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Abstract—Accurately predicting drug-target binding affinity
(DTA) is crucial for advancements in drug repositioning. In this
paper, we present HBDTA, an innovative predictive method-
ology that harnesses the capabilities of graph deep learning
and multi-layer networks for DTA prediction. The HBDTA
approach encompasses a comprehensive framework with three
distinct graph neural network (GNN) algorithms: multi-head
graph attention networks (Multi-head GAT), generalized aggre-
gation networks (GENConv), and graph convolutional networks
(GCNConv) designed to extract drug features. Additionally, we
employ a multi-layer bi-directional long short-term memory
(MBLSTM) with residual blocks to extract protein features.
After deriving feature vectors for drugs and proteins, they inde-
pendently pass through fully connected layers before integration
into a self-attention layer. Subsequently, the resulting feature
vectors are concatenated and passed through four layers of
fully secured networks to facilitate prediction. Finally, we assess
our model’s performance on the Davis, KIBA, Metz, and DTC
datasets. Comparative analysis against state-of-the-art method-
ologies, such as DeepGLSTM, DeepNC, and GraphDTA, among
others, underscores the effectiveness of HBDTA. The results
suggest that HBDTA holds significant potential for practical
drug discovery and personalized medicine applications.

Index Terms—Drug-target binding affinity, Deep learning,
Proteins, Residual blocks, Multi-layer networks

I. INTRODUCTION

THE accurate prediction of drug-target binding affinity
(DTA) is a critical technology in both drug develop-

ment and the domain of drug repositioning [1]. The pursuit
of discovering novel drugs is accompanied by substantial
financial investments, with annual costs estimated at approx-
imately $2.6 billion, as reported in the existing literature
[2]. Moreover, it is well-known that the regulatory approval
process overseen by the Food and Drug Administration
(FDA) is renowned for its lengthy duration [3]. Despite
these challenges, the continuous advancement of knowledge
at the intersection of computer science and biology has
opened up new avenues for drug development. Notably, the
convergence of these fields has led to the emergence of graph
deep learning, a powerful aspect of deep learning that has
garnered significant attention in the pharmaceutical research
domain. The availability of extensive datasets linking drugs
and targets has sparked significant interest in harnessing
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machine learning and deep learning techniques for drug
development.

Machine learning techniques entail extracting insights
from extensive datasets comprising known drug-target pairs,
the extraction of relevant features, and the formulation of
prediction models. As an illustrative example, SimBoost [4]
employs a gradient-boosting methodology utilizing features
derived from drugs, targets, and drug-target pairs to predict
binding affinity. In contrast, KronRLS [5] uses a kernel-based
approach to determine similarity between drugs or proteins.
Deep learning methodologies, on the other hand, leverage
multi-layer neural networks to capture high-order features of
drugs and targets, thereby enhancing prediction accuracy. For
instance, DeepDTA [6] focuses on one-dimensional represen-
tations of targets, utilizing a three-layer convolutional neural
network (CNN) [7] for processing drugs and extracting repre-
sentations. Its evolution, WideDTA [8], refines and extends
this approach by incorporating four text-based information
sources. WideDTA leverages four text-based information
sources, including the protein sequence, ligand Simplified
Molecular Input Line Entry System (SMILES) [9], protein
domains and motifs, and maximum common substructure
words to predict binding affinity. Taking a novel approach,
DeepCPI [10] harnesses the power of attention mechanisms
within neural networks for improved performance through
an end-to-end methodology. Attention mechanisms enable
the identification of crucial proteins in drug-target inter-
actions. Attention mechanisms enable the identification of
crucial proteins in drug-target interactions (DTI). MT-DTI
[11] introduces an original molecular representation based
on a self-attention tool, accompanied by a unique drug-
target interaction model. GANsDTA [12] advances a semi-
supervised generative adversarial network-driven approach,
divided into feature extraction and prediction regression
networks. AttentionDTA [13] culminates in a comprehen-
sive deep learning-driven framework, combining an attention
mechanism with the prediction of DTI binding affinity.

However, the scope of deep learning methodologies is
limited when it comes to handling non-Euclidean data. In
the field of drug discovery, where molecules are represented
as graphs, graph neural networks (GNNs) emerge as a
promising solution for tackling the challenge of modeling
non-Euclidean data. GraphDTA [14], for instance, config-
ures drugs as graph structures and employs GNNs [15] to
predict drug-target binding affinity. This method utilizes four
variants of GNNs to predict drugs while processing protein
sequences using one-dimensional convolution. DeepGS [16]
harnesses the power of deep neural networks to extract
localized chemical context from amino acid and SMILES
sequences, combining them with graph neural networks
to capture the intricate molecular structures within drugs.
DeepGLSTM [17], on the other hand, introduces a graph
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convolution networks (GCN) block to process drug com-
pounds using power graph representation and a Bi-directional
Long Short-Term Memory Network (Bi-LSTM) [18] layer
to process protein sequences. DeepNC [19] uses generalized
aggregation networks (GENConv) [20], graph convolutional
networks, and hypergraph convolution-hypergraph attention
(HypergraphConv) [21] to extract drug features, along with
a one-dimensional CNNs (1D-CNNs) architecture to extract
protein attributes. Above prediction methods are summarized
in Table I.

However, regardless of whether these models are rooted
in graph deep learning or traditional machine learning
paradigms, they tend to rely on shallow networks [22]
when analyzing features embedded in protein sequences.
This often involves the use of either 1D-CNNs or simple
LSTM [23] structures, resulting in suboptimal extraction of
sequence features and consequently impacting the model’s
accuracy. The use of 1D-CNNs for protein feature extraction
overlooks the intricate spatial intricacies inherent in proteins,
which can lead to less precise predictions. Furthermore, since
excessive layer stacking can lead to gradient vanishing, while
insufficient layering may result in inadequate information
extraction, the incorporation of a self-attention mechanism
[24] within the model presents a viable solution to address
this issue.

In this study, we introduce a novel graph deep learning
model named HBDTA for predicting the binding affinity
between drugs and targets. The HBDTA model integrates a
variety of advanced techniques, creating a unique combina-
tion of innovations. Within this framework, we employ three
distinct variants of graph neural network models to extract
features from drugs, demonstrating their suitability for sub-
sequent experimental endeavors. Furthermore, we propose
the MBLSTM deep network to capture features from protein
sequences. The MBLSTM architecture is characterized by
the inclusion of three layers of network connections, each
interleaved with a residual block. This strategic addition
addresses the common challenge of gradient vanishing often
encountered in deep networks. Through MBLSTM, the intri-
cate dependency relationships inherent in protein sequences
are effectively captured, encompassing the inherent char-
acteristics of the original signals across various temporal
scales, while efficiently managing memory requirements.
The orchestrated fusion of drug and protein features is
further enriched by our customized self-attention layer. To
assess our model’s performance, we compare it with other
representative methods using four established datasets: Davis
[25], KIBA [26], Metz [27], and DTC [28]. Consistently, our
HBDTA model outperforms alternative approaches, demon-
strating its effectiveness across both datasets.

II. CORRELATION ALGORITHM

A. Multi-head Graph Attention Network

To augment the generalization efficacy of the attention
mechanism, we opted for the integration of a multi-head
attention [29]. The specific formulation is delineated as
follows:

The graph attention layer takes as input a set of node
feature vectors, h = (

−→
h1,
−→
h2, ...,

−→
hN ),

−→
hi ∈ RF , where

N is the number of nodes, