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Abstracti—As a new generation of high-performance
batteries, lithium-ion batteries have found extensive
applications in electric cars, as well as energy storage systems
and various other industries. State of charge (SOC) estimation
is one of the most important indicators. SOC estimation model
of lithium-ion battery based on deep learning neural networks
employs diverse external measurement parameters and
internal battery parameters as input information, and adopts
feed-forward neural network (FNN), convelutional neural
network (CNN) and long short-term memory network (LSTM)
as predictors to realize the accurate SOC estimation. The
model based on deep learning neural networks takes into
account the influence of various input parameters and can
understand the state of the battery more comprehensively. By
using FNN, CNN and LSTM networks, the influence of noise
and instability of battery data on SOC estimation can be
effectively avoided. After many times of training and
verification, the high accuracy and stability of the model can
meet the need of SOC estimation for lithium-ion batteries.

Index Terms—SOC estimation, feed-forward neural network,
convolutional neural network, long short-term memory

[. INTRODUCTION

tate of Charge (SOC) estimation technology plays an
important role in battery management, which enables us

to know the remaining power in the battery more accurately,
thus improving the service efficiency and life of the battery
[1]. The technology of SOC estimation can be used to
determine various battery parameters such as voltage,
current, temperature, and other related factors. Additionally,
it enables the acquisition of remaining battery power by
emploving a specific chemical model for the battery [2].
Therefore, SOC estimation technology is very important for
improving the efficiency and prolonging the service life of
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batteries. It i1s worth noting that different types and
manufacturers of batteries have different physical and
chemical properties, so it is necessary to study different
SOC estimation methods for different types and
specifications of batteries [3-4]. In addition, the usage of the
battery will also affect the accuracy of SOC estimation, for
example, the charging and discharging rate and depth of the
battery will have a certain impact on SOC estimation. Early
SOC estimation techniques were mainly based on traditional
mathematical models, such as RC model, EKF [5] model
and intelligent filtering model. These models provide an
estimation accuracy by considering the electrochemical
characteristics and internal resistance characteristics of the
battery from various perspectives during both charging and
discharging processes. However, the influence of these
models on the Dbattery temperature [6], changing
electrochemical characteristics and battery internal
resistance in charge and discharge state has not been fully
considered, so there 1s still a great error in predicting battery
SOC [7]. In addition, a large number of tests and
experimental data of batteries and their characteristic
parameters are needed in the process of SOC estimation,
which limits their development prospects.

As an mmportant branch of artificial intelligence, deep
learning has surpassed the traditional statistical leamning
methods in prediction and classification tasks [8]. In battery
management system, accurate state estimation is very
important for battery life and performance. Among them,
the state estimation of lithium-ion battery is a challenging
task, because lithium-ion battery itself is a nonlinear and
time-varying svstem. Therefore, it is often difficult to adopt
traditional modeling and control methods, and deep learning
provides a brand-new method, which can accurately model
and predict complex systems. At present, deep learning has
been widely used to estimate the SOC of lithium-ion
batteries, including feed-forward neural network (FNN)
[9-10], convolutional neural network (CNN) [11] and long
short-term memory neural network (LSTM) [12].

In Ref. [13], a new architecture is proposed that utilizes
load classification neural networks to estimate SOC. The
method uses data-driven nonlinear models, namely neural
networks and learning machines. Firstly, the battery input is
preprocessed, and the battery working modes are classified
into 1idle, charging and discharging, and three neural
networks are trained simultaneously. Based on the
experimental findings, it can be inferred that the machine
learning approach employed in this study demonstrates a
commendable level of estimation accuracy. Rel [14]
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proposed an innovative approach to enhance the state
estimation technique of model-based Kalman filter (KF) by
introducing a novel training method based on extreme
learning  machine  algorithm.  Subsequently, various
estimation algorithms including extended Kalman filter
(EKT"), unscented Kalman filter (UKF), adaptive extended
Kalman filter (AEKF) and adaptive unscented Kalman filter
{AUKF) were employed for SOC estimation. By comparing
the experimental results, it can be shown that the application
of AUKF algorithm in ELM model can improve the SOC
estimation performance of lithium-ion batteries. In Ref. [15],
a SOC estimation method based on neural fuzzy system and
subtraction clustering is proposed. Simulation experiments
are conducted by using an advanced car simulator,
comparing it with back-propagation neural network and
Elman neural network. In the SOC estimation model, the
collected data is used to train and test for 10 different
driving cycles. The experimental results show that the model
has sufficient accuracy and performs better than the neural
network and Elman neural network. A novel approach
emploving a deep feed-forward neural network (DNN) is
utilized for the estimation of battery state of charge (SOC),
which 1s generated by applying driving cycle load to
lithium-ion batteries at various ambient temperatures, so that
the batteries are exposed to variable dynamics [16]. It is
verified on many different data sets, which effectively
verifies 1its effectiveness. This paper presents a SOC
estimation model of lithium-ion battery based on deep
learning neural network. The structure of the paper is
arranged as follows. In the second section, different SOC
estimation models of lithium-ion batteries based on deep
learning neural network are introduced. The third part
includes the experimental simulation and result analysis of
different models, and finally draws the conclusion of the

paper.

II. SOC ESTIMATION MODEL BASED ON DEEP
LEARNING NEURAL NETWORK

A. Feed-forward Neural Network

Feed-forward Neural Network (FNN) is a fundamental
model in neural networks, commonly referred to as the
Multi-Layer Perceptron (MLP). The model consists of
multiple neurons that are connected in a hierarchical
structure, including input layers, hidden layers and output
layers. FNN comprises of a single-layer feed-forward neural
network and a multi-layer feed-forward neural network.
Single-laver feed-forward neural networks with only one

Input Layer

Hidden Layer

Fig. 1 Structure diagram of multi-layer feed-forward neural network.

— ]

output layer are the simplest artificial neural networks. In
the output layer, each node's value 1s determined by directly
multiplying the input value with its respective weight. In
other words, the results of the output layer can be obtained
only by a simple hinear combination of nput values. This
neural network is suitable for some simple tasks, such as
binary classification or linear regression. See Eq. (1) and Eq.
(2), and take out one of its elements for discussion.
x=[x.%,....x,]" is the input feature vector, W, is the
connection right from X to ¥ , and the output
y.(j=L2,..m) isthe result of the classification, which is
based on different characteristics.
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Multi-layer FNN 1is composed of three layers: the input
layer, one or more hidden layers, and the output layer. In
this neural network, the input value is first input through the
mnput layer, then processed by nonlinear activation function
through each hidden layer, and finally output to the output
layer to get the final result. By using multiple hidden layers,
the network can leamn more complex features and achieve
more complex tasks. Because there are multiple connections
between hidden layers, neural network can learn nonlinear
mapping, which is the biggest difference from single-layer
FNN.
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Where, i= 1,2,...nq | j.: 1,2,...,?1{171 d= 1, 2,...,Q Each layer
represents a single-layer feed-forward neural network (FININ)
that forms an 1, 1 dimensional hyperplane at the q layer
for linear classification of the input patterns at that layer.

Through the combination of multiple layers, more complex
input pattern classification can be realized eventually. Fig. 1

shows the structure of a multi-layer FINN. FNN have the

ability to deal with a large number of nonlinear data and has

excellent performance in image processing, natural language

processing and other fields.

Hidden Layer Oulput Layer
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The fundamental concept behind training FNN involves
feeding a vast amount of familiar data into the neural
network and iteratively adjusting its output to align with the
real data, thereby enhancing the precision of prediction
outcomes. Among them, three core algorithms are
Back-Propagation,  Gradient  Descent and  Error
Back-Propagation. When the network encounters new data,
it can classify or predict the data according to the
established relationship. FNN with linear output layer and at
least one layer containing nonlinear activation function can
realize function approximation with arbitrary accuracy by
augmenting the quantity of hidden units. In addition, the
neural network can flexibly change the number of mput and
output neurons as needed to adapt to different joint space
variables and task space variables. This improves the
flexibility and applicability of the model, so that any
position and posture can be modeled as task space variables.

B. Convelutional Neural Network

Convolutional neural network (CNN) 1s a deep learmng
technology used in mmage recognition, object detection,
natural language processing and other fields. The primary
characteristic of CNN involves the utilization of convolution
operation to derive nput data features, surpassing the
conventional approach of manual feature extraction in terms
of efficiency. Convolution operation 1s an effective way to
scan the input image through convolution kernel, extract the
feature regions of interest, and aggregate these features into
higher- dimensional feature representations. In CNN, each
neuron only processes part of the input data, that is, the data
in the local receptive field, this effectively decreases the
count of trainable parameters and enhances the traiming
process's efficiency. The concrete implementation of CNN
usually includes multiple components such as convolution
layer, pooling layer and fully connected layer. Alternating
convolution layer and pooling layer can continuously extract
feature and downsample data. Hence, progressively
diminish the size of feature map and minimize the
computational intricacy of the model. The fully connected
layer is responsible for the classification or regression of the
extracted high-level features.

