
An Implementation of Web-based Personal
Platform for Programming Learning Assistant

System with Instance File Update Function
Soe Thandar Aung, Lynn Htet Aung, Nobuo Funabiki, Shigo Yamaguchi,

Yan Watequlis Syaifudin, and Wen-Chung Kao

Abstract—Java, recognized for its reliability and portability
in object-oriented programming, has found application in di-
verse systems such as enterprise servers, smartphones, and em-
bedded systems. To facilitate self-study in Java programming,
we have developed Java Programming Learning Assistant System
(JPLAS) that provides a range of exercise problems tailored to
support novice students at different skill levels. In this paper, we
implement the web-based personal platform for JPLAS using
Node.js, named NPLAS. Docker is adopted for its easy and
solid deployments to novice students. The instance file update
function is incorporated to help a teacher to distribute the files
of the new/updated problem instances to the students, using
Angular and Laravel. In addition, we extend NPLAS to Python
programming learning. For evaluations, we asked teachers and
students in three universities in Japan and Indonesia, to install
NPLAS, solve instances on it, and update instance files. Then,
all of them could successfully complete them, which confirms
the efficiency and validity of the proposal.

Index Terms—Java, Python, NPLAS, Node.js, Laravel, An-
gular, Docker, update.

I. INTRODUCTION

JAVA has been extensively used in industries for decades
in various application systems including mission critical

systems in large enterprises and small-sized embedded sys-
tems, as a reliable and portable object-oriented programming
language. Thus, the cultivation of Java programming engi-
neers has been in high demands amongst industries. A great
number of universities and professional schools are offering
Java programming courses to meet these needs.

To enhance Java programming studies, we have developed
Java programming learning assistant system (JPLAS) [1].
JPLAS offers various types of exercise problems to assist
self-studies of Java programming at different levels by novice
students, where the answer from a student is automatically

Manuscript received August 23, 2023; revised November, 2023.
S. T. Aung is a PhD candidate of Department of Information and

Communication Systems, Okayama University, Okayama, Japan, (e-mail:
soethandar@s.okayama-u.ac.jp).

L. H. Aung is a PhD candidate of Department of Information and
Communication Systems, Okayama University, Okayama, Japan, (e-mail:
lynnhtetaung@s.okayama-u.ac.jp).

N. Funabiki is a professor of Department of Information and Com-
munication Systems, Okayama University, Okayama, Japan, (e-mail:
funabiki@okayama-u.ac.jp).

S. Yamaguchi is a professor of Graduate School of Sciences and
Technology for Innovation, Yamaguchi University, Ube, Japan, (e-mail:
shingo@yamaguchi-u.ac.jp).

Y. W. Syaifudin is an associate professor of Information Tech-
nology Department, State Polytechnic of Malang, Indonesia, (e-mail:
qulis@polinema.ac.id).

W.-C. Kao is a professor of Department of Electrical Engineer-
ing, National Taiwan Normal University, Taipei, Taiwan, (e-mail:
jungkao@ntun.edu.tw).

marked at the system. They include the grammar-concept
understanding problem (GUP) [2], the value trace problem
(VTP) [3], the mistake correction problem (MCP) [4], the
element fill-in-blank problem (EFP) [5], the code completion
problem (CCP) [6], the phrase fill-in-blank problem (PFP),
and the code writing problem (CWP) [7]. Originally, the web-
based JPLAS platform was implemented using JSP/Java on
Tomcat for online use [8], and using JavaScript on a web
browser for offline use [9]. It is noted that the offline JPLAS
platform is indispensable for students in developing countries
where the continuous Internet access may not be available.

We have observed that many students around the world
have difficulty in programming study. The step-by-step pro-
gramming study approach can be a solution for it. JPLAS
offers several types of exercise problems with automatic
marking functions at different levels to cover different stages
of programming self-study.

To learn programming effectively, it has been suggested
that students should first focus on basic grammar and code
reading studies by solving a lot of simple problems for
them. Then, they can move to program coding studies using
object-oriented programming concepts in Java. Students are
expected to solve the offered exercise problems along the
above mentioned order of the problem types in JPLAS. It
is designed that the difficulty level of the problem type will
increase in this order.

In a lot of countries including Myanmar, Indonesia, and
Bangladesh, the continuous Internet access is still not com-
mon for many students due to the high cost and the limited
bandwidth. The electric supply to function the Internet is not
stable. Actually, half of the world’s population do not have
access to the Internet. Even if available, they can be expen-
sive, slow, and unreliable. The continuous Internet access
remains luxury in developing countries. Even in developed
countries such as Japan, many students are suffering from
high costs of broadband connections.

To use the offline platform, students can install the nec-
essary software in universities using USB memories if the
Internet access cannot be used. Then, after solving exercise
problems, students need to submit their answer files whose
size is very small because of text files. Thus, they can
easily submit the answer files even through the narrowband
Internet. Therefore, the offline platform of JPLAS will be
very effective for students who are learning programming
languages at home without the Internet connections, and
contribute to advance programming education.

However, the previous platform using Tomcat is not suit-
able for the offline use. Since it was implemented by Java

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



and JSP, the system size is rather large. Besides, it has
undergone continuous implementations and modifications by
several batches of students in our group as a long-time
laboratory project, where the source codes become large,
complex, and difficult for students to be installed on their
personal computers.

In this paper, we implement the personal learning platform
for JPLAS using Node.js [10]. Node.js has gained popularity
and been used in many popular web application systems
[12]–[14]. The platform covers any problem type in JPLAS,
while avoiding the redundancy in the implementation and
improving the portability. This platform is named NPLAS
for convenience. By adopting Node.js for the web application
server, JavaScript is used on both the server and client sides.
Express.js [11], utilized as a framework, collaborates to min-
imize implementation costs in connecting server programs
with web pages. This combination provides uncomplicated
and user-friendly implementations of functions for seamless
message and file sharing between the client and the server.
As a result, the code size of NPLAS is drastically reduced if
compared with the size in the previous implementation using
Tomcat.

The following features can be observed in this implemen-
tation that will satisfy the requirements for use in various
universities around the world:

1) Open source or free software is used to reduce the costs
of users.

2) No dedicated public server is required to newly install
the system where the existing public servers for Gmail
and Google Drive are used.

3) The system can be used without the Internet con-
nection, and be installed using the USB memory.
Thus, students can learn Java programming using this
system at any place. It should be noted that in some
countries, the continuous Internet connection is not
realistic because of the poor infrastructure.

4) The system offers several types of exercise problems
with different levels so that students can progress
their Java programming studies step-by-step, from the
grammar study level to the full coding level.

5) Docker is introduced together for deployments of
NPLAS. Docker is a tool designed for executing ap-
plications and services within compact, lightweight
containers, ensuring they operate independently of the
installed software or configurations on the host com-
puter [15].

The features are important as a programming learning
tool for a lot of people all over the world. The cost for
the software is zero by using open source. The cost for the
server is zero by using the free public server. Thus, students
and teachers around the world can easily install and manage
NPLAS.

In addition, we implement the instance file update function
for NPLAS, using Angular [16], and Laravel [17] as another
web application system. A popular programming language
often extends the grammar and introduces new libraries to
enhance programming capabilities. Then, the problem files
for the related exercise problems need to be updated or
inserted in NPLAS. For this use, the instance file update
function helps a teacher to distribute the files for the new or
updated instances to the students. After receiving the files, a

student can reconfigure NPLAS in his/her PC, using Docker
bind mount. For the better security of the PCs of the teacher
and the students, they are connected with private networks
using private IP addresses. Thus, to connect them, we adopt
Google Gmail as a reliable public cloud, to inform the file
update request to the students with the email message from
the teacher to the students.

Nowadays, Python programming becomes very popular
because it is very efficient in application developments, task
automations, and data analysis. Therefore, we extend NPLAS
to Python programming learning where the unit testing
framework unittest is adopted in CWP.

For evaluations, we asked teachers and 58 students in
Okayama University, Yamaguchi University, Japan, and State
Polytechnic of Malang, Indonesia, to install NPLAS and solve
several instances on NPLAS. We also asked ten students to
install the instance file update function, upload the instance
update files, send/receive the update request message, and
update NPLAS by downloading the instance update files
to a folder and mounting it on the current container for
NPLAS. All of them could successfully complete them,
which confirms the efficiency and validity of the proposal.

The rest of this paper is organized as follows: Section II
introduces adopted open source software. Section III presents
the implementation of NPLAS. Section IV presents the
implementation of the file distribution function. Section V
presents the extension to Python programming. Section VI
evaluates the proposal. Section VII introduces related works
in literature. Section VIII concludes this paper with future
works.

II. OPEN SOURCE SOFTWARE

In this section, we introduce the open source software that
are adopted in this paper for the completeness and readability.

A. Node.js

Node.js, an open-source server environment, is compatible
with multiple PC platforms such as Windows, Linux, and
Mac OS. It serves as an interpreter and runtime environment
for executing JavaScript source codes on the server. Node.js
is versatile, supporting the implementation of both desktop
and server applications. Consequently, developers can use the
same programming language, JavaScript, to create both the
front-end and back-end of their application systems.

B. Angular

Angular is a front-end framework for building single-
page application (SPA) using TypeScript [18]. TypeScript is a
superset of JavaScript and has been developed by Microsoft.
It comprises a set of seamlessly integrated libraries encom-
passing a diverse range of functionalities, such as routing,
form management, and client-server communications. Angu-
lar allows an intuitive user interface in a web application.

For the instance file update function, a simple interface
is necessary to upload the new instance files to the Laravel
back-end application. Angular is much simpler than the other
JavaScript client-side frameworks. We can create more com-
patible and robust UI applications because it has a restricted
modular-based code structure design, which arranges the
code into different modules.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



C. Laravel

Laravel, a server-side PHP framework, is open source
and crafted to streamline and accelerate web application
development. It boasts a wealth of built-in features, fa-
cilitating ease of use. Additionally, it supports a modular
packaging system with efficient dependency management,
enabling the seamless incorporation of functionalities into
Laravel applications without the need to start from scratch.
The framework is designed with the Model-View-Controller
(MVC) architecture as a fundamental component. It also
serves as an API back-end to the JavaScript single-page
application.

Therefore, Laravel can be adopted as the API back-end for
Angular and Node.js applications. Moreover, it can provide
drivers for the PHP mail function sendmail using Simple
Mail Transfer Protocol (SMTP). sendmail is an internetwork
email routing facility that supports many kinds of mail
transfer and delivery methods for email transporting through
a local or cloud-based service over the Internet.

Laravel is packed with many built-in object-oriented li-
braries that are full of useful features for developers. The
built-in package SwiftMailer can be used to allow the con-
figuration setting without specifying any specification. It is
noted that for Node.js, an SMTP server needs to be set up
for delivering email messages.

D. Docker Bind Mount

Docker bind mount is the process of sharing files between
the Docker image in a Docker container and the host. It can
be a local directory or a file on the host. When a file is
changed on the host, the mounted file in the container is
also changed automatically.

E. Express.js

Express.js, recognized as a minimalist and adaptable
framework tailored for Node.js, demonstrates its capacity to
furnish a comprehensive set of features conducive to robust
web application development. In the realm of frameworks,
the norm involves the provision of pre-existing components
and solutions, encompassing supporting programs, compil-
ers, code libraries, and APIs. These resources serve as
invaluable assets for application development, offering the
advantage of customization to expedite the development
process.

Express.js can be delineated as an abstraction layer con-
structed atop Node.js, facilitating the streamlined manage-
ment of servers and routes [19]. This framework encom-
passes a robust suite of features essential for the development
of web and mobile applications, encompassing the following
functionalities:

• It is applicable for the development of web applications,
encompassing single-page, multi-page, and hybrid de-
signs.

• It enables the configuration of middleware to handle
responses to HTTP Requests.

• It articulates a routing table that directs varied actions
in accordance with the HTTP method and URL.

• It enables the dynamic rendering of HTML pages by
passing arguments to templates.

F. Embedded JavaScript (EJS)

The user interface is constructed utilizing Embedded Em-
bedded JavaScript (EJS), Bootstrap files, and CSS with man-
agement orchestrated by Node.js and Express.js programs.
EJS serves as a template engine, facilitating the rendering
of JavaScript codes on the client-side. Essentially, EJS is
employed to embed JavaScript codes within HTML codes,
a practice commonly applied when utilizing Node.js within
the Express.js framework.

III. IMPLEMENTATION OF NPLAS

In this section, we present the implementation of NPLAS.

A. Overview of NPLAS

NPLAS is a web application system designed to enable
educators to furnish programming exercises to numerous
students while overseeing their learning activities on the
server. In the server architecture depicted in Figure 1, Node.js
is employed as the web application server, complemented by
the Express.js framework. In realizing the MVC model-based
application, Java is utilized for the model (M), executing
JUnit [20] for testing answer source codes in code-writing
problems [7]. The view (V) is constructed using EJS, CSS,
JavaScript, while JavaScript is employed for the controller
(C). Notably, no database system is incorporated for data
management.

Fig. 1: NPLAS server platform.

B. Server-Side Implementation

Fundamentally, Node.js exhibits an intricate structure, pos-
ing challenges in its utilization. Hence, in our implemen-
tation, Express.js is employed in conjunction by installing
the node package manager (npm) from the provided binary
packages tailored for each operating system.

npm plays a pivotal role in managing Node.js applications,
offering a repository of reusable JavaScript libraries. Addi-
tionally, it serves as a tool for executing tests and facilitating
various development processes. The application environment
incorporates essential dependencies, including frameworks
and template engines, through the use of npm.

Within Node.js/Express.js, each web application initiates
and operates its individual web server. Express.js furnishes
methods to designate the function called for a specific HTTP
verb (GET, POST, SET, etc.) and URL pattern, referred to
as a “route”. It also allows the specification of the template
engine for the “view”, determining the location of template
files and the specific template used to render a response.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



C. File for Connection between Server and Browser

Upon a client navigating to the server through the do-
main name (URL) and port, such as localhost:4000, via
the browser, the web application executes the requested
procedure in accordance with the roles outlined in Figure 2.

Fig. 2: NPLAS application directory structure using
Express.js.

• package.json: The application invokes the package.json
file, which meticulously enumerates all dependencies
for the specific JavaScript “package”. This comprehen-
sive listing encompasses 1) package’s name, 2) version,
3) description, 4) initial executable file, 5) production
dependencies, 6) development dependencies, and 7)
compatible version of Node.js. The package.json file
contains all the necessary information for npm to fetch
and execute the application. By identifying the “start”
key and the value “node ./bin/www” in the script tag,
it signifies that the Node.js project references the file
named “www” within the bin folder. This file gathers
data for Express.js to utilize within the application.

• www file: The www file defines the entry point
of the application and accommodates various setup
configurations. Within this application, three distinct
scripts—namely, app, debug, and http—are configured
in this file.

• app.js: The app.js will declare the package that is
required by the application globally and will be the main
root file of the whole application directory.

• index.js: The index.js file under the routes folder will
route the application’s requests to its appropriate con-
troller and then render the associated view.

• views: The views folder includes all the NPLAS user
interface files that will be displayed to the browser by
using EJS.

• public: All the static files, such as the CSS, images, and
JavaScript files, are set up under the public folder.

• addon: The customized addon folder serves as the
database, encompassing the test code files, answer
source code files, and validator files.

Here, the user.js route was a result of it being part of the
default structure provided by Express.js during the project
initialization. It is noted that the current backend does not re-
quire the user route, and the authentication and authorization
features are not implemented. As this application focuses on
aspects of programming learning through the personal use,
we have not implemented the user management functionality
at this stage. Details were not described on the user.js route.

D. MVC Model Software Architecture in NPLAS

The proposed software architecture for the NPLAS plat-
form adheres to the MVC model, recognized as the standard
architecture for a web application system, as illustrated in
Figure 3.

Fig. 3: MVC model in NPLAS for Java.

1) Model: The model component reads essential data
files from the designated file system named “addon”. These
files encompass the test code files, answer source files, and
validator files.

In NPLAS, the marking function varies based on the
problem type. For the code writing problem, the background
execution of the answer code testing is facilitated by a
function implemented in Java using Eclipse. This function
is exported as a JAR file and imported into Node.js. It
autonomously tests any submitted answer source code from
the browser by executing the provided test code on JUnit.
The outcomes, inclusive of JUnit logs, are documented in the
file system and are accessible for student viewing through the
browser.

For other problem types within NPLAS, the marking
function is embedded in the JavaScript program that op-
erates within the browser as students solve problems and
submit their answers. This function undertakes a comparison
between the submitted answer and the predefined correct
answer. Temporarily, the answers and marking results are
stored in the browser’s local storage, identified by a unique
key. When students download this information to a text file
for submission to the teacher, the JavaScript program stores
the data in the local storage within a text file in the output
folder located under the “addon” directory of the application.

2) View: The view component in NPLAS actualizes the
user interface through the utilization of the EJS template
engine, enabling the rendering of dynamic content in the
browser. EJS constructs HTML code incorporating JavaScript
codes transmitted through the back-end of the application.
In this architectural design, the consistent elements of the
interface are generated using EJS and SkyBlue CSS, while the
adaptable components are created through JavaScript func-
tions stored in the public directory. Depending on the client’s
requested route, the main body is dynamically replaced with
the pertinent EJS file, a strategy aimed at minimizing code
size and streamlining the code architecture.

3) Controller: The controller in NPLAS is implemented
using JavaScript. Upon receiving a request, the application
determines the necessary action based on the URL pattern

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



Fig. 4: Problem list interface with correct answer rates.

and the pertinent information contained in POST or GET
data. This process may encompass reading or writing infor-
mation to the file system, or undertaking the requisite tasks
to fulfill the request.

Here, Express.js facilitates the transfer of data through
the corresponding route. In the process of data transfer, the
appropriate name is assigned within the route. Subsequently,
the application responds to the web browser, often by dy-
namically generating an EJS page. This page is rendered by
the browser to display the view associated with the assigned
name, incorporating the retrieved data into placeholders
within the EJS template. Node.js and Express.js are well-
equipped for running a website with dynamic data. More-
over, the structure incorporates hierarchical arrangements
and grouping concepts, accessible to individuals proficient
in Node.js and Express.js.

E. Introduction New Features in NPLAS

We implement five new features in NPLAS to help students
to solve the assigned problems. The first feature is to show
the correct answer rate. The generator calculates the number
of questions or input forms in each instance, and writes
it in the output HTML file. Then, it adds the JavaScript
program that counts the number of correct answers for each
instance by the student, and calculates and shows the correct
answer rate by dividing the number of correct answers by the
number of questions when the problem list page is selected.
To distinguish the instance, the different key is used for
storing the answer marking results for each instance in the
web storage. The key is also stored in the local storage.

Figure 4 illustrates the list of the problem instances to be

solved within this category. This page displays the correct
answer rate for each problem instance, aiming to encourage
students to solve all instances accurately.

The second one is the instance transition buttons. By
clicking either button, the page for the next instance or for
the previous instance can be shown.

The third one is to record the last answer in each blank
in the web storage so that the student can restart solving the
instance from his/her previous answers.

