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Dual Mixed Orlicz-Brunn-Minkowski Inequality
and The General Dual Orlicz Mixed Volume

Ping Zhang, Xiaohua Zhang

Abstract—In this paper, we initially establish the dual mixed
Orlicz-Brunn-Minkowski inequalities for the dual mixed vol-
ume, and then introduce the definition of the general dual Orlicz
mixed volume based on the Orlicz radial sum. Subsequently, we
derive the dual Orlicz-Minkowski inequalities for the general
dual Orlicz mixed volume. Finally, we derive the dual mixed
Log-Minkowski inequality.

Index Terms—Orlicz radial addition, dual Orlicz mixed vol-
ume, the general dual Orlicz mixed volume, dual Orlicz-Brunn-
Minkowski inequality, dual Orlicz-Minkowski inequality.

I. INTRODUCTION

HE combination of Minkowski sums with volumes
gives rise to the extensive and powerful classical Brunn-
Minkowski theory of convex bodies, which refers to compact
convex subsets with nonempty interiors([12]). Similarly, Lut-
wak introduced the dual Brunn-Minkowski theory of star
bodies, providing further details on this topic([6], [7]). In
order to expand upon the renowned Brunn-Minkowski theory
and its duality, Firey introduced a modification by replacing
the linear function ¢(u) = u with ¢(u) = uP([1]). Further-
more, in order to extend the renowned Brunn-Minkowski
theory into the Orlicz-Brunn-Minkowski theory, Lutwak
made a substitution of a homogeneous function ¢(u) = uP
with a nonhomogeneous function ¢(u)([9],[10]). Recently,
Gardner, Hug, and Weil (2014) developed a comprehensive
framework for the Orlicz-Brunn-Minkowski theory, encom-
passing both Orlicz addition and Minkowski addition([3]).
In a more recent study, Ye introduced an Orlicz ¢—radial
addition of multiple star bodies and established the cor-
responding dual Orlicz-Brunn-Minkowski inequalities([15]).
Additionally, in [18], Zhu, Zhou, and Xu established the
dual Orlicz-Brunn-Minkowski theory for star bodies. Wang,
Shi, and Ye derived the dual Orlicz-Brunn-Minkowski in-
equalities for dual quermassintegrals([14]). Moreover, Ma
and Wang had successfully established the dual Brunn-
Minkowski inequality for the novel dual Orlicz harmonic
mixed quermassintegrals([11]). Furthermore, Gardner, Hug,
Weil, and Ye provided a broader conceptual framework and
more comprehensive findings for two or more star sets([4]).
The first objective of this paper is to establish the
dual mixed Orlicz-Brunn-Minkowski inequality for the dual
mixed volume of the Orlicz radial sum, as stated in Theorem
21: Let H L,H;jyq,---,H, € S}, real i # 0, ¢ € Oy or
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¢ € Uy, and Gy(u,v) = ¢( L

1
w3y

V(Ha"'vHvHi+17"'aHn) ’

, v%) If G is convex, then

i

]

the equality holds if and only if H and L are dilates, provided
that G is strictly convex. In the case of concave Gy, the
inequality is reversed.

Definition 3.1 introduces the general dual Orlicz mixed
volume by utilizing the Orlicz radial sum as its founda-
tion: For H,L,H;11,- - -,H, € &), if i is real, ¢ :

(V(H'T_¢L7 o 'uH—T_¢L7Hi+17 T 7Hn)>
V(L7 o '7L7Hi+17 o 7Hn)
<1,

(0,00) — R, the general dual Orlicz mixed volume,
V(b,i<H7 te '7H7L7Hi+1a t 'aHn)v of HaL7Hi+17 t '7Hn is
defined by

~ 1 p(H,w
V¢71(H7"'3H3L7Hi+17"'aHTL) = ;/S . ¢(p((L w)))

P H,w)p(Hiy1,w) - - p(Hy,w)dS(w).
The dual Orlicz-Minkowski inequality is established in