A convolutional neural network consists of several layers
including convolution layers, pooling layers and fully
connected layers. The core of CNN is convolution layer, and
it can extract features from input data. The convolution layer
obtains a new feature map by performing element-wise
convolution operation on the convolution filter and each
region of the input image. This process can be understood as
extracting features in the input image, such as edges,
textures and so on At work, the convolution kernel
periodically scans the input features and processes them
through multiplication and summation of matrix elements
and superposition of offsets.

20 )= [Z‘f ®oa”1](z‘,j)+b

£ f J , . (5)
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In fact, the summation part in Eq. (5), Eq. (6) and Eq. (7)
can solve the first cross correlation, and the deviationis b ,
the convolution input and output of the 1+ 1st layer are Z
and Z., and the size of 7,1 1is L. Suppose the
dimensions of the feature map are identical in length and
width. The pixels of the corresponding feature map are
represented by Z(1,]), and the feature map is characterized
by a channel number of K . The dimensions of the
convolutional kernel, the stride length for convolution, and
the count of padding layers are f, sy and p , respectively.

The primary purpose of the pool layer 1s to decrease the
input dimension of the subsequent layer and enhance the
feature's invariance to position. Maximum pool and average
pool are common operations in the process of pooling. The
maximum pooled output is the maximum value in each input
area, so that the key features of the image can be preserved.
The output of average pooling is the average value of each
mput area, and over-fitting is prevented by reducing the
amount of calculation. L, pooling is a pooling model
established at the level of the visual cortex, and its general
form is shown in Eq. (8).

;g e
A (i )= {Z > A (syi+x, s, 7+ Y (8)

x=1 yp=1
where, sy and (i,j) have the identical meaning as
convolution layer, and p is a per-specified parameter. When
the value of p is set to 1, L, pooling employs average
pooling by merging regions with the mean value.
Conversely, as p tends towards infinity, L, pooling adopts
maximum pooling by selecting the highest value within the
region. L, pocling has two conceptual extensions, namely
mixed pooling and random pooling. In order to make the
non-maximum excitation signal enter the next structure, we
need to randomly select a value in a random pool according
to a specific probability distribution. The linear combination
of the average pool and the maximum pool can be used to
represent the mixed pool, and Eq. (9) 1s a concrete
eXpression.

A =L (4)+ L (4)). 2 =[0.1] (9)

The fully connected layer connects the output of the
previous layer with each neuron of this layer to realize the
classification task. The final layer in a neural network 1s
typically the fully connected layer, which generates an
output vector that represents the distribution of probabilities
for different categories associated with the image. Loss
function can be used to evaluate the prediction effect of a
model. The cross-entropy loss function and mean square
error loss function are widely used in different loss functions.
The cross-entropy loss function 1s commonly applied in
classification tasks to assess model performance by
quantifying the difference between predicted and actual
classes. The objective of utilizing this optimizer is to
progressively minimize the value of the loss function
through updating neural network parameters. Common
optimizers are Random Gradient Descent (RGD) and Adam.
In the training process, the optimizer will calculate the
gradient of each parameter according to the value of the loss
function, and revert it to every layer of the network, thus
updating the wvalue of each parameter. In practical
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application, CNN suitable for different scenarios can be
constructed by adding, modifying and deleting different
layers. A simple CNN structure diagram 1s shown in Fig. 2.

C. Long Short-Term Memory Neural Network

LSTM neural network, known as long short-term memory
neural network, is widely utilized in deep learning networks
to model and handle sequence data with high efficiency,
particularly  addressing prolonged dependencies. In
conventional RNN models, the primary focus lies in
addressing the issue of gradient vanishing or exploding
while transmitting information, and has a very good effect
when it needs long-term memory or pays attention to certain
features. LSTM can be classified as a distinct type of
recurrent neural network (RNN). The connection between
RNN and LSTM is visually depicted in Fig 3.

The topological structure of LSTM is composed of a
series of LSTM units. The mnput and output of each LSTM
unit are similar to those of the traditional recurrent neural
network unit. But distinct from the traditional RNN, each
LSTM unit has three learnable gates, namely, the Input Gate,
the Forget Gate and the Output Gate, which can effectively
filter the information that may be irrelevant, thus improving
the efficiency and accuracy of the model in processing long
sequences. By controlling the opening and closing of the
door, LSTM can selectively remember and discard historical
information, avoid the gradient problem, and adapt to the
needs of different sequence lengths and tasks. In practical
application, LSTM 1is used in many fields, such as image
description, inventory prediction, natural language
processing, emotion classification, production model and so
on. Among them, it is particularly prominent in natural
language processing, such as machine translation, text
generation and semantic analysis.