The fourth one is to automatically adjust the input form
size for each blank size by the number of characters in the
correct answer.

The final one is the background color alterations in the
input form. It changes to green when the answer by the
student is correct and turns red otherwise.

Figure 5 shows the problem answer page example.

F. Automated Sub-Folder Creation in NPLAS
In order to enhance file organization within the NPLAS

system, we have implemented a sub-folder structure to
improve the management and accessibility of answer files
submitted by students. To achieve this, we developed a
program that dynamically creates sub-folders based on the
problem type. When a user submits an answer through the
browser, the program automatically generates a sub-folder
within the main directory, named according to the specific
problem type associated with the answer. This approach
ensures a logical and intuitive arrangement of files, providing
a more organized and structured approach to saving and
accessing text files in NPLAS.

The program we developed plays a crucial role in ensuring
efficient file organization within NPLAS. When a student

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



Fig. 5: EFP problem answer page.

submits an answer on the browser, the system automatically
creates the necessary sub-folders based on the problem type,
using the “mkdirSync” function to create the sub-folder if
it does not exist. This automated process eliminates the
need for manual folder creation and ensures a consistent and
standardized file structure.

Subsequently, the program saves the output text files
within the corresponding sub-folders. By utilizing the “write-
FileSync” function and providing the appropriate path, which
combines the sub-folder name and the related text file name,
the output files are efficiently stored in their respective sub-
folders. This clear and organized structure enables easy
navigation and retrieval of specific files based on problem
types.

The enhanced file organization provides users, including
students and teachers, with a structured and systematic
approach to managing their files. It eliminates the issue of
having numerous files scattered in a single folder, making
it easier to locate, access, and work with the specific files
related to each problem type in NPLAS.

Figure 6 shows the output text file corresponding to the
sub-folder example.

Fig. 6: Output text file in sub-folder.

G. Adoption of Docker for NPLAS

With its previously mentioned advantages, Docker is
adopted to help students to install the NPLAS platform.

Thus, there is no compatibility issue happening across users.
Figure 7 depicts the process of employing Docker to install
the NPLAS platform in a PC.

Fig. 7: Installation procedure of NPLAS platform using
Docker.

A Docker container can be generated using a plain text
file named Dockerfile, providing both human-readable and
machine-readable instructions for crafting computing envi-
ronments and interacting with data. The Docker container
operates independently anywhere, provided Docker is in-
stalled, and is constructed from the Docker image to provide
the necessary software environment for executing the target
application. To facilitate easy distribution of the NPLAS
Docker image to students, it is stored in the Docker Hub [21]
account using the Docker “push” command, as illustrated in
Figure 8.

Fig. 8: Upload and download NPLAS image from Docker
Hub.

H. Usage Procedure

To utilize the NPLAS platform, students are required to
execute the following steps:

1) Download and install Docker corresponding to the
student’s PC operating system. For Windows OS, the
installation of Windows Subsystem for Linux (WSL) is
also necessary.

2) After initiating Docker on the PC, download the
NPLAS Docker image from Docker Hub using the
Docker pull command.

3) Execute the Docker run command to operate the image
on the PC. The specifics of this command may vary
based on the OS of the PC. Following the execution
of this command, the student should examine the
“output” folder to store the answer files.

4) Access the NPLAS platform by opening the browser
and entering localhost:4000 in the address bar.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



Here, the Docker image size of NPLAS is 578MB, which
is considered large due to two main reasons. The first reason
is that the size is influenced by the “openjdk:16-slim-buster”
Docker image, which includes the Java Development Kit
(JDK) and the slim version of the Debian Linux operating
system. This image is larger because it contains the necessary
components and libraries for Java execution. However, it
is a smaller variant of the full JDK image, excluding non-
essential components.

Since our NPLAS platform integrates with this JDK image,
the resulting Docker image size is affected. It is note that
Docker image sizes may change over time as new versions
and updates are released. Currently, we chose “openjdk:16-
slim-buster” for specific reasons. It offers compatibility with
our software packages and libraries, has a larger package
repository, and has benefits from robust security updates.

The second reason is that our Docker image incorporates
the “openjdk:16-slim-buster” base image, along with the
additional commands used to install Node.js and npm. The
commands ensure that Node.js and npm are installed in the
Docker image, allowing for the execution and management
of Node.js applications within the container. Although these
commands add some size, they are relatively small compared
to the base image.

Therefore, the primary factor influencing the image size is
the choice of the base image. Thus, the NPLAS docker image
may take a few minutes to download it. After downloading
the image one time, the student can solve the exercise
problems in NPLAS at any time and any place without the
Internet connection.

IV. IMPLEMENTATION OF INSTANCE FILE UPDATE
FUNCTION

In this section, we present the implementation of the
instance file update function for NPLAS as another web
application system.

A. Software Architecture

Figure 9 shows the overview of the instance file update
function. Linux is adopted for the operating system in the
server platform. For the client side, we adopted Angular
to create the interface for uploading the required instance
files on the browser. For the server-side, PHP is used as a
web application server together with the Laravel framework.
RestAPI is adopted to connect between the client-side and
server-side. Then, the Simple Mail Transfer Protocol (SMTP)
is used to send updated instance files to the student. Instead
of using database for managing the data, we used the built-in
Laravel storage.

1) RestAPI: RestAPI (Representational State Transfer Ap-
plication Programming Interface) [22] is a widely adopted
architectural style and API framework that enables seamless
interactions with Restful web services. It provides developers
with a high level of flexibility, allowing them to design
and implement APIs that can handle various types of calls
and respond with data in different formats. One of the key
advantages of RestAPI is the lightweight nature, as it does not
necessitate the installation of additional software or libraries.
This simplicity allows easier adoptions and integrations into

Fig. 9: Overview of instance file update function.

existing systems, reducing the overall complexity of devel-
opment and deployment processes.

It can be utilized over almost any protocol, leveraging
the capabilities of HTTP. In RestAPI, all the standard
HTTP methods can be employed to perform operations on
resources. The GET method is used to retrieve data or records
from the server, providing a means to access information.
The POST method is employed to create new data or records
on the server, enabling the submission of data to be stored
or processed. The PUT method is utilized to update existing
data or records on the server, allowing for modifications or
changes. Lastly, the DELETE method is used to remove data
or records from the server, providing a mechanism for data
deletion.

B. Client-Side Implementation

In the client-side implementation, Angular13 and Pri-
meNG are adopted. PrimeNG is the CSS framework specific
to Angular.

To use Angular, we have to install Node.js that allows
developers to write JavaScript codes that run on the OS of the
computer instead of a browser. Angular CLI is used as the ng
command-line interface tool to initialize, develop, scaffold,
and maintain Angular applications from a command shell.

1) Exercise Creation and Update Functionality in NPLAS
for Teachers: The teacher can create a new exercise/instance
by following the set of guidelines or templates provided
by the NPLAS. The number of files required may vary
depending on the complexity of the exercise, but typically it
involves creating source code files and additional resources
or instructions necessary for the exercise. In terms of the
expected structure for these files, it is recommended to
organize them in a logical manner that facilitates easy un-
derstanding and navigation. For example, using appropriate
naming conventions, and providing clear instructions within
the exercise files can enhance the overall user experience.

The function is designed to facilitate the update or modifi-
cation of exercise problems by the teacher and the subsequent
distributions of these updated problems to the students’
PCs via a local server and Gmail. The intention behind
implementing the function is to support managing exercise
updates within the NPLAS system, particularly when using
the tool as part of an assignment course in a university
setting.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



2) User Interface: Figure 10 shows the interface for the
instance file update function. It includes the input type of the
instance file, and the button to run the application using ng
command and call the application on the browser with the
domain name (URL) and the port such as localhost:4200. The
input type in the form as the requirements of the instance file
as the following procedures.

Fig. 10: Interface for instance file update function.

1) Choose the programming language type. Then, we will
see the problem type list depending on the program-
ming type we chose.

2) Choose the problem type.
3) Choose the problem level. The old ones will perform

the instance file update or insert separately, and the
new ones will both update and insert instance files
concurrently.

4) Assign the problem number that we want to update or
insert.

5) Upload the instance files. After uploading them, the
system will create a problem folder for each instance
file in order as the NPLAS application requires.

6) After getting the required input types in the form,
we will submit the instance file data to the back-end
application, Laravel, as a request through RestAPI.

7) If the response from the back-end is successful, it will
show a successful alert. Otherwise, it will show with
a failed alert.

C. Server-Side Implementation

In the server-side implementation, the Laravel PHP frame-
work is adopted. PHP [23] is first installed. Then, Composer
[24] is installed to manage Laravel dependencies. After that,
composer.json is used as a collection of PHP libraries that
are necessary to run the application using artisan command
and call the application on the browser with the domain name
(URL) using the port such as localhost:8000.

Then, the server application will perform the following
steps:

1) Accept the instance file from the client as a request.
2) Filter the received data and store them into the Laravel

storage.
3) Compress the files into the zip file when multiple files

are received from the client.
4) Send this zip file into the mail server using Simple Mail

Transfer Protocol (SMTP), after preparing the mail
configuration setting and the instruction for students.

5) Send the instance file together with the instruction
messages to the students.

D. Connection between Server-Side and Client-Side

When a client navigates to the domain name (URL) using
the port such as localhost:4200, the client sends the request
data to the server that includes the instance file by uploading
it through the Submit button on the browser. At the same
time, to receive the request and respond to the data, the server
navigates to the domain name (URL) using the port such as
localhost:8000. Then, the following procedure is performed:

1) Generate the RestAPI for sending the data at Angular.
2) Store the data after receiving the data via the RestAPI

from the client-side at Laravel.
3) Combine the storing data and the SMTP configuration

file to connect the mail server.
4) Send them together to the students by email.

E. Docker Bind Mount

Using the Docker bind mount features, the students update
Docker image for NPLAS by changing the folder containing
the existing files by the folder for the received files in the
file system.

Figure 11 illustrates the workflow of the NPLAS appli-
cation using Docker bind mount. First, the teacher sends
the updated or new instance files to the student via email.
Second, the student downloads them and creates a new
folder to copy the application from the Docker image in
the container. Third, the created new folder mounts with the
NPLAS application in the container and imports the down-
loaded instance files into the application as the instruction
in the email. Finally, the student can access to the NPLAS
application by calling localhost:4000 and seeing the NPLAS
platform with the new instance files.

Fig. 11: NPLAS application workflow with Docker bind
mount.

F. System Installation by Student

After receiving the email from the teacher, the student
needs to perform the following procedure, described in the
instruction in the email, to access the updated instance files
into his/her previous NPLAS application.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



1) Download the instance files from the received email.
2) Run the Docker image using Docker run command.
3) Get the Docker container ID of the running image

using Docker ps command.
4) Mount the NPLAS application from the Docker image

in the container into the customized directory path
using Docker cp command. After that, the students can
see the NPLAS application on the directory path that
they copied. Here, there are two NPLAS applications
on the student’s PC. The first one is in the created
folder in the host and another is in the Docker image
in the container.

5) Import the downloaded instance file into the copied
NPLAS application.

6) Kill the previous container ID to run the new image
using Docker kill command.

7) Run the new image using docker run command.
8) Open the browser and call the localhost:4000. Then,

the student will see the NPLAS platform with the
updated instance files on the browser.

V. EXTENSION TO PYTHON PROGRAMMING

In this section, we present the extension of the NPLAS
platform to Python programming.

A. Prerequisites for NPLAS platform to Python

In this paper, we present the implementation of the
NPLAS platform for Java programming study, including the
distributions using Docker, and the instance file update
function for updating the Docker image. The extension to
Python programming study is the straightforward where the
modifications are small. Actually, in the platform, only the
implementation for the code writing problem (CWP) needs
to be changed, because the testing function with the test code
and the student source code runs on Python, and the Python
testing tool called unittest [25] is used instead of JUnit for
Java in the marking function.

1) Problem Types: It offers a range of exercise problems
designed to provide to students at different learning levels.
These include the grammar-concept understanding problem
(GUP), the value trace problem (VTP), the Code Modifi-
cation Problem (CMP), the element fill-in-blank problem
(EFP), and the code writing problem (CWP). To ensure
comprehensive coverage of Python programming concepts,
we conducted an analysis and selection of sample source
codes from various programming websites on the internet for
each problem type. These source codes were carefully chosen
to exemplify different aspects of Python programming. Using
our generators, we transformed these selected source codes
into exercise problems within the NPLAS platform. These
exercise problems were then installed and integrated into the
system.

2) Unit Testing Framework: In the NPLAS platform, we
employ the unittest framework [25], an integrated unit testing
framework in Python, to assess provided source codes. This
framework streamlines automated unit testing through the
execution of test codes. Leveraging the unittest framework
involves importing the unittest module and constructing a
testing class, extending the TestCase class provided by the
framework. Each test method within the code compares the

execution result of the source code with the anticipated result.
If they match, the test is considered passed; otherwise, it is
marked as failed.

3) Test Code: For the code writing problem (CWP) in-
stance in an assignment, the teacher needs to prepare the
test code beforehand. This test code is used to validate
whether the student’s answer source code meets the required
specifications. It should be written using the unittest library,
allowing it to clearly present the assignment’s specifications
to the student. By providing clear explanations and well-
formed sentences within the test code, the student can
understand the expected requirements more effectively.

4) Multi-Language Support in NPLAS: Java and Python
Integration: The NPLAS platform is designed to support
multiple programming languages, including Java and Python.
Students can choose their preferred language for solving
programming problems within the platform. This support
of multiple languages is achieved through the integration of
language-specific plugins or modules, enabling users to work
with their language of choice.

NPLAS allows the simultaneous use of both languages
within the same platform. In this paper, we presented Python
as a separate version of the tool to be provided to a specific
programming language course in a university. This separation
allows us to provide targeted support and customization for
each language.

However, it is important to note that for learners who
wish to study both programming languages using the tool
as a self-study resource, we will provide access to both
Java and Python within the same version of the platform.
This means that learners can switch between languages and
explore programming problems in both Java and Python
without the need for separate versions or installations.

B. Software Architecture
Figure 12 shows the MVC model of this extension. Instead

of Java, Python is used in the model (M) to run unittest. The
marking function for CWP is also implemented by Python.
Automatically evaluating any answer source code submitted
from the browser, this function executes the corresponding
test code using unittest. The outcomes, along with logs, are
documented in the result file, accessible for student viewing
through the browser.

Fig. 12: MVC model in NPLAS for Python.

C. Problem Answer Interface
Figure 13 shows the answer interface.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



Fig. 13: Problem list and VTP answer interface.

TABLE I: Number of code files and total size in NPLAS
platform implementations.

file extension previous proposal
js 301 57

html/ejs 38 24
css 21 8

total 360 (17.2 MB) 89 (12.4 MB)

VI. EVALUATION

In this section, we evaluate the efficiency and validity
of the implemented NPLAS platform and the instance file
update function.

A. Comparison of Two Implementations

First, we compare the number of source code files and the
total size between the previous implementation on Tomcat
and this implementation on Node.js. Table I shows the
number of code files and the total file size, where the
problem instance files are excluded. It indicates a substantial
reduction in both aspects within this platform. The utilization
of Node.js, Express.js, and EJS facilitates straightforward
and uncomplicated implementations of functions for sharing
messages and files between the client and the server in the
web application.

B. Evaluation of NPLAS Installation and Operation

Next, we evaluate the installation and operations of
NPLAS.

1) Setup: For the installation of NPLAS, we prepared the
manual that explains how to install and use it. It includes
Docker installation, Windows Subsystem for Linux (WSL)
installation, and NPLAS system downloading from Docker
Hub. Here, they will download the NPLAS system from the
Docker Hub. In the manual, we recommended to use Linux
or Windows 11 to avoid errors in the Docker installation.

2) Results: Then, we asked the Java and Python program-
ming teachers and the total of 58 students in Okayama and
Yamaguchi Universities, Japan, as well as the State Polytech-
nic of Malang, Indonesia, to install NPLAS and solve several
instances on it by following the manual. Among them, 24
are graduate and undergraduate students in Japan who have
installed the NPLAS platform for Java. They have used the
previous JPLAS before. The remaining 34 are undergraduate
students who have took the Python programming course in
Indonesia to install the NPLAS platform for Python, but
have not used the previous one. After they successfully
completed the installation, we asked them 12 questions as
the questionnaire in Table II with the five grades (1: strongly
disagree, 2: disagree, 3: neutral, 4: agree, 5: strongly agree)
to collect their feedback on the proposal. We also provide
a detailed explanation of each question, the hypotheses, and
the measurements expected in Table III.

Figure 14 shows the answer distribution to each question
from the students. As the summary, Table IV shows the per-
centage of each grade answer on NPLAS and on the instance
file update function. Most of the students were satisfied with
this platform. Thus, the validity and efficiency of NPLAS are
confirmed. However, a few students may not be fully satisfied
with the current implementation of NPLAS, since they replied
1 to Q6 and Q8. We will examine their opinions in details
and continue to study improvements of NPLAS in future
works. Regarding Q11, if 34 students have never used the
previous tool, their responses may not be directly applicable
to evaluating the improvements of NPLAS over the previous
JPLAS system. It would be more appropriate to consider the
responses from participants who have prior experiences with
the previous JPLAS system for the comprehensive analysis of
the comparison. This limitation should be acknowledged and
discussed, emphasizing that the responses of the 34 students
may not contribute directly to assessing the improvement.

Figure 15 shows the SUS (System Usability Scale) score on
the usability level that is calculated from the questionnaire

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



TABLE II: Questions for questionnaire on NPLAS.

no. question
Q1 Is it easy for you to solve programming using NPLAS?
Q2 Do you think that NPLAS is useful for people who are studying programming?
Q3 Are the instructions in the manual file of NPLAS clear?
Q4 Is the installation process you did for using NPLAS easy for you?
Q5 Do you think that the percentage calculation for each problem in NPLAS is accurate?
Q6 Do you feel that showing your score percentage for each problem in NPLAS motivated you to solve the problems again?
Q7 Do you think that your answers remaining in the blanks are better than removing them after solving the problem?
Q8 Do you feel that you want to solve the problem already corrected again?
Q9 Do you feel that your programming study is improved after solving the problems in NPLAS?

Q10 Are you satisfied with NPLAS?
Q11 If you have used the previous JPLAS system, do you feel that this NPLAS is better than the previous ones to use?
Q12 How many rate do you want to give the NPLAS system overall?

TABLE III: Hypothesis, and Measurement for questionnaire on NPLAS.

no. hypothesis measurement

Q1 The NPLAS system is designed to make programming
problem-solving easier.

Assessing participants’ perceived ease of solving programming
problems using NPLAS.

Q2 NPLAS has value as a learning tool for individuals
studying programming.

Evaluating participants’ perceptions of the usefulness of N-PLAS in
the context of programming education.

Q3 The instructional materials provided with NPLAS are
clear and easy to understand.

Gauging participants’ assessments of the clarity and comprehensibility
of the instructions in the NPLAS manual.

Q4 The installation process for NPLAS is user-friendly and
straightforward.

Assessing participants’ perceptions of the ease of installing and setting
up NPLAS on their systems.