Theorem 3.2 based on the definition of the general dual
Orlicz mixed volume, which can be formulated as follows:

Let H L,H;11,- -, H, € S},i#0, ¢:(0,400) — R, and
G(u) = ¢(-4),u > 0. If G is convex, then
V¢)7i(H7' . 'aH7L7Hi+17' . 7Hn>
2 V(Hv : '7H7H7Z+17' : '7Hn)
¢|:<‘A/(H7 . '7H7Hi+1,' . aHn)>1:|
V(L,--~,L,Hi+1,---,Hn) ’

the equation holds if and only if H and L are dilates,
provided that G is strictly convex. Conversely, if G is
concave, the preceding inequality is reversed.

Furthermore, Theorem 3.3 establishes the general dual
mixed Log-Minkowski inequality.

II. THE DUAL MIXED ORLICZ-BRUNN-MINKOWSKI
INEQUALITY

Let R™ denote the Euclidean space, where B represents the
unit ball centered at the origin and its surface is denoted by
S™~1. The radial function p(H, w) of a compact set H € R"
(where H is star-shaped with respect to the origin) is defined

by(see [2])
p(H,w) =max{\ >0: \w e H}, we S

the term “star body (about the origin) ” will be assigned to
H if p(H,w) is positive and continuous. If p(H,w)/p(L, w)
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does not depend on w € S™~! we say that H and L
are dilates with each other. Let S;' € R" denote the set
of star bodies centered at the origin, V(Hl,HQ, <o Hy)
represent the dual mixed volume of Hy, Ho,---,H, € S,
while V(H) = V(H, H,---, H) denotes the n-dimensional
volume of a star body H € SJ'. The integral representa-

tion V(Hl,-~-,H,L) of Hi,Hs,---,H, € 8} is given as
follows([7]):
N 1
V(Hy e H) =5 [ plHi ) ol w)dS (),
S‘n,—l

where dS(w) is the standard spherical Lebesgue measure on
Sn—t,

Let ®,, (m is a finite positive integer) be the set of
functions ¢ : [0,00)™ — [0,00),Vz € [0,00)™\{0}, and
¢ satisfies([4], [15]):

(1) ¢ € ®,,, and ¢ is continuous on [0, 00)™\{o};

(2) ¢ € @y, and ¢ is strictly increasing on [0, c0)™\{o};

3) ¢(0) = 0,lims o0 P(tz) = 0.

Let ¥,, (m is a finite positive integer) be the set of
functions ¢ : (0,00)™ — (0,00),Vz € (0,00)™, and %
satisfies:

(1) ¢ € ¥,,, and % is continuous on (0, c0)™

(2) ¢ € ¥, and 9 is strictly decreasing on (0, 00)™

(3) limy—y0 ¥ (tz) = 00, limy— oo ¥(tx) = 0.

The definition of the Orlicz radial sum of two star bodies
was previously stated in ([4],[14],[15]) as follows:
Definition 2.A. For H,L € S” o € Py or ¢ € Uy, the
Orlicz radial sum, H+,L € of H and L is defined
implicitly by

O )

p(H-T—¢L,IU) p(H‘T‘¢L,1U) _ n—1
o ) = e s @)
If ¢p(u,v) = I + pvi(N, B > 0,u,v > 0, > 1),

Definition 2.A yields the Lp-harmonic radial combination, Ao
H —F,q B oL, of H and L, their radial function satisfies([14],
[17]):

p(Ao Hi—gf o L,w)™® = Ap(H, w)™ "+ Bp(L,w)™,

Vw € S™L
If p(u,v) = A"+ B9\, B8 > 0,u,v > 0,q > 0),
Definition 2.A yields the Lp-radial combination, Ao H+,30
L, of H and L, their radial function satisfies([14], [17]):

p(No HEqB o L,w)® = Mo(H, w)? + Bp(L, w)?,

Vw € S

The dual Orlicz-Brunn-Minkowski inequalities of the Or-
licz radial addition were established in ([4],[14]).

