. The structure of DFC attention 

 

 
Figure 5. The structure of the DFC-bottleneck block 

 

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2127-2137

 
______________________________________________________________________________________ 



 

evaluation standard. The definition of OKS is as follows: 

 

( ) ( )

( )

2 2 2exp / 2 0

OKS
0

− 

=






i i i

i

i

i

d s k δ v

δ v
 (12) 

where di denotes the Euclidean distance between the 

predicted keypoint position and the ground truth position, vi 

denotes the visibility of keypoint i’s ground truth position (i.e., 

vi > 0 means that the keypoint is visible, and vi ≤ 0 means that 

the position of the keypoint is unobservable), s is the scale 

factor of the target, and ki is the constant used for each 

keypoint to control the attenuation. In addition, the standard 

Average Precision AP (i.e., the average precision of keypoint 

prediction at OKS = 0.50, 0.55, ..., 0.90, 0.95), AP50 

(precision at OKS = 0.5) and AP75 (precision at OKS = 0.75) 

will be used in this paper as the standard metrics. 

 

C. Experiment Settings 

The server used for the experiments was running on 

Ubuntu 16.04 and was equipped with two NVIDIA RTX 

3090 GPUs. The software environment included PyTorch 

1.8.0, CUDA 11.1, etc. 

Following the experimental setup of LitePose [24], the 

Adam optimizer was used for training. The batch size was set 

to 32. For the COCO dataset, training was carried out over 

500 epochs. The starting learning rate was established at 10-3, 

which was subsequently decreased to 10-4 after the 350th 

epoch and further to 10-5 by the 480th epoch. For the 

CrowdPose dataset, training was carried out over 200 epochs. 

The starting learning rate was established at 10-3, which was 

subsequently decreased to 10-4 after the 50th epoch and 

further to 10-5 by the 180th epoch. Data augmentation 

techniques included random rotation ([-30°, 30°]), random 

scaling ([0.75, 1.5]), random translation ([-40, 40]), and 

random flipping. Additionally, the model’s latency was 

tested on the Qualcomm Snapdragon 855 GPU. 

 

D. Main Results Analysis 

Table I shows the results of the comparative experiments 

on the COCO val2017 set. While WLitePose has a slightly 

lower AP score than the larger HigherHRNet [13], it has 

significantly fewer parameters and lower MACs. Compared 

to the Lightweight OpenPose [18], WLitePose improves the 

AP score by 14.9%. With an input image size of 448×448, 

WLitePose achieves a 4.9% higher AP score than 

EfficientHRNet [20] and a 1.3% higher AP score than 

LitePose [24]. For an input size of 256×256, it also surpasses 

LitePose by 1.0% in AP score. When tested on a Qualcomm 

Snapdragon 855 GPU, WLitePose demonstrated lower 

latency than both Lightweight OpenPose and EfficientHRNet. 

In comparison to LitePose, it only adds 5ms of latency with a 

448×448 input size while achieving greater accuracy. With 

an input size of 256×256, the latency remains nearly identical 

to LitePose. 

Figure 6 visually shows the latency on a Qualcomm 

Snapdragon 855 GPU and the accuracy on the COCO 

val2017 set for various lightweight networks. LOpenPose 

denotes Lightweight OpenPose, and EHRNet-H_2 represents 

EfficientHRNet-H-2. It is evident that WLitePose-S achieves 

the highest AP score. Additionally, its latency is only 5ms 

higher than LitePose-S and significantly lower than 

Lightweight OpenPose and EfficientHRNet-H-2. This also 

validates the superiority of WLitePose. 

Table II shows the results of the comparative experiments 

on the COCO test-dev2017 set. Compared to large networks, 

the computational complexity of the proposed model remains 

at a relatively low level. In addition, compared to the 

lightweight OpenPose, the AP score increased by 14.7%. 

With an input image size of 448×448, the proposed model 

achieves a 4.8% higher AP score than EfficientHRNet and a 

1.2% higher score than LitePose. For an input size of 

256×256, the AP score is 0.8% higher than that of LitePose. 