LSTM consists of memory cell, nput gate, output gate
and forgetting gate. An essential component of LSTM is a
memory module that retains past data. The input gate has
two parts, one is sigmoid function, which is used to control
what information 1s input, and the other is tanh function,
which is used to generate new candidate values. Forgetting
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Five feature maps

Lower sampling layer

Fig. 2 Structure diagram of convolutional neural network.

gate controls the retention and forgetting of old information,
and 1t also has two parts, one is sigmoid function, which 1s
used to control what information is retained, and the other is
tanh function, which is used to delete part of the original
value. The output gate controls the output range and also has
two parts, one is sigmoid function, which is used to control
what information is output, and the other is tanh function,
which 1s used to get the output value. The network structure
of LSTM is illustrated in Fig. 4 through a schematic
diagram.

The specific algorithm in Fig. 4 is shown in Eqg. {(10) to
Eq. (15), where ¢ stands for sigmoid layer, and each data
needs to pass sigmoid function, W; stands for weight

matrix, by stands for offset, and [H, (. %] stands for
splicing two matrices together.

F=o(W, [H, .X,]+b,) (10)
I =c(W [H_.X,]+b) (11)
C, =tanh(W,-[H,_.X,|+D,) (12)
C=F=C_,+1I #C, (13)
O, =c(W,-|[H_.X,]+b,) (14)
H, =0, xtanh(C, ) (15)

C

c >
h
Recurrent Neural Long Short
Network Term Memory
Network

Fig. 3 Relationship between RNN and LSTM.
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Fig. 4 Structure diagram of LSTM basic network.
ITI. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

A. Data Selection

The verification experiment described in this paper uses
the test data of Tumnigy Graphene 5000mAh 65C
lithium-ion battery, which was conducted by Dr. Phillip
Kollmeyer of McMaster University in Canada The test
used a 5000mAh Turnigy battery to carry out several
groups of experiments, including multiple charge-discharge
cycles at different temperatures and four HPPC tests with
different discharge and charge rates, and the tests were
carried out under various SOCs. Through the identification
of the test data, the RC parameters in the battery model in
Table I are obtained. Among them, SOC columns from 0 to
1 represent different SOC values of the battery. These
parameters include ohmic resistance (RO), electrochemical
polarization resistance (R1), concentration polarization
resistance (R2), electrochemical polanzation resistance
capacitance  (C1) and  concentration polarization
capacitance (C2).

B. Analysis of Simulation Results under -10°C

When the temperature 1s -10°C, a variety of neural
network models were used to predict the state estimation of
battery remaining power, and the corresponding prediction
diagram are drawn. Among them, several classical models,
such as feed-forward neural networks (FNN10 and FNN40),
convolutional neural networks (CNN1 and CNN2), and
long short-term memory neural networks (LSTM), were
used to carry out experiments, and their prediction results
were analyzed.

Fig. 5 (a) to Fig. 5 () are visual demonstrations of model
prediction for lithium-ion battery SOC, in which the
abscissa represents the true value of lithium-ion battery
SOC and the ordinate represents the predicted value
obtained by using different models. The straight line y=x in
the figure represents that the predicted value coincides
precisely with the actual value, while the 225 data points in
the figure represent the results obtained by predicting the
SOC of lithium-ion batteries through different models. It is
evident from Fig. 5 (a) and Fig. 5 (b) that at the temperature
of -10°C, the prediction results of FININ10 and FINN40 have
very high similarity compared with the real value.
Compared with FNN10, FNN40O' s prediction result is
relatively more stable, and it can accurately reflect the

change of prediction value in the whole prediction range.
Comparing Fig. 5 (¢) and Fig. 5 (d), it’s easy to see that the
predicted result of CNNI1 fluctuates greatly and 1s not
accurate when the SOC range is 0.2 ~ 0.4, but it {luctuates
slightly and performs relatively well when the SOC range is
0.4 ~ 1.0. By expanding the number of filters in CNN2, it
can be clearly found that the fluctuation of the prediction
results is obviously improved when the SOC range is 0.2 ~
0.4. The predicted results align closely with the true value
of y=x when the SOC range 1s 0.4 ~ 0.6. Based on the
findings presented in Fig. 5 (e), it is evident that the LSTM
model accurately predicts the SOC of lithium-ion batteries
even at a temperature as low as -10°C. However, it should
be pointed out that this is only the observation of the data
set and the results obtained by the training model, which
does not mean that LSTM can show similar high accuracy
in all cases. In the practical application process, it is
necessary to analyze and adjust the characteristics of the
predicted data set more carefully to improve the accuracy
of the model prediction.