In this paper, we first establish the dual mixed Orlicz-
Brunn-Minkowski inequalities for dual mixed volume. To
prove Theorem 2.1, we require the utilization of Jensen’s
inequalities ([5]):

Lemma 2.1. Suppose that p is a probability measure on a
space Y and f : Y — I C R is a pu—integrable function,
where I is a possibly infinite interval.

If ¢ : I — R is convex, then

/¢ du(y >¢(/f ) >)

under strict convexity of ¢, equality holds if and only if
f(y) is constant for p—almost all y € Y.

(2.2)

If ¢ : I — R is concave, then

[ st <o [ swaw).

under strict convexity of ¢, equality holds if and only if
f(y) is constant for y—almost all y € Y.

Theorem 2.1. Let H L, H; 1, - -, H, 6 Sl ¢ € @y or
¢ € Uy, real i # 0, and Gy(u,v) = (;5( e l) If Gy is
convex, then

(2.3)

v T ~ 1
¢KV(H+¢L" o HteL Hivy, -,Hn)>
V(H, - H,Hi\1, - Hy) '
(V(H_T_¢L7 ) "H—T_¢>LaHi+17 c aHn))1:|
V(L,- o L,Hiq,- -+ Hy)
<1 (2.4)

the equality holds if and only if H and L are dilates,
provided that G is strictly convex. Conversely, when G
is concave, the inequality is reversed.
Proof. Since Gy(u,v) = qﬁ(u%, U%

), we have
ou,0) = Go (2.0

. (2.5)

Let H L,H;yy,- -+, H, €8], assuming the convexity of
Gy, by utilizing the Orlicz sum of two star bodies (2.1),
the integral representation of dual mixed volume, (2.2), and
(2.5), we obtain
Jsn—1 0" (HA4 L, w)p(Hipr,w) - -~ p

nV(HY oL, H¥ oL, Hiy1,- -
(H+yL,w)

= [ o )

p(L,w)
p'(H+gL,w)p(Liy1,w) - - -

p(Hp, w)dS(w)
nV(H¥ 4L, H¥ oL, Hiy1,- - - Hy)

(Hp,, w)dS(w)
Bl Hn)

1=

feelGatn) Gt

P (H+y L, w)p(Hiy1,w) - - - p(Hn, w)dS(w)

nV(H—T—¢L, ce H:hz)L, Hiyy,- - Hy)
> G (fsn—l pi(va)p(HiJrlvw) U p(Hn»w)dS(w)
= nV(Ht oL, Hb oL, Hipy,- - Hy)
fSnfl pi(L7w)p(Hi+1a U)) e p(Hn’w)dS(w))
nV(H‘Fqua o ‘aH;¢L7Hi+1a o 7Hn)
_ ( V(H, - H Hy, - Hy)
“\V(HFL, - HF 4L Hin,- - H,)
‘A/(La"'7L7Hi+1"”7Hn) )
V(H;qf)La o ’7H;¢L7HZ’+17 o 7H7L)
_ ¢|:<V(H'P¢La ' 'vH—T_¢L7Hi+17' : 7‘[7[71)>1
V(H, - H Hi1,- - Hy) ’
<V(H;¢La'"7H;¢LaHi+1""’Hn)>1:| (2 6)
V(L,- L, Hy1, - Hy) ’ ’
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if Gy is strictly convex, equality conditions of Jensen’s
inequality imply that (2.6) holds with equality if and only
if there exist constants ¢y and co such that

p(HtsL,w) _ o p(H+4L,w)
p(H,w) T p(L,w)

ie, p(H,w)/p(L,w) = ca/e1,Yw € S"~L. This indicates
that H and L are dilates, then we get the inequality (2.4).

Similarly, if Gy is strictly concave, by (2.1), Jensen’s
inequality (2.3) and (2.5), we get

-1
=c9,Vw e S"

¢|:<V(H;¢La t '7H;¢L7Hi+17' . '7H7L)>7
V(Ha"’7H7Hi+1,"'aHn) ’
(V(H;¢L7 o 'aH;¢LaHi+17 " aHn)) 1:|
V(Lv o 'aLvHiJrlv o aHn)
> 1, 2.7)

the strict concavity of G implies that equality holds in (2.7)
if and only if H and L are dilates. Consequently, we obtain
the Theorm 2.1.

Clearly, if ¢ = n in Theorem 2.1, we derive the dual
Orlicz-Brunn-Minkowski inequalities([15]). If H; 41 = --- =
H,, = B in Theorem 2.1, we obtain the dual Orlicz-Brunn-
Minkowski inequalities for the dual quermassintegrals([14]).

And moreover, in ([4],[14],[15]), the authors introduced

the linear Orlicz radial combination of two star bodies in the
following manner:
Definition 2.B. For H,L € S),a,b > 0,¢(u,v) =
apy(u) +bpa(v), where ¢1, do are either both in ®1 or both
in W, the linear Orlicz radial combination, ao H+ 4, 4,boL,
of H and L is defined by

aoH+y, b0 L,w
a¢1<p( 1.6 ))

p(H, w)
+hebs <

plao H+4, s,b0 L,w)
p(L,w)
On the basis of Definition 2.B, the following dual Orlicz-
Brunn-Minkowski inequalities are derived:
Corollary 2.1. Let H,L,HZ-H, - H, € 8T 7£ 0,a,b>0,
6u,v) = adi(u) + bos(v), Ci(u) = 1(=r), Ga(v) =

) =1,Ywe "t (2.8)

qbg( ), where ¢1,¢2 € P1 or ¢1,¢2 e ‘111 And for
stmpllczty, let V( ) =V(aoH¥ 4, ,00L, ;a0 HT 4, 4,b0
L, Hiiy, -+, Hy). If both Gy and G are convex, then
N 1
V(T B
| (s ) |
V(H7 t '7H7 Hi+17' . 7Hn)
~ 1
V(T B
o K : ) ) } <1 (29)
V(La t '7L7Hi+17 t 7Hn)

the equality in (2.9) is achieved if and only if both G
and G4 are strictly convex, indicating that H and L must
be dilates. Conversely, if both G1 and G5 are concave, the
inequality is reversed.

Remark. (1) If ¢1(u) = uP(u > 0) and ¢2(v) = vP(v > 0)
with p > 1 in Corollary 2.1, when —% > 1(or — £ < 0),
we have G (u) = ¢1( L) = w7, Ga(v ) ¢2( )fva,
we get that both G; and G- are convex; when 0 < —2 < 1,
we obtain that both G; and G5 are concave. Combmmg the

Lp radial harmonic combination and Corollary 2.1, the Lp
dual Brunn-Minkowski inequality is derived in the following
manner([8]):

If H L, Hyyy, - Hy €SP, and =2 < 0,p > 1,a,b > 0,

V(ao HY pboL)™% >aV(H)™ % +bV(L)" "

the equality holds if and only if H and L are dilates.

2) If $1(u) = wP(u > 0) and ¢2(v) = v P(v > 0)
with p > 0 in Corollary 2.1, when 0 < £ < 1, we have
Gi(u) = &) = uf,Ga(v) = do() = vt we
get that both G; and G5 are concave; when % > 1(or
% < 0), we obtain that both G; and G5 are convex.
Combining the Lp radial combination and Corollary 2.1,
the Lp dual Brunn-Minkowski inequality is derived in the
following manner([13]):

If H,L,H;q, -+ H, €S?, and for 0 < 1 < 1,a,b >0,
we have
V(aoHFbo L, a0 HFbo L, Hyy, - Hy,)*
<aV(H, - H Hyy, - Hy,)*
+0V (L, L, Hiq,- 'an)%»

equality holds true under the condition that H and L are
dilates; for % > 1,a,b > 0, the inequality is reversed.