Table III presents the results of the comparative 

experiments on the CrowdPose test set. While the proposed 

model is less accurate than larger networks, it has 

significantly fewer parameters and lower MACs. Compared 

to LitePose, it achieves a 1.6% higher AP score with an input 

size of 448×448 and a 1.2% higher score with an input size of 

256×256. Among lightweight networks, WLitePose excels in 

both accuracy and computational efficiency due to its 

streamlined single-branch architecture. When deployed on a 

Qualcomm Snapdragon 855 GPU, the model's latency is 

similar to LitePose with a 256×256 input size, and increases 

by only 5ms with a 448×448 input size. Although 

WLitePose-S theoretically exhibits higher MACs compared 

to EfficientHRNet-H-3, its actual deployment latency is 51ms 

lower. This further validates that parallel multi-branch 

architectures are not well-suited for edge devices. 

Figure 7 visually represents the latency on a Qualcomm 

Snapdragon 855 GPU and the accuracy on the CrowdPose 

test set for various lightweight networks. HHRNet-W16 and 

EHRNet-H_3 denote HigherHRNet-W16 and 

EfficientHRNet-H-3, respectively. It is evident that 

TABLE I 

COMPARISON OF EXPERIMENTAL RESULTS ON THE COCO VAL2017 SET 

Bottom-up method Backbone Input Size #Params/M #MACs Latency (ms) AP AP50 AP75 

Large Networks         

PersonLab [12] ResNet-152 1401×1401 68.7 405.5G – 66.5 86.2 71.9 

HigherHRNet [13] HRNet-W32 512×512 28.6 47.9G – 67.1 86.2 73.0 

 HRNet-W48 640×640 63.8 155.1G – 69.9 87.2 76.1 

Small Networks         

Lightweight OpenPose [18] – 368×368 4.1 9.0G 97 42.8 – – 

EfficientHRNet [20] EfficientHRNet-H−2 448×448 8.3 7.9G 182 52.8 72.2 57.9 

 EfficientHRNet-H−4 384×384 2.8 2.2G – 35.7 – – 

LitePose [24] LitePose-S 448×448 2.7 5.0G 76 56.4 77.2 61.2 

 LitePose-XS 256×256 1.7 1.2G 27 40.1 61.3 42.8 

WLitePose WLitePose-S 448×448 3.6 5.8G 81 57.7 78.2 63.0 

 WLitePose-XS 256×256 2.3 1.5G 29 41.1 62.1 44.3 
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WLitePose-XS has latency nearly identical to LitePose-XS, 

significantly lower than that of HigherHRNet-W16 and 

EfficientHRNet-H-3, while achieving the highest accuracy. 

Due to the limited availability of bottom-up lightweight 

human pose estimation models, Table IV compares 

WLitePose with top-down lightweight models on the 

CrowdPose test set. To ensure fairness, the experimental 

setups for Lite-HRNet [22] and Dite-HRNet [23] are 

identical to those in this paper. The results show that 

regardless of whether the input image size is 448×448 or 

256×256, WLitePose outperforms the others. This also 

indicates that the bottom-up architecture is more suitable for 

running on edge devices. 

Table V presents the comparison results between 

WLitePose and top-down lightweight models on the COCO 

val2017 set. The experimental setups for Lite-HRNet and 

Dite-HRNet are identical to those in this paper. Compared to 

these models, WLitePose reduces MACs by 0.9G and 

achieves an AP score that is 4% higher than Lite-HRNet and 

5.5% higher than Dite-HRNet. 

 

E. Ablation Study 

Ablation experiments were conducted on the CrowdPose 

test set to verify the effectiveness of the proposed 

improvements, such as the lightweight deconvolution module, 

heatmap weighted loss function, and DFC-bottleneck block. 