Q5 The percentage calculation mechanism in NPLAS
provides accurate results.

Evaluating participants’ opinions regarding the accuracy of the
percentage calculation feature in NPLAS.

Q6 The display of score percentages in NPLAS acts as a
motivational factor for participants.

Assessing participants’ perceptions of the motivational impact of score
percentages in NPLAS.

Q7 Allowing participants to keep their answers in the blanks
after problem-solving has benefits.

Evaluating participants’ preferences regarding retaining the answers in
the blanks after solving problems.

Q8 Participants may have the desire to reattempt problems
they have already solved and received corrections for.

Assessing participants’ inclinations to revisit and rework previously
solved problems in NPLAS.

Q9
Engaging with programming problems in NPLAS
contributes to improvements in participants’
programming skills.

Evaluating participants’ perceptions of the impact of solving problems
in NPLAS on their programming study.

Q10 Overall, participants express satisfaction with the NPLAS
system.

Assessing participants’ level of satisfaction with NPLAS as a
programming learning tool.

Q11 Participants who have used the previous JPLAS system
may perceive NPLAS as an improved system.

Gathering feedback from participants who have experiences with both
systems to evaluate their preferences.

Q12 Participants have overall impressions of the NPLAS
system that can be quantified by assigning ratings.

Collecting numerical ratings from participants to gauge their overall
assessments of the NPLAS system.

TABLE IV: Summary of questionnaire answers on NPLAS
and instance file update function.

1 2 3 4 5
NPLAS 1% 2% 16% 45% 36%
Update 0% 0% 16% 38% 46%

TABLE V: Interpretation of System Usability Scale (SUS)
score.

SUS score grade adjective rating
>80.3 A Excellent

68-80.3 B Good
68 C Okay

51-68 D Poor
<51 F Awful

results on NPLAS [26]. Table V shows the general guide-
lines for the interpretation of the SUS score in [27]. From
Figure 15, the scores of 32 students among 58 (55.2%) are
Excellent (Grade A), the scores of 15 students (25.9%) are
Good (Grade B), the scores of three students (5.2%) are
Okay (Grade C), the scores of six students (10.3%) are Poor
(Grade D), and the scores of two students (3.4%) are Awful
(Grade F), respectively. It means that 81% students among
58 are satisfied with NPLAS in the usability by responding
either Excellent (Grade A) or Good (Grade B).

C. Evaluation of Instance File Update Function Installation
and Operation

Next, we evaluate the installation and operations of the
instance file update function.

1) Setup: For the installation of instance file update
function, we prepared the manual that explains how to
import/update the new instance files in NPLAS from the email
using the Docker bind command. Also, we made the script
file to run the instructions step by step automatically, except
for downloading the problem file from the browser, which
is easy and small work for students. Our experiment results
show that all the students could easily complete updating the
files in NPLAS on their PCs.

For the teacher side, he/she does not require to generate
the Docker images repeatedly. The teacher just needs to make
the files for the new instances and run the implemented script
file to deliver them to the students. However, we will further
improve the system architecture and the script file in our
future works to automate all the procedures.

2) Results: Then, we asked one teacher and 10 students
in the same university to install the instance file update
function and solve some instances on it by following the
manual. At this installation, two students had difficulties.
Thus, we prepared the script file to run the instructions
automatically. Then, all of them successfully completed the

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



Fig. 14: Answers for questionnaire on NPLAS.

Fig. 15: SUS scale on NPLAS usability by each student.

installation. After that, we asked the students to answer the
four questionnaire questions in Table VI with the five grades.

Figure 16 shows their answers. Like in the results in
Figure 14, most of the students were satisfied with this
function. As the summary, Table IV shows the percentage
of each grade answer on the instance file update function
and on NPLAS.

Figure 17 shows the SUS scale on the usability level that
are calculated from the questionnaire results on the instance
file update function. From Table V and Figure 17, the scores
of three students among ten are Good (Grade B), the scores
of four students are Okay (Grade C), the scores of two
students are Poor (Grade D), and the score of one student is
Awful (Grade F), respectively. Unfortunately, the SUS scores

of three students among 10 are either Poor (Grade D) or
Awful (Grade F).

Here, we have to note that to calculate the SUS score
correctly, the 10 standard questions in [28] should be used.
The score in Table V can be changed by adopting the
questions and increasing the number of questions. Besides,
the number of subjects in our evaluation is very small. In
future works, we will continue to evaluate the instance file
update function by applying it to more teachers and students
in various universities and to ask the usability using standard
questions.

3) Evaluation of File Distribution: For the instance file
update function, the teacher needs to distribute the files
for the added/modified instances to the students. For this

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



TABLE VI: Questions for questionnaire on instance file update function.

no. question
Q1 Are the instructions for the update function in the email clear?
Q2 Is it easy for you to update instance files using only instructions from email?
Q3 Is it easy for you to import the new instance files by yourself?
Q4 Do you think you can learn the web application structure by seeing our NPLAS project?

TABLE VII: Cronbach’s alpha coefficient on NPLAS and instance file update function.

total questions sum of question variance variance of total scores Cronbach’s alpha
NPLAS 12 7.401 37.888 0.878
Update 4 1.922 6.322 0.928

Fig. 16: Answers for questionnaire on instance file update
function.

Fig. 17: SUS scale on update function by each student.

evaluation, we prepared the manual that explains how to
run the application, upload the instance files, and send
the message to the students, and generated two new GUP
instance files. We asked the three students in our laboratory
to conduct the procedure of this function by sending the
instance files to the ten students. We confirmed that they
successfully uploaded the files and sent the message.

4) Result Reliability Analysis by Cronbach’s Alpha Coef-
ficient: Furthermore, we evaluate the reliability of the results
based on the Cronbach’s alpha coefficient. Table VII shows
0.878 for NPLAS, which is minimally acceptable by most
standards, and 0.928 for the update function, which is very
close to the highest reliability 1.0.

TABLE VIII: Numbers of exercise problems in NPLAS.

GUP VTP MCP EFP CCP PFP CWP
28 15 12 26 13 15 43

D. Application to Java Course

For the application of the proposed system to the Java
programming course in Okayama University, we generated
exercise problems from sample source codes in the textbook,
“Yasashi Java” [29]. This Japanese textbook is very popular
among Japanese universities that use it in their Java pro-
gramming courses [30]–[32]. It offers a lot of sample source
codes that should be read and understood by students so that
they can learn the Java programming using this textbook
efficiently and comprehensively. However, for Grammar-
concept Understanding Problem (GUP), we used existing
problems since it should cover the basic Java programming
keywords that are common in any textbook. For Code Writ-
ing Problem (CWP), we also used existing problems,which
are different from the sample source codes, to avoid copying
them.

To cover the Java programming concepts in the textbook,
we selected several sample source codes at each chapter of
the textbook for each problem type. Then, we generated the
exercise problems in NPLAS from them using our generators,
and installed them in the system. Table VIII shows the
number of the problem instances in NPLAS for this Java
programming course.

Then, we requested 57 third-year undergraduate students
in Okayama University who were enrolled in a Java program-
ming course in 2022, to install the NPLAS platform for Java
and solve the exercise problems by themselves as the course
assignments. Most of the students took the one-semester C
programming course two years ago, and have never used the
previous JPLAS. To help them install the platform and use
the system, we prepared the installation and usage manuals.
Besides, to help students understand hard concepts of Java
programming such as object-oriented programming (OOP)
concepts, we gave them short lectures on them using slides.
After that, the students solved the exercise problems by
themselves in home, where several graduate students assisted
them as teaching assistants. It is noted that this course was
the full online one due to the COVID-19 pandemic. All the
students were able to successfully install the system and
continue to study with their assignments.

Here, some students met compilation warnings at solving
CWP instances on the system. After we analyzed them,
we found that the SuppressWarnings annotation is necessary
in the test code to disable the less important compilation

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



warnings on the type, field, method, parameter, constructor,
and local variable of the source code made by a student. By
ignoring inappropriate compiler warnings for novices, they
can concentrate on writing source codes using programming
concepts to be studied. Thus, we modified the test codes
and distributed them using the proposed instance file update
function.

Furthermore, we also utilized the NPLAS system in the
Java programming course in the 2023 class, taking into
account the difficulties and feedback from the 2022 class.
In the 2022 class, there were instances of errors during
the installation process due to variations in students’ PC
operating system specifications. At that time, our teaching
assistants analyzed and resolved the errors during online
classes and informed them through emails. To address this
issue, we updated the system installation manual to provide
the solutions for those errors and other potential issues at
installing Docker and Windows Subsystem for Linux (WSL).

Additionally, we revised the CWP instance test codes
and reduced the number of exercise problems from 43
to 33 to make the assessment more manageable and less
overwhelming for the students, allowing them to focus on
a slightly smaller set of problems and potentially improve
their performance. By refining the implementation and the
installation manual, it is expected that NPLAS system will
be an effective and user-friendly platform for teaching and
learning introductory Java programming.

E. Evaluation Summary

Here, we provide the summary of all the results in the
various experiments and evaluations conducted in the paper.

1) Evaluation of NPLAS: The installation and operation
of NPLAS were evaluated positively. The students’ feedback
on NPLAS showed the high level of satisfaction where 81%
of them rated the system as either “Excellent” or “Good”.

2) Evaluation of Instance File Update Function: Al-
though the installation of the instance file update function
was initially challenging for some students, this was ad-
dressed by providing the script to automate the process to
them. The students’ feedback on this function also showed
the high level of satisfaction where 84% of them rated the
function as either “Excellent” or “Good”.

3) Application to Java Course: The NPLAS system was
successfully applied to the Java programming course with a
relatively large number of students. The feedback from the
students and the teaching assistants led to the improvements
of the system for the following year’s course, including the
improved installation process and manual, and the improved
test codes for properly handling compilation warnings to
novice students.