If ¢1 = ¢po = ¢, we write ao H+ 4, ¢,bo0L = boH+4(1—

b) o L, from Corollary 2.1, the following Corollary 2.2 is
obtained.:
Corollary 2.2. Let H L,H,+1,---,H, € S},
0,0 < a <1, ¢ (with second derivatlve). (0, 00) — (0,00)
and g1 = o = &, $(1) = 1. If ¢ € @y is a convex function,
or ¢ € Uy is a concave function, then

real 1 >

V(bo H¥o(1=b)oL, - boHEs(1=b)o L, Hiyr, - Hy)*
<V(H, - H Hi1,- - an)%
.V(Lv"'vaHi+1a"',Hn) lzb’ (210)

the equality holds if and only if H and L are dilates when
¢ is strictly convex (or concave).

Proof. Firstly, if ¢ € @1 is convex, we will prove that G(t) =
qb(t%) is a convex function for i > 0.

In fact, let w = t% in G(t) = ¢(X), then

ti

dG(t)  dé(u) du
Cdt du dt’
and
d’G(t)  d*¢(u) du., dé(u) d*u
= e @) T dw ae (2.11)
where
gu 1 _1m
dt i ’
du _ 11 +it7#
a2 i i '

Thus, if function ¢ € @, is strictly increasing and convex,

then dz@ > 0and L2 > 0. And for i > 0, then 2 > 0,

we get ddc;gt) > 0. So G is convex. R

_ Next, let ¢ = ¢2 = ¢, and for simplicity, let V(S) =
V(b (¢} H:f—qg(l — b)AO L ',b o H+¢(1 — b) o L’AHH-l? .
"H’ﬂ)> V(Sl) = V<H7 ’ 'aHaHi+17' ’ '7Hn)’ V(‘SQ) =
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V(L, oL, Hitq,-++, Hy), according to (2.9), the arithmetic-
geometric mean inequality holds true and ¢(1) = 1, we have
1=¢(1)
) |+l (7gs) |
>b - +(1-5b -
2| (Fs) |+ 09| (7
z¢[b<Y<S)>”+<1_b (YS ) ]
V(S1) V(S

V()
> ¢>< - Q( ) > (2.12)
V(S1)TV(S2) T
for ¢ is strictly increasing in (2.12), we obtain
B < (2.13)
V(81)7V(S2)7
and for v > 0 in (2.13), we get
V(S)t < V(S)HV(S:) T
ie.
V(boHT y(1—b)oL, --,boHT3(1—b)oL, Hisq, -, Hy)*
S V(Hv : '7H7 Hi+17' : 7Hn)%
V(L L Higa, - Ha) T (2.14)

when ¢ is strictly convex, the conditions for equality to hold
in (2.14) imply that H and L are dilates.
Similarly, if p € Uy is strlctly decreasing and concave in

(2 11), then % < 0 and a’ Lo < 0. And for i > 0, then

dtQ > 0, we get dﬁz(t) <0. So G is concave.

Let o1 = ¢o = ¢, where ¢ is a strictly decreasing
function. By applying Corollary 2.1 and the arithmetic-
geometric mean inequality, while considering that ¢(1) = 1,
we can conclude

TE0 I )1;” <1, (2.15)
for i >0 in (2.15), then
V(boHF4(1=b)oL, -, boH+4(1=b)oL, Hyyq, -+, Hy,) 7
<V(H, - H Hi, - Hy)*
'V(L7'"7L7Hi+17"'7H’n)1;b7 (2.16)

the equality holds in (2.16) if and only if H and L are
dilates when ¢ is strictly concave.