Table VI shows the ablation experiment results of the 

TABLE Ⅱ 
COMPARISON OF EXPERIMENTAL RESULTS ON THE COCO TEST-DEV2017 SET 

Bottom-up method Backbone Input Size #Params/M #MACs Latency (ms) AP AP50 AP75 

Large Networks         

PersonLab [12] ResNet-152 1401×1401 68.7 405.5G – 66.5 88.0 72.6 

HigherHRNet [13] HRNet-W32 512×512 28.6 47.9G – 66.4 87.5 72.8 

 HRNet-W48 640×640 63.8 155.1G – 68.4 88.2 75.1 

Small Networks         

Lightweight OpenPose [18] – 368×368 4.1 9.0G 97 42.7 – – 

EfficientHRNet [20] EfficientHRNet-H−2 448×448 8.3 7.9G 182 52.6 72.8 57.5 

 EfficientHRNet-H−4 384×384 2.8 2.2G – 35.5 – – 

LitePose [24] LitePose-S 448×448 2.7 5.0G 76 56.2 78.4 60.5 

 LitePose-XS 256×256 1.7 1.2G 27 37.6 62.1 40.9 

WLitePose WLitePose-S 448×448 3.6 5.8G 81 57.4 79.1 62.4 

 WLitePose-XS 256×256 2.3 1.5G 29 38.4 62.7 42.0 

 

TABLE Ⅲ 
COMPARISON OF EXPERIMENTAL RESULTS ON THE CROWDPOSE TEST SET 

Bottom-up method Backbone Input Size #Params/M #MACs Latency (ms) AP AP50 AP75 

Large Networks         

HigherHRNet-W48 [13] HRNet-W48 640×640 63.8 154.6G – 65.9 86.4 70.6 

DEKR [17] HRNet-W48 640×640 65.7 141.5G – 67.3 86.4 72.2 

SWAHR [16] HrHRNet-W48 640×640 63.8 154.6G – 71.6 88.5 77.6 

Small Networks         

HigherHRNet-W24 [13] HRNet-W24 512×512 14.9 25.3G – 57.4 83.2 63.2 

HigherHRNet-W16 [13] HRNet-W16 512×512 7.2 12.5G 170 50.4 78.4 54.5 

EfficientHRNet [20] EfficientHRNet-H−1 480×480 13.0 14.2G – 56.3 81.3 59.0 

 EfficientHRNet-H−3 416×416 5.3 4.3G 132 46.1 79.3 48.3 

LitePose [24] LitePose-S 448×448 2.7 5.0G 76 58.0 80.9 61.6 

 LitePose-XS 256×256 1.7 1.2G 27 49.4 74.1 51.3 

WLitePose WLitePose-S 448×448 3.6 5.8G 81 59.6 82.3 63.5 

 WLitePose-XS 256×256 2.3 1.5G 29 50.6 74.8 52.8 
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Figure 6. Latency of various lightweight networks and accuracy on COCO 

val2017 set 
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Figure 7. latency of various lightweight networks and accuracy on the 

CrowdPose test set 
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proposed model on the CrowdPose test set. The input image 

size is 448×448 with LitePose as the baseline. The results of 

Exp-1, Exp-3, and Exp-4 demonstrate that each of the three 

proposed improvements can effectively enhance the model's 

task accuracy when used independently. In Exp-1, enhancing 

the model's feature extraction by replacing the basic block in 

the backbone network led to a 0.7 percentage point increase 

in AP score compared to the baseline. A comparison between 

Exp-2 and Exp-1 shows that the introduction of the 

lightweight deconvolution module provides only a minimal 

improvement in accuracy. This may be due to the lightweight 

design of this module, which somewhat restricts the 

enhancement of accuracy. A comparison between Exp-5 and 

Exp-2 shows that introducing the heatmap weighted loss 

function increases the AP by 0.8 percentage points. This 

demonstrates the effectiveness of the method, as the model 

pays more attention to the regions that are more valuable for 

keypoint localization during the training process. 

To assess the impact of placing the DFC-bottleneck block 

at different positions within the backbone on accuracy, 

comparison experiments were conducted on the CrowdPose 

test set, as shown in Table VII. The input image size was set 

to 448×448, with LitePose used as the baseline. The 

backbone is divided into four stages based on feature size. 

Replacing the basic block in any stage of the backbone 

improves task accuracy. When the basic blocks in all four 

stages are replaced, the highest task accuracy is achieved 

while maintaining low computational complexity and 

parameter count. Therefore, this study replaces the basic 

blocks in all four stages with the proposed DFC-bottleneck 

block. 