F. Discussion

In this section, we summarize the findings of our experi-
ments and present the limitations of this study. Besides, we
will compare our approach with existing solutions such as
Codio and JetBrains, highlighting their specific strengths and
differentiating features.

1) Selection of Server Platforms: Node.js and Laravel:
In this paper, we presented two different systems. One is for
the student and another is for the teacher. The first system,
NPLAS, is presented as a personal learning platform for the
student to solve programming problems. The second system,
the update function, is presented for the teacher to modify
or add exercises and send them to students’ PCs via a local
server and Gmail. The second system is presented in the
paper because the first system is offline and the files cannot
be changed by the teacher directly, although the teacher
sometimes needs to do so.

For the first system, we used Node.js as the server plat-
form, because it is a JavaScript-based framework that is
familiar to us, and our other web application systems have
been implemented using it. We were able to reuse some
existing codes and simplify the development process.

For the second system, we used PHP-Laravel as the
server platform to send data or updated files through the
Gmail server. Laravel has a reputation for its strong focus
on security, and it provides a secure default configuration.
Laravel comes with a built-in CSRF protection that helps
to protect against cross-site request forgery attacks. The
authentication system is known to be robust and easy to use.
Thus, Laravel becomes an excellent choice for the second
system.

In conclusion, we used Node.js for NPLAS for the student
side, and Laravel for the update function for the teacher side,
based on their requirements and considerations, including the
code reuse and security.

2) Findings: The experiments conducted in this study
aimed to evaluate the effectiveness and usability of our
proposal in programming education. Our approach focuses
on providing a stable environment for learning by distributing
the system through Docker, enabling both offline and online
use. This offline functionality sets this solution apart from
others, as it allows the student to access and work with the
platform without an Internet connection. Furthermore, our
platform offers a range of exercises at different levels, cov-
ering various aspects of programming mastery. We prioritize
guiding students through the essential steps such as grammar
study, code reading, code debugging, and code writing from
scratch. The emphasis on code reading as a foundational skill
is a distinguishing feature of our approach.

The results of the experiments indicated that the proposed
approach effectively facilitated learning and skill develop-
ment among participants. Students reported positive expe-
riences with the stability and accessibility of the platform,
particularly appreciating the ability to work offline. The
structured progression of exercises, with a focus on code
reading and gradual skill developments, was found to be
beneficial for students’ learning process. The inclusion of ex-
ercises like GUP and VTP for code reading proved valuable
in strengthening students’ understanding of programming
concepts.

3) Comparing NPLAS with Codio, and JetBrains: While
discussing the strengths of our proposed approach, it is
important to acknowledge the specific strengths of other
solutions such as Codio and JetBrains in the context of
programming education. Codio offers cloud-based acces-
sibility, allowing students to access their coding projects
from anywhere with an Internet connection. It also provides

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



educational features such as automated assessments and
project-based learning, enhancing the learning experience.
Additionally, Codio boasts a user-friendly interface, making
it particularly suitable for beginners.

JetBrains, on the other hand, offers a powerful Integrated
Development Environment (IDE) with advanced code edit-
ing, debugging, and testing capabilities. The IDE provides
a comprehensive development environment for students to
learn and practice programming. JetBrains is widely used
in professional software development, exposing students to
industry-standard practices and workflows. Moreover, Jet-
Brains IDE supports a wide range of programming lan-
guages, enabling students to explore different languages and
gain proficiency across multiple domains.

In comparison, the NPLAS system offers offline capability,
customizability, and a strong emphasis on code reading and
levels. The offline functionality allows students to use the
system without relying on the Internet connection, provid-
ing flexibility and accessibility. The customizability of our
system allows teachers to tailor it to their specific teaching
requirements, enhancing the adaptability of the platform.
Additionally, the focus on code reading and the structured
progression of exercises provide comprehensive learning
experiences, guiding students through different stages of
programming mastery.

4) Limitations of the Study: Despite the positive findings
and strengths of our proposed approach, it is important to
consider the limitations of this study.

Firstly, the experiments were conducted with a limited
number of participants, which may affect the generalizability
of the results. Future studies with larger and more diverse
participant samples would provide a more comprehensive
understanding of the effectiveness of our approach.

Secondly, the study was conducted within a specific
learning context, and the results may be influenced by the
characteristics of the participants, the learning environment,
and other contextual factors. It is crucial to consider the
transferability of the findings to different educational settings
and student populations.

Furthermore, the study primarily focused on the percep-
tions and experiences of the students using the proposed
approach. While this provides valuable insights into usability
and user satisfaction, future studies could incorporate ob-
jective performance measures to assess the impacts of the
approach on students’ programming skills and outcomes.

In summary, the experiments conducted in this paper
demonstrated the effectiveness and usability of our pro-
posed approach to programming learning. The emphasis on
stability, offline functionality, code reading, and structured
progression of exercises sets this approach apart from other
existing solutions. However, it is important to acknowledge
the limitations of the study, including the sample size,
contextual factors, and the focus on subjective measures.
Future research should address these limitations and further
explore the effectiveness and impact of this approach in
different settings.

VII. RELATED WORKS

In this section, we discuss related works in literature.
In [33], Ala-Mutka highlighted common challenges faced

by novice programmers and provided an overview of existing

efforts and discussions on contemporary methods employed
in teaching programming. In [37], Konecki also pointed them
out. By referencing these works, we can establish that our
approach in NPLAS addresses these challenges and con-
tributes to the ongoing discussions on effective programming
education.

In [34], Carbone et al. investigated various factors that
may contribute to student attrition in an introductory pro-
gramming course, encompassing motivations and problem-
solving skills. By referring to this study, we can emphasize
the importance of addressing these factors in our NPLAS
platform to improve students’ learning experience and reduce
dropout rates.

In [35], Queiros et al. discovered that ToolPetcha ex-
emplifies a tool functioning as an automated assistant for
programming-related issues, despite the existence of several
proposed tools aimed at aiding students in overcoming pro-
gramming learning challenges. It is relevant to our proposed
research as it demonstrates existing efforts to develop tools
that support students in overcoming programming learning
difficulties. By referencing this work, we can show that our
NPLAS platform aligns with the goal of providing automated
assistance and guidance to students.

In [36], Kalemi et al. made tests and measurements for
the time spent updating information using Node.js versus
other technologies such as PHP or Apache, to highlight
the advantages of using Node.js to update web contents in
real-time. The results indicated that the Node.js application
was twice as fast as the PHP or Apache application while
the execution time appears more stable throughout the tests.
Although the focus is technical, it is relevant to our proposed
research as we implement NPLAS using Node.js. By referring
to this study, we can highlight the advantages of using
Node.js, such as its speed and stability, which contribute to
the efficiency and reliability of our platform.

In [38], Frees proposed the use of Node.js for developing
server-side web logic in JavaScript to overcome challenges
in teaching web developments. The use of JavaScript on
both the server and client allows students to acquire more
knowledge depth, such as the internals of web develop-
ments including sockets, HTTP, and templates, and to study
important core concepts such as event-driven programming
and functional programming. It is relevant to our proposed
research as we utilize Node.js in NPLAS. By referencing this
work, we can emphasize the advantages of using JavaScript
for web development, enabling students to gain a compre-
hensive understanding of web technologies.

In [39], Heredia et al. built two similar web applica-
tions using the MEAN and Java EE stacks, and compared
the features in performances. The MEAN stack comprises
MongoDB for the database, Express for the back-end frame-
work, Angular for the front-end framework, and Node.js
for the web server. On the other hand, the Java EE stack
includes MongoDB, Spring Boot for the back-end framework,
JSP/HTML/CSS for the front-end, and Apache/Tomcat for the
web server. They found that the MEAN stack is an effective
solution for web applications based on REST services. While
the emphasis is different, it is relevant to our proposed
research as we implement NPLAS using the MEAN stack. By
referencing this study, we can support our decision to choose
the MEAN stack, highlighting its effectiveness in developing

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



web applications based on REST services.
In [40], Lala et al. provided methods to build a secure web

application using Node.js according to Open Web Application
Security Project (OWASP) guidelines. They used HTML with
EJS for the front-end, Node.js for the back-end, and MySQL
for the database. They also focused on the various vulnera-
bilities and the methods to secure the web application from
these vulnerabilities. It was found that the web application
considering them showed no negative results for the attacks
that were performed on it earlier after their implementation. It
is relevant to our proposed research as we implement NPLAS
using Node.js and need to address security concerns. By
considering the vulnerabilities mentioned in this work and
implementing security measures accordingly, we ensure the
safety and integrity of our NPLAS platform.

In [41], Figueiredo et al. introduced the HTProgramming
application, crafted to aid in the instruction and learning
of introductory programming. Students have access to exer-
cises and receive immediate feedback based on the content
introduced by the teacher. This tool empowers teachers to
efficiently monitor the entire teaching and learning process,
identifying students who are at a higher risk of failure at an
early stage, enabling the allocation of additional attention to
those individuals. It is relevant to our proposed research as
our NPLAS platform also offers personalized guidance and
feedback to students. By referencing this work, we can em-
phasize the alignment of our goal to enhance comprehension
through NPLAS and provide effective support to students.

In [42], Crow et al. presented a systematic review of
existing systems and the prevalence of various supplemen-
tary resources within them. In general, some systems were
developed with the aim of teaching introductory program-
ming concepts, and other systems were for guiding more
specific aspects of programming. There are many tutoring
systems to learn how to program at various levels, contents,
and quality, and to support teaching of programming for
introductory programming courses. They can be categorized
by features including programming languages, manually or
automatically generated learning problems, static or dynamic
code analysis, and program visualizations. It is relevant to
our proposed research as it provides an overview of existing
systems in programming education. By referencing this work,
we can position NPLAS within the broader context of tutoring
systems and highlight its unique contributions and features.