III. THE GENERAL DUAL ORLICZ MIXED VOLUME AND
THE DUAL ORLICZ-MINKOWSKI INEQUALITY

In order to prove Theorem 3.1, we need the following two
Lemmas([15]).
Lemma 3.1. Let H,L € S}, > 0, ¢1, 2 be either both in
@, or both in Uy and ¢1(1) = ¢o(1) = 1. If € — 0T, then
p(H+ 4, 4,6 0 Lyw) — p(H,w) uniformly on S™~1.
Lemma 3.2. Let H L € §),0 < e < 1,¢1,¢2 be either
both in @1 or both in Uy and ¢1(1) = ¢2(1) =1

If ¢1, 92 € 1, then

H¥y, ¢, L C H¥y, goc0L C H.

If ¢1, 2 € V1, then
H—T—¢17¢2L B H—T—¢17¢>250L D H.

Theorem 3.1. Let H, L, H;\y,---,H, € S}, real i #
0, e — 07,011,020 € @1 or ¢1,¢2 € W,. Moreover, let
H+4, 4,6 0 L be the linear Orlicz radial combination of H
and L, ¢p1(1) = ¢2( ) = 1. And for simplicity, let V(T) =
V(H+¢1 $,€0L,- H—T—¢17¢25OL,HIL'+1,- -~,Hn).
(1)The left- denvanve of ¢1(u) at uw = 1, denoted as

qb;, (1), exists and is finite for any ¢1,pa € @1, then

_¢I1—(1) lim V(T) o V(H 'aHa HiJrla t an)
1 e—0+ € €
:V¢72(H 3H3L7H1+173Hn) (31)

(2)The right-derivative of ¢1(u) at w = 1, denoted as
&1+ (1), exists and is finite for any ¢1, 2 € @1, then

) V@) V(H o H Hig,oo Hy)
) e—0+ € €
=V, (H, - H,L,Hiy1,- - Hy,). (3.2)
Proof. Let H, L € S, according to (2.8), the radial

function, H+y, 4,€ 0 L, of H and L satisfies

1 (p(H"TVbl,(bzg oL, w))
p(H,w)

H¥ L
+e¢2(p( +“’Ez’2;; ’w)) —1vwe Sl (3.3)
Let g(g) = W Yw € S"1 we have
p(H¥ 4, ,pc0L,w)
1 ¢2( z(qujfu) > . gn1
- = Yw e ST 3.4
S ) 4

(1) If ¢1, ¢ € @1, and e — 07, by Lemma 3.1 and Lemma
3.2, we get g(e) — 17. Noting that g(0) = 1, according to

$1(9(0)) = ¢1(1) = 1 and the definition of derivative, we
have
_Qﬁ;*(l) lim V(T) _ V(H 'aHa Hi-‘rla t 7Hn)
1 e=0t| € €
(H+4,,6,6 0 Lyw) — p'(H,w)

)y L PR
= ———— lim —
i e=0t N Jgno €

'p(Hi+17 w) o 'p(Hmw)dS(w)
_ e 1/ 1<(p<H%¢1,¢zsoL,w>>i_1>
N 1 e=0t N Jgn-1 € p(H,w)

§(H, w)p(His1,w) - - p(Hy, w)dS (w)

()1 / . ((p(HﬂlmsoL,w))i_l)
) gn-1e—0t €

p(H,w)
'pi(Hv w)p(Hi-‘rla w) T p(Hna w)dS(w)

-0 ()

‘P2 (P(H-T-%}%E ° L7w)>
p(L,w)
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pi(va)p(Hi-&-law) e

=)

p'(H,w)p(Hit1,w

p(Hy,,w)dS(w)

p(Hn, w)dS(w)

= V¢2(Ha "'aHaLaH’H-lv 7Hn)

The desired relation (3.1) is thus obtained.

(2) If ¢1, 02 € V1 and as € — 0T, according to Lemma
3.1 and Lemma 3.2, we observe that g(¢) — 17, It is worth
noting that ¢(0) = 1, and since ¢1(g9(0)) = ¢1(1) = 1,
utilizing equation (3.4), similar to the above discussion, we
have

_d)/l"'(]') lim V(T) _ V(Ha"'7H7Hi+17"'7Hn)
T e—0t € €
:V¢2(H '7H7L7Hi+1a"'7Hn)-

Hence, we obtain the desired relation (3.2).