In the heatmap weighted loss function, τ is a 

hyperparameter that controls the position of the soft 

boundary. As τ decreases, the threshold θ also decreases 

exponentially. To evaluate the effect of different τ values on 

task accuracy, comparison experiments were performed on 

the CrowdPose test set, as shown in Table VIII. The input 

image size was set to 448×448, with LitePose serving as the 

baseline. The AP scores are identical when τ is set to 0.01 and 

0.001, both achieving the highest accuracy of 59 percentage 

points. When τ is set to 0.01, the threshold θ is approximately 

8×10-31, at which point the heatmap values of many pixels in 

the ground truth heatmap will be greater than θ. Thus, a value 

of 0.01 for τ is sufficient, and there is no need to decrease it 

further. 

The proposed DFC-bottleneck block utilizes the DFC [32] 

attention module. To validate the rationale for selecting the 

DFC attention module, the impact of employing different 

attention modules within the DFC-bottleneck block on task 

accuracy was evaluated, as shown in Table Ⅸ. Compared to 

the SE [33] and CBAM [34] modules, the use of the DFC 

attention module results in minimal differences in parameter 

count and computational load, but significantly improves 

accuracy. Compared to the CA [35] module, although both 

achieve the same AP score, the DFC attention module has a 

lower computational load, making it more advantageous. The 

results fully validate the rationale and superiority of using the 

DFC attention module within the DFC-bottleneck block. 

To assess the impact of each enhancement in the DFC 

TABLE Ⅳ 

COMPARISON RESULTS WITH TOP-DOWN LIGHTWEIGHT NETWORKS ON THE CROWDPOSE TEST SET 

 Model Backbone Input Size #Params/M #MACs AP AP50 AP75 

 Lite-HRNet [22] Lite-HRNet-30 448×448 1.8 7.2G 51.3 78.7 52.4 

Top-down  Lite-HRNet-30 256×256 1.8 2.4G 41.8 70.6 41.2 
method Dite-HRNet [23] Dite-HRNet-30 448×448 1.8 7.2G 51.0 78.5 52.3 

  Dite-HRNet-30 256×256 1.8 2.4G 41.6 70.6 40.5 

Bottom-up WLitePose WLitePose-S 448×448 3.6 5.8G 59.6 82.3 63.5 
method  WLitePose-XS 256×256 2.3 1.5G 50.6 74.8 52.8 

 

TABLE Ⅴ 

COMPARISON RESULTS WITH TOP-DOWN LIGHTWEIGHT NETWORKS ON COCO VAL2017 SET 

method Model Backbone Input Size #Params/M #MACs AP AP50 AP75 

Top-down 
Lite-HRNet [22] Lite-HRNet-30 256×256 1.8 2.4G 37.1 65.3 36.5 

Dite-HRNet [23] Dite-HRNet-30 256×256 1.8 2.4G 35.6 63.2 34.3 

Bottom-up WLitePose WLitePose-XS 256×256 2.3 1.5G 41.1 62.1 44.3 

 
TABLE Ⅵ 

RESULTS OF ABLATION EXPERIMENTS ON THE CROWDPOSE TEST SET 

Model DFC-bottleneck block lightweight deconvolution module heatmap weighted loss function #Params/M #MACs AP 

Baseline    2.7 5.0G 58.0 
Exp-1 √   3.3 5.5G 58.7 

Exp-2 √ √  3.6 5.8G 58.8 

Exp-3  √  3.0 5.2G 58.3 
Exp-4   √ 2.7 5.0G 59.0 

Exp-5 √ √ √ 3.6 5.8G 59.6 

 

TABLE Ⅶ 

COMPARISON EXPERIMENT OF DFC-BOTTLENECK BLOCK IN DIFFERENT 

POSITIONS OF BACKBONE 

Stage #Params/M #MACs AP 

Baseline 2.7 5.0G 58.0 
Stage 1 2.9 5.2G 58.2 

Stage 2 3.0 5.2G 58.3 

Stage 3 3.0 5.3G 58.2 
Stage 4 3.1 5.3G 58.5 

All 3.3 5.5G 58.7 

 