Then, the prediction curves of five neural network
models are compared, namely FNN10, FNN40, CNNI,
CNN2 and L3TM. By putting the prediction curves of these
models on the same picture and displaying them locally, we
can compare the prediction effects of each model more
intuitively. Of course, when comparing models, we need to
make rigorous revision and evaluation to ensure the
credibility of the results.

TABLE I. RC PARAMETERS IN BATTERY MODEL

30C RO/mS R1/m2 R2/m& Cl/F C2/F
0 1.0001 0.4991 0.4956 20127 201696
0.1 12.8431 0.4979 0.4844 20529 207017
03 15.7735 0.4955 0.5034 20165 199004
03 10.5689 0.5064 0.4963 19555 202674
0.5 12.8425 0.5048 0.4970 19779 200848
0.6 10.1624 0.5046 0.4988 19592 202566
0.7 10.7265 0.4993 0.5011 20058 198330
08 10.1553 0.5057 0.4994 19775 200313
09 10.5078 0.4986 0.5004 19945 199863
1 10.4174 0.4977 0.5011 20219 201614
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Fig. 5 Predicted scatter plot (-10°C).

The results of specific comparison can be seen in Fig. 6.
From the error curves depicted in Fig. 7 {a) to Fig. 7 (e), it
can be observed that, overall, the models exhibit errors
ranging from -0.08 to 0.04. Specifically, with the increase
of the number of hidden neural umts in FNN meodel, the
jitter amplitude of FNN4O error curve decreases. For
convolutional neural networks, after the number of filters
increases, the stability of the error curve of CNN2 is
improved, while CNN1 still has sigmificant jitter. The
average error of LSTM is between -0.03 and 0.01, and it
shows relatively good stability, but it is slightly worse than
FNN and more stable than CINN.

After calculating the evaluation indexes of each model
{sce Table T for evaluation indexes), we make a
comprehensive analysis by combining the forecast scatter
diagram, forecast curve diagram and local enlarged
diagram of forecast curve of each estimation model. At
-10°C, among the five estimation models, FINN40 shows
the most accurate prediction result, followed by FNNI10,
LSTM, CNN2 and CNN1. By observing the goodness of fit
of different models, we can conclude that at -10°C, FNNI10,
FNIN40, CNNI1, CNN2 and LSTM can all effectively
estimate the SOC of lithium-ion batteries.

C. Analysis of Simulation Results under 6°C

The data in Fig. 8(a) and Fig. 8(b) show that the
predicted results of FNN10 and FNN40 are very similar to
the true value at 0°C, respectively.

However, in the range of SOC value of 0.2-0.4, the
prediction results of FNNI1O fluctuate slightly, while
FNN40 with hidden neural units hardly fluctuates. In
contrast, the forecast result of FINN40 is more stable. By
comparing Fig. 8(c) and Fig. 8(d), it can be noted that the
accuracy of CNN1's predictions 1s significantly affected by
the SOC range of 0.2-0.5, leading to substantial fluctuations

(b) FNN40 predicted scatter plot (-10°C )

(c) CNNI predicted scatter plot (-10°C )

1.04 v -10°C pLSTM]

Predict Value
o =)
T i

e
IS
I
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0.2 0.4 0.6 0.8 10
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(e) LSTM predicted scatter plot (-10°C )

in its results, but it performs well and fluctuates little in
other SOC ranges. In contrast, the fluctuation of prediction
results of CNN2 after the number of filters 1s expanded 1s
obviously improved when the SOC is 0.2-0.5. By observing
the results in Fig. 8(e), it can be found that the L.STM 1s
stable in predicting the SOC of lithium-ion batteries, with
little fluctuation, and can still maintain high accuracy even
at 0°C.

The prediction curves of five neural network models are
presented in Fig. 9. By observing the error curves depicted
in Fig. 10{a) to Fig. 10{e), it can be observed that all
models exhibit errors ranging from -0.08 to 0.09. Judging
from the jitter amplitude of the error curve, FNN40 is more
stable than FNN10. When the Simple Point value is in the
range of 150-200, there is great jitter in CNN1, and the
error curve of CNN2 is more stable after increasing the
number of filters. The average error of LSTM is between
-0.02 and 0.02, and it shows relatively good stability.