In light of Theorem 3.1, we give the definition of the
general dual Orlicz mixed volumes as follows:
Definition 3.1. For H,L,H;,1,- - -, H, € 8], i is real,

¢ : (0,00) = R, the general dual Orlzcz mixed volume,

V¢71(H B Ha La Hi+17 Y Hn)v Of Ha La Hi+17 ) HTL is
defined by
Vd’ﬂ'(H '7H»L3Hi+17""Hn)
1 p(H,w)
= LT
p'(H,w)p(Hit1,w) - - - p(Hp, w)dS(w). (3.5)

It is evident that when ¢ = n in equation (3.5),
Von(H,...,H,L,H;1,...,H,) = Vu(H,L), which
demonstrates the extension of the dual Orlicz mixed volume
to a general case ([15]). Similarly, if H;1y =... = H, =B
in equation (3.5), we obtain the definition of dual Orlicz
mixed quermassintegrals([14]).

The subsequent step involves establishing the dual Orlicz-
Minkowski inequalities for the general dual Orlicz mixed
volume:

Theorem 3.2. Let H,L,H; 4, - -,

H, € 8"i#0,¢:
(0,4+00) = R, and G(u) = ¢(%),u > 0. If G is convex,

then

V(b,i(H '7H7L7Hi+17"'aHn)

ZV(H 'aHaHi+17"'7Hn)
VHa"'aHvHi 1)"'7Hn %

as[( g - )) } (3.6)
V(La"'7LaHi+1"”7Hn)

the equality holds in (3.6) if and only if H and L are dilates
when ¢ is strictly convex. Conversely, if G is concave, the
inequality is reversed.

Proof. For H,L,H; 1, -+, H, € S, if G(u) =
convex, according to (2.2), (3.5), we have

V(bﬂ(H 'aHaLvHi+17"'7HTL)

1 p(H,w)

n /Sn_l 9 p(L,w) )
pi(H’w)p(HiJrlvw) p(Hn’w)dS(w)

— i)
=V(H, - H,Hit1, -, Hy) /sn—1¢<ﬁ)(va)
A wp(Hiw) - pHoyw) o0

nV(H, - H Hi,- -, Hy)

s o842
PHH,w)p(Hit1,w) - - - p(Hy, w)

dS(w)

nf/(H oo H,Hijy, - Hy)
( H HZJrlv"'aHn)
<71LfS” 1p L w) (H1+1,W)P(Hn,w)d5(w))
';H;Hi+1;"‘7Hn)
= ( HH1+17"'7Hn)
<f/ L, H,+1,~~~,Hn))
V H H1+17 aHn)
:V<H '7H7Hi+1a"'aHn)
~ 1
¢|:( A( ’ y 14, L1441, 5 n)) :|’ (37)
V(La"'7LaHi+17"'7Hn)

when G is strictly convex, the conditions for equality to hold
in (3.7) imply the existence of a constant ¢ > 0, such that
Z((Iﬁ’l:})) = c for all w € S"~Y, indicating that both H and L
are dilates.

Similarly, in the case of strict concavity for function G,
as indicated by equation (2.3), Theorem 3.2 can be derived,
with the conditions for equality being satisfied exclusively
when both H and L are dilates.

Clearly, when ¢ = n in Theorem 3.2, we obtain the dual
Orlicz-Minkowski inequalities for the dual Orlicz mixed vol-
ume ([15]). Similarly, if H;1y = --- = H,, = B in Theorem
3.2, we derive the dual Orlicz-Minkowski inequalities for the
dual Orlicz mixed quermassintegrals([14]).