TABLE Ⅷ 
THE IMPACT OF THE HYPERPARAMETER VALUES IN THE HEATMAP WEIGHTED 

LOSS FUNCTION ON TASK ACCURACY 

Model heatmap weighted loss function hyperparameter τ AP 

Baseline   58.0 

Exp-1 √ 1.0 58.5 
Exp-2 √ 0.1 58.8 

Exp-3 √ 0.01 59.0 

Exp-4 √ 0.001 59.0 

 

Engineering Letters

Volume 32, Issue 11, November 2024, Pages 2127-2137

 
______________________________________________________________________________________ 



 

bottleneck block on the model's performance, relevant 

experiments were carried out. Table X presents the 

experimental details of the block's design. Initially, moving 

the 7×7 depthwise convolutional layer forward resulted in a 

0.9% drop in AP score compared to the baseline but reduced 

the computational load. Then, adding the DFC attention 

mechanism in parallel with the 7×7 depthwise convolution 

led to a 0.4% AP score improvement over the baseline, with 

minimal increase in computational load. Next, the activation 

function was changed from ReLU to GELU, and the number 

of GELU and BN layers was reduced. These adjustments 

formed the DFC-bottleneck block, which, compared to the 

baseline, only increased MACs by 0.5G while improving the 

AP score by 0.7%. These results validate the effectiveness 

and advantages of the DFC-bottleneck block design. 

 

F. Visualization Results 

Figure 8 illustrates the pose estimation visualization on the 

COCO val2017 dataset. WLitePose exhibits accurate 

detection of keypoints for smaller individuals or those in the 

background, even in cases of body part overlap or partial 

 
Figure 8. Visual results of pose estimation on the COCO val2017 set 

 

 
Figure 9. Visual results of pose estimation on the CrowdPose test set 

 

TABLE Ⅸ 

THE IMPACT OF USING DIFFERENT ATTENTION MODULES WITHIN THE 

DFC-BOTTLENECK BLOCK ON TASK ACCURACY 

Model attention module #Params/M #MACs AP 

Baseline  2.7 5.0G 58.0 
Exp-1 SE [33] 2.9 5.3G 58.2 

Exp-2 CBAM [34] 2.9 5.3G 58.3 

Exp-3 CA [35] 3.2 5.7G 58.7 
Exp-4 DFC [32] 3.3 5.5G 58.7 

 

TABLE Ⅹ 

EXPERIMENTAL DETAILS OF THE DFC-BOTTLENECK BLOCK DESIGN 

Model #MACs AP 

Baseline 5.0G 58.0 

move up 7×7 depthwise conv 4.6G 57.1 
+ DFC attention 5.5G 58.4 

ReLU → GELU 5.5G 58.4 

fewer activations 5.5G 58.6 
fewer batch norms 5.5G 58.7 
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occlusion. Figure 9 showcases the pose estimation 

visualization on the CrowdPose test set. In more complex 

scenarios, multi-person pose estimation encounters 

difficulties like occlusion, scale changes, blur, and 

background distractions. Despite these challenges, the 

method retains strong detection performance, highlighting its 

robustness. 

 

V. CONCLUSION 

This paper introduces WLitePose, a lightweight bottom-up 

human pose estimation model based on the LitePose 

architecture. The study revisits the shortcomings of the MSE 

loss function and presents a novel heatmap weighted loss 

function. This approach allows the model to pay more 

attention to the regions that are more valuable for keypoint 

localization during the training process. Additionally, a 

lightweight deconvolution module is incorporated into the 

main architecture to produce higher-resolution heatmaps. 

During inference, these heatmaps are aggregated to improve 

keypoint prediction for smaller individuals, thereby 

strengthening the model's capacity to manage variations in 

human scale. To boost feature extraction in the backbone, the 

basic block is substituted with the newly proposed 

DFC-bottleneck block, which increases overall model 

accuracy. WLitePose achieves strong performance on public 

datasets. This model strikes an effective balance between 

accuracy and efficiency, broadening its potential for practical 

applications. 
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