In [43], Parihar et al. introduced GradeIT, a system
designed to achieve both automated grading and program
repairs in introductory programming courses. It evaluates
submitted source code based on the number of passed test
cases, the reciprocal of the time taken to solve them, and the
percentage of successful compilations. The compilation score
is computed as 1 - (number of compilation errors in the code)
/ (maximum number of compilation errors among students).
For repairs, GradeIT employs straightforward rewriting rules
to rectify common but simple compile-time errors. It is
relevant to our proposed research as it emphasizes the
importance of automated grading and feedback. By referring
to this work, we can highlight the similar objectives of
NPLAS, which provides automated assessment and support
to students.

In [44], Fu et al. introduced a plug-in system for Moodle
called LAPLE (Learning Analytics in Programming Lan-

guage Education). LAPLE is designed to offer a learning
dashboard within Moodle, capturing students’ behaviors in
the classroom and identifying individual students’ challenges
with various concepts. LAPLE prompts students to write
complete source codes, collecting and analyzing their com-
piling logs every five minutes to provide real-time visu-
alizations for in-class feedback. The authors conducted an
analysis of the distribution of 36 classified error types and
encouraged students to focus on addressing frequent error
types. LAPLE is tailored for use in online programming
classes, while NPLAS is designed for self-study at home,
even after class.

In [45], Hasany introduced an e-learning system named
c-Learn, accessible to students as a web application any-
time and anywhere. This system aims to address the issue
where weaker students tend to struggle more as additional
programming lessons are covered. Through c-Learn, students
can incrementally grasp programming concepts, and in the
event of errors, the system guides them back to the relevant
topics they need to understand to resolve the problems.
It is relevant to our proposed research as it addresses the
problem of weaker students struggling with programming.
By referencing this work, we can demonstrate that NPLAS
offers similar guidance and support to students, helping them
gradually improve their programming skills.

In [46], Souza et al. conducted systematic literature re-
views on assessment tools for programming assignments,
aiming to assist instructors in making informed selections
for programming courses. They identified three categories of
assessment tools: contests, quizzes, and software testing. In
contests, a tool compiles a student’s source code, executes it
with a predefined set of test cases, and provides feedback
on whether the code is accepted or not. Quizzes involve
presenting a set of questions, with each requiring students
to input a code fragment in the tool’s interface. In software
testing, the tool assesses the correctness of a student’s source
code by comparing its output with the model code’s output
or by running the test code against the source code. It is
relevant to our proposed research as NPLAS incorporates
testing functionalities using JUnit. It also supports a hint
function to assist students in reaching the correct answer
by providing partial guidance. By referencing this work, we
can highlight the assessment capabilities of NPLAS and its
support for students in improving their code quality and
correctness.

In [47], Krusche et al. introduced an automated assessment
management system named ArTEMiS for interactive learning.
This system automatically evaluates solutions to program-
ming exercises, delivering immediate feedback. Additionally,
it includes an online code editor with interactive exercise
instructions. ArTEMiS prompts students to submit complete
source codes, a distinction from our proposed approach.
It is relevant to our proposed research as both ArTEMiS
and NPLAS focus on assessing and providing feedback
on programming solutions. By referring to this work, we
can emphasize the importance of automated assessment and
feedback in programming education, which NPLAS offers.

In [48], Tung et al. introduced Programming Learning
Web (PLWeb), a programming exercise management system
crafted to support teachers in generating exercises and aid
students in programming studies. PLWeb offers an integrated

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



development environment, serving as both an authoring tool
for teachers to create exercises and a user-friendly editor for
students to study programs and submit solutions. Visualized
learning status assists teachers in aiding students facing
challenges in reaching solutions, and a plagiarism detection
tool is incorporated to discourage plagiarism among students.
It is relevant to our proposed research as both PLWeb and
NPLAS aims to support teachers in designing exercises and
provide a friendly environment for students to study and
submit solutions. By referencing this work, we can highlight
the similar functionalities and goals of NPLAS.

In [49], Busjahn et al. determined, through literature
reviews and interviews, that code reading is linked to under-
standing programs, algorithms, and algorithmic ideas, along
with details, and is essential in various aspects of learn-
ing programming. Despite this, there is limited knowledge
about the reading and comprehension process of learners.
The authors suggested that a potential approach to enhance
programming learning is to directly teach code reading,
incorporating specific reading strategies. It is relevant to
our proposed research as NPLAS introduces the value trace
problem (VTP) as a means to foster programming learning.
By referring to this work, we can highlight the significance
of code reading and comprehension, which NPLAS aims to
enhance through its unique features.

VIII. CONCLUSION

This paper presented the implementation of the Java pro-
gramming learning assistant system using Node.js (NPLAS)
and the instance file update function using Angular and
Laravel. Docker is adopted for their easy and solid deploy-
ments to novice students. Besides, NPLAS was extended
to Python programming learning. In evaluations, all of the
requested teachers and students in three universities in Japan
and Indonesia successfully installed NPLAS, solved instances
on it, and updated the instance files. The results validated
the effectiveness and accuracy of the implementations. In
future works, we will adopt a database to manage instance
files and extend the NPLAS platform to encompass other
prominent programming languages, including C, C++, and
JavaScript. Additionally, we will persist in enhancing NPLAS
by incorporating new features and functions for programming
learning.

REFERENCES

[1] S. I. Ao, A. H. S. Chan, and H. Katagiri, “IAENG Transactions on
Engineering Sciences - Special Issue for the International Association
of Engineers Conferences,” World Sci. Pub., vol. 2, pp. 517-530, 2018.

[2] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, N.
K. Dim, and W.-C. Kao, “A proposal of grammar-concept understanding
problem in Java programming learning assistant system,” Journal of
Advances in Information Technology (JAIT), vol. 12, no. 4, pp. 342-
350, 2021. Available at: https://doi.org/10.12720/jait.12.4.342-350.

[3] K. K. Zaw, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L.
Aung, N. K. Dim, and W.-C. Kao, “A proposal of value trace problem
for algorithm code reading in Java programming learning assistant
system,” Information Engineering Express, vol. 1, no. 3, pp. 9-18, 2015.
Available at: https://doi.org/10.52731/iee.v1.i3.3.

[4] Y. Jing, N. Funabiki, S. T. Aung, X. Lu, A. A. Puspitasari, H. H.
S. Kyaw, and W.-C. Kao, “A proposal of mistake correction problem
for debugging study in C programming learning assistant system,”
International Journal of Information and Education Technology (IJIET),
vol. 12, pp. 1158-1163. 2022. https://doi.org/10.18178/ijiet.2022.12.11.
1733.

[5] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A graph-
based blank element selection algorithm for fill-in-blank problems in
Java programming learning assistant system,” IAENG International
Journal of Computer Science, vol. 44, no. 2, pp. 247-260, 2017.

[6] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, “A code
completion problem in Java programming learning assistant system,”
IAENG International Journal of Computer Science, vol. 47, no. 3, pp.
350-359, 2020.

[7] N. Funabiki, Y. Matsushima, T. Nakanishi, N. Amano, “A Java program-
ming learning assistant system using test-driven development method,”
IAENG International Journal of Computer Science, vol. 40, no. 1, pp.
38-46, 2013.

[8] N. Ishihara, N. Funabiki, M. Kuribayashi, W.-C. Kao, “A software archi-
tecture for Java programming learning assistant system,” International
Journal of Computer and Software Engineering, vol. 2, no. 1, pp. 1-7.
2017. https://doi.org/10.15344/2456-4451/2017/116.

[9] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W.-C. Kao, “Offline
answering function for fill-in-blank problems in Java programming
learning assistant system,” Proceedings of the IEEE International Con-
ference on Consumer Electronics-Taiwan (ICCE-TW), pp. 324-325,
2016. https://doi.org/10.1109/ICCE-TW.2016.7521045.

[10]D. Herron: Node.js web development, 3rd ed.; Packt Publishing Ltd:
Livery Place 35 Livery Street Birmingham B3 2PB, UK, 2016.

[11]Express (online), https://expressjs.com/.
[12] J. Berm´udez-Ortega, E. Besada-Portas, J. A. L´opez-Orozco, J. A.

Bonache-Seco, and J. M. de la Cruz, “Remote web-based control
laboratory for mobile devices based on EJsS, Raspberry Pi and Node.js,”
IFAC-Papers OnLine, vol. 48, pp. 158–163, 2015. Available at: https:
//doi.org/10.1016/j.ifacol.2015.11.230.

[13] J. I. Sihotang, Y. R. Simanjuntak, and A. F. Pakpahan, “Membership
information system using Node JS,” International Scholars Conference
(ISC), vol. 7, no. 1, pp. 1729-1740. 2019. Available at: https://doi.org/
10.35974/isc.v7i1.1372.

[14]A. A. Pushkarev, and O. E. Yakubailik, “A web application for visu-
alization, analysis, and processing of agricultural monitoring spatial-
temporal data,” Proceedings of the CEUR Works, pp. 231-237, 2021.

[15]R. McKendrick. Monitoring Docker, Packt Publishing, United King-
dom, 2015.