We get the prediction results of five estimation models,
and then compare and analyze them, it can be found that
FNN40 1s the most accurate model at 0°C, followed by
FNN10, LSTM, CNN2 and CNN1. At the same time, by
observing the evaluation indexes of different models, it can
be inferred that the SOC of lithium-ion batteries can be
accurately estimated by the aforementioned five models. At
a temperature of 0°C, the evaluation criteria for each model
are presented in Table I11.

TABLE II. EVALUATION INDEX OF EACH MODEL (-10°C )

Model PENNLO PENN40 PCNNL pCNN2 pLSTM
MAE 0.0022 0.0019 0.2627 0.2625 0.2626
RMSE 0.0029 0.0025 0.3138 0.3138 0.3137

R? 0.9998 0.9999 0.9954 0.9976 0.9995
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D. Analysis of Simulation Results under 10°C

By looking at the data of Fig. 11(a) and Fig. 11(b), it can
clearly see that the predicted results of FNN10 and FNN40
are very similar to the real values at 10°C. In the forecast
scatter chart of FNN10, the fluctuation of forecast results
can be almost ignored, while FNN40 is more stable and the
forecast results are more dense. At a temperature of 10°C,
based on the analysis of Fig. 11(c) and Fig. 11(d), it can be
inferred that CNN1 exhibits minimal fluctuations within the
SOC range, while the predicted data displays dispersion.
After the number of filters is enlarged, the prediction data
of CNN2 is more compact, and the whole SOC range is
basically consistent with the real value. It can be found
from Fig. 13(e), when the ambient temperature is 10°C, the
predicted results of LSTM for the SOC of lithium-ion

batteries fluctuate within the SOC value range of 0.8~1.0,
but they still show high accuracy on the whole. For the
evaluation of the estimation model at the ambient
temperature of 10°C, the curves and local enlarged graphs
of the prediction results of five neural network models,
FNN10, FNN40, CNN1, CNN2 and LSTM, are drawn, as
shown in Fig. 12. The error curves of each model at 10°C
are shown in Fig. 13(a) to Fig. 13(e), and the errors of all
models are between -0.04 and 0.09. With Fig. 13(a) and Fig.
13(b), it can be seen that the error curve of FNN40 has the
smallest fluctuation among the five curves, and it is slightly
stable compared with FNN10 after adding hidden nerve
units. When the value of Simple Point is in the range of
175-225, the fluctuation of CNNI1 is large, while the
stability of CNN2 is obviously improved. The error of
LSTM is between -0.03 and 0.03 shown in Table IV.
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(e) LSTM predicted scatter plot (10°C )
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TABLE IIl. EVALUATION INDEX OF EACH MODEL {0°C )

Model ~ pFNNI0  pFNN40  pCNN1  pCNN2  pLSTM
MAE 0.0024 0.0021 02590 02584  0.2590
RMSE  0.0032 0.0029 03101 0.3095 0.3098

R? 0.9998 09998 09945 09976  0.9986

TABLE IV. EVALUATION INDEX OF EACH MODEL (10°C )

Model  pFNN10  pFNN40  pCNNI  pCNN2Z  pLSTM
MAE 0.0024 0.0022 02461 02461 02455
RMSE 0.0029 0.0028 02953 02951 0.2940

R? 0.9998 09998 09942 09983 09985

IV. CONCLUSION

Based on the experimental data of Turnigy Graphene
5000mAh 65C lithium-ion battery at different temperatures,
this paper uses feed-forward neural networks (FNN10 and
FNN40), convolutional neural networks (CNN1 and CNN2)
and long short-term memory neural networks (LSTM) to
build a prediction model of lithium-ion battery SOC, and
concludes that these five neural networks can effectively
predict them. At the temperatures of -10°C, 0°C and 10°C,
five models all showed high accuracy and precision. In the
experiments at different ambient temperatures, FINN, CNN
and LSTM models are relatively stable, and LSTM model
can better capture the information of time series data.
Comprehensive experimental results show that FNN, CNN
and LSTM neural networks have broad application
prospects in SOC prediction of lithium-ion batteries. For
practical application, a suitable prediction model can be
chosen according to the scene, so as to improve the energy
utilization rate and system stability of lithium-ion batteries
and reduce security risks.
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