Remark. (1) When ¢(u) = wP(u > 0,p > 1,i = n) in
(3.5), which becomes the following Lp dual mixed volume
(see [8])

V. (H,L) = /S P, w)p (L, w)dS (w).

And according to Theorem 3.2, we get the Lp dual mixed
Minkowski inequality(see [8]): If H,L € S]',p > 1, then

n+p -p

V_,(H,L) >V (H)™

with equality if and only if H and L are dilates.
(2) When ¢(u) = v P(u > 0,p > 0,i = n) in (3.5),
which becomes the following Lp dual mixed volume(see

[16)
1
Vo (H, L) = /
SrL 1

And according to Theorem 3.2, we get the Lp dual mixed
Minkowski inequality(see [16]): If H, L € S7', £ > 1, then

p" P (H,w)pP (L, w)dS(w).

Vo(H,L) > V(H) =" V(L)*, (3.8)

the inequality (3.8) holds with equality if and only if H and
L are dilates; the reverse occurs when % < 1; when n = p,
inequality (3.8) becomes an equality.
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Let ¢(u) = log" in (3.5) and write
AV (H,- - H,Hi1,- - Hyyw)

_ i(H7w>p(Hi+17w) o 'p(Hmw)dS(w) (3 9)
nV(H,- - H Hiyy,- - Hy) ’ ‘
for all w € S™~1.

The subsequent step involves the establishment of the
general dual mixed Log-Minkowski inequalities as presented
below:

Theorem 3.3. For H, L, H;y,,- -

H, €8], real i # 0.

If 1 > 0, then
p(va) C
logidv Ha"'vaHi 5"'7Hnaw
/Sn—l p(L,w) ( 1 )
1 V(H, -+ H,H;s1, -, Hy,
> flOg‘{( ) s 44 +1 ) UJ)’ (310)

i V(L,-- L,His1, - Hy,w)
the inequality is reversed if 1 < 0. In each case, the equality
holds if and only if H and L undergo dilations.
Proof. Let ¢(u) = log®, then G(u) = ¢(-1)) = —+log".
Obviously, if i > 0, G is convex; if i <0, &G is concave.

For H L H;y,,---,H, € 8, ifi > 0, according to (2.2),
(3.5), and (3.9), we have
Vgﬁ,i(Ha t ’7H7L7Hi+1a t ’7Hn)
1 p(H, w)
By g
nJgn-1 p( aw)

p'(H,w)p(Hit1,w) -+ p(Hp, w)dS(w)

:V(H7...’H,HHI’...,Hn)l/ G(M)

n

.pi(Hv w)p(Hi-‘rla w) o -p(Hn,w)dS(w)

nV(H,-- H Hiq,- -

Z V(H7 t '7H7Hi+1a o aH'rL)

</ Pi(L7W)P(Hi+1,w)"'P(Hmw)dS(w))
Sn—1

Q

nV(H, - H,Hi,- - Hy,)
(H7. . '7H7Hi+17' . '7Hn)
.G(?(L,"',L7Hz‘+1,"',Hn)>
V(H’ .. .,H, Hi+17' . 7Hn)
L H,)
- H,)
L H,)

=V(H, - H,H, -
~1. V(L, -+ L,His1,--
'%lOQA( ) y 4y +1

? V(H’...7H7Hi+1,..

1.~
=-V(H, - H,Hiy1, -, Hy)
1

V(Ha ! ’7H7Hi+1a‘ ) aHn)

log— .
V(La o '7L7Hi+17 c 7Hn)

/Sn—l ¢(p((1{’;0))dv(Ha t '7H7 H’i+1> o '7Hn7w)

. llog‘“H’. - H Hiiq,-- '»Hn).
i V(L, - L,Hi\1,-- - Hy)

If i > 0, the function G exhibits strict convexity. According
to the conditions for equality stated in (3.10), equality holds
if and only if both H and L are dilates. Similarly, when
i < 0, Theorem 3.3 guarantees that equality is achieved
only when both H and L are dilates.
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