[16]Angular (online), https://angular.io/.
[17]Laravel (online), https://laravel.com/.
[18]TypeScript (online), https://www.typescriptlang.org/.
[19]Express.js Tutorial (online), https://www.javatpoint.com/

expressjs-tutorial.
[20] JUnit (online), https://junit.org/junit5/.
[21]Docker Hub (online), https://hub.docker.com/signup.
[22]RestAPI (online), https://www.ibm.com/cloud/learn/rest-apis.
[23]PHP (online), https://www.php.net/.
[24]Composer (online), https://getcomposer.org/.
[25]Unittest (online), https://docs.python.org/3/library/unittest.html.
[26] J. Brooke, “SUS: A Retrospective,” Journal of Usability Studies, vol.

8, no. 2, pp. 29-40, 2013.
[27]Measuring and Interpreting System Usability Scale - SUS (online),

https://uiuxtrend.com/measuring-system-usability-scale-sus/.
[28]System Usability Scale - SUS (online), https://www.usability.gov/

how-to-and-tools/methods/system-usability-scale.html.
[29]Mana Takahashi. Yasashi Java, 7th ed.; SB Creative, Japan, 2019.
[30] Java Programming Course (online), https://java.cse.ce.nihon-u.ac.jp/

enshu5/java/index.html.
[31] Java Programming Course (online), https://syllabus.hosei.ac.jp/

web/preview.php?nendo=2020&t lmode=sp&template=t1&no id=
2015538&gakubu id=%E7%B5%8C%E5%96%B6%E5%AD%A6%
E9%83%A8&gakubueng=AF

[32] Java Programming Course (online), https://navi.hus.ac.jp/upload/files/
12.2021%E5%B9%B4%E5%BA%A6%E5%BE%8C%E6%9C%9F%
E6%95%99%E7%A7%91%E6%9B%B8%E8%B2%A9%E5%A3%
B2%E3%83%AA%E3%82%B9%E3%83%88%E3%83%A1%E3%
83%87.pdf

[33]K. Ala-Mutka, “Problems in learning and teaching programming - a
literature study for developing visualizations in the Codewitz-Minerva
project,” Codewitz needs analysis, vol. 20, 2004.

[34]A. Carbone, I. Mitchell, J. Hurst, and D. Gunstone, “An exploration
of internal factors influencing student learning of programming,” Pro-
ceedings of the Eleventh Australasian Computing Education Conference
(ACE2009), pp. 25-34, 2009.

[35]R. Queiros, and J. P. Leal, “PETCHA - a programming exercises
teaching assistant,” Proceedings of the 17th ACM Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE
’12), pp. 192–197, 2012. Available at: https://doi.org/10.1145/2325296.
2325344.

[36]E. Kalemi, and K. Tola, “Updating web content in real time using
Node.js,”Journal Soft. Eng. Simul, vol. 1, pp. 01–06, 2013.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 



[37]M. Konecki, “Problems in programming education and means of their
improvement,” DAAAM Int. Sci. Book, Chapter 37, pp. 459-470, 2014.

[38]S. Frees, “A place for Node.js in the computer science curriculum,”
Journal of Computing Sciences in Colleges, vol. 30, pp. 84-91, 2015.

[39] J. S. Heredia, G. C. Sailema, “Comparative analysis for web appli-
cations based on REST services: MEAN stack and Java EE stack,”
KnE Engineering, vol. 30, pp. 82–100, 2018. Available at: https:
//doi.org/10.18502/keg.v3i9.3647.

[40]S. K. Lala, A. Kumar, S. T, “Secure web development using OWASP
guidelines,” Proceedings of the 5th International Conference on Intel-
ligent Computing and Control Systems (ICICCS), pp. 323-332, 2021.
Available at: https://doi.org/10.1109/ICICCS51141.2021.9432179.

[41] J. Figueiredo, and F. Gracia-Penalvo, “A tool help for introductory
programming courses”, Proceedings of the Ninth International Con-
ference on Technological Ecosystems for Enhancing Multiculturality
(TEEM’21), pp. 18-24, 2021. Available at: https://doi.org/10.1145/
3486011.3486413.

[42]T. Crow, A. Luxton-Reilly, and W. Burkhard, “Intelligent tutoring
systems for programming education: a systematic review,” Proceedings
of the 20th Australasian Computing Education Conference, pp. 53-62,
2018. Available at: https://doi.org/10.1145/3160489.3160492.

[43]S. Parihar, R. Das, Z. Dadachanji, A. Karkare, P. K. Singh, and
A. Bhattacharya, “Automatic grading and feedback using program
repair for introductory programming courses,” Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science
Education, Bologna, pp. 92-97, 2017. Available at: https://doi.org/10.
1145/3059009.3059026.

[44]X. Fu, A. Shimada, H. Ogata, Y. Taniguchi, and D. Suehiro, “Real-time
learning analytics for C programming language courses,” Proceedings
of the Seventh International Learning Analytics and Knowledge Confer-
ence, pp. 280–288, 2017. Available at: https://doi.org/10.1145/3027385.
3027407.

[45]N. Hasany, “E-learning student assistance model for the first computer
programming course,” International Journal on Integrating Technology
in Education (IJITE), vol. 6, no. 1, pp. 1-7, 2017. Available at: https:
//doi.org/10.5121/ijite.2017.6101.

[46]D. M. Souza, K. R. Felizardo, and E. F. Barbosa, “A systematic literature
review of assessment tools for programming assignments,” Proceedings
of the IEEE 29th International Conference on Software Engineering
Education and Training (CSEET), pp. 147-156, 2016. Available at:
https://doi.org/10.1109/CSEET.2016.48.

[47]S. Krusche, and A. Seitz, “ArTEMiS: an automatic assessment man-
agement system for interactive learning,” Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (SIGCSE
’18), pp. 284–289, 2018. Available at: https://doi.org/10.1145/3159450.
3159602.

[48]S. H. Tung, T. T. Lin, and Y. H. Lin, “An exercise management system
for teaching programming,” Journal of Software, vol. 8, no. 7, pp. 1718-
1725, 2013. Available at: https://doi.org/10.4304/jsw.8.7.1718-1725.

[49]T. Busjahn, and C. Schulte, “The use of code reading in teaching
programming,” Proceedings of the 13th Koli Calling International
Conference on Computing Education Research (Koli Calling ’13), pp.
3–11, 2013. Available at: https://doi.org/10.1145/2526968.2526969.

S. T. Aung received the B.E. degree in Information
Technology from the University of Technology
(Thanlyin), Myanmar, in 2017. She received the
M.E. degree in Electronic and Information Sys-
tem Engineering at Okayama University, Japan, in
2023. She is currently a Ph.D student in Depart-
ment of Information and Communication System
Engineering at Okayama University, Japan, and is
the recipient of an OU fellowship. Her research
interests include educational technology.

L. H. Aung received the B.C.Sc. degree in Infor-
mation Technology from the University of Com-
puter Studies, Yangon, Myanmar, in 2019. From
2019 to 2022, he was with FRONTIIR Co., Ltd
(ISP Company of Myanmar) as an associate en-
gineer/senior associate engineer. He is currently a
Ph.D student in Department of Information and
Communication System Engineering at Okayama
University, Japan. His research interests include
educational technology.

N. Funabiki received the B.S. and Ph.D. de-
grees in mathematical engineering and information
physics from the University of Tokyo, Japan, in
1984 and 1993, respectively. He received the M.S.
degree in electrical engineering from Case Western
Reserve University, USA, in 1991. From 1984 to
1994, he was with Sumitomo Metal Industries,
Ltd., Japan. In 1994, he joined the Department
of Information and Computer Sciences at Osaka
University, Japan, as an assistant professor, and
became an associate professor in 1995. In 2001,

he moved to the Department of Communication Network Engineering
(currently, Department of Electrical and Communication Engineering) at
Okayama University as a professor. His research interests include computer
networks, optimization algorithms, educational technology, and Web tech-
nology. He is a member of IEEE, IEICE, and IPSJ.

S. Yamaguchi received the B.E., M.E. and D.E.
degrees from Yamaguchi University, Japan, in
1992, 1994 and 2002, respectively. He was a
Visiting Scholar in the Department of Computer
Science at University of Illinois at Chicago, United
States, in 2007. He is currently a Professor in
the Graduate School of Sciences and Technology
for Innovation, Yamaguchi University, Japan. His
research interests are in the area of net theory
and its applications including IoT, Cyber Security,
and Service Science. He is a Board of Govertnor,

IEEE Comsumer Electronics Society, and the Chair of Young Professionals
Committee of the society. He is a senior member of IEEE and IEICE.

Y. W. Syaifudin is an associate professor at State
Polytechnic of Malang, Indonesia. He received a
bachelor’s degree in informatics from Bandung
Institute of Technology, Indonesia, in 2003 and
a master’s degree in information technology from
Sepuluh Nopember Institute of Technology, In-
donesia, in 2011. Finally, in 2021, the Ph.D. degree
in information and communication systems was
received from Okayama University, Japan, respec-
tively. He is also a reviewer for some reputable
journals and conferences, and is active as Director

of Intelligence System and Digital Economy Innovation Research Institute
(ISDEI) and Chairman of Academic Association of Creative Economy
(AACE). His research interests include technology-enhanced learning, in-
telligent systems, and data analytics.

W-C. Kao received the M.S. and Ph.D. degrees
in electrical engineering from National Taiwan
University, New Taipei, in 1992 and 1996, respec-
tively. He is a chair professor with the Department
of Electrical Engineering, National Taiwan Normal
University, New Taipei, Taiwan. Before he joined
academia in 2004, he was a department manager
with SoC Technology Center, ITRI, Taiwan, an
AVP with NuCam Corporation, Foxlink Group,
and the co-founder of SiPix Technology Inc. He
is the president of the IEEE Consumer Electronics

Society. He is a fellow of IEEE. His research interests include system-on-
a-chip (SoC), embedded software design, flexible electronic paper, machine
vision systems, and digital camera systems.

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 226-243

 
______________________________________________________________________________________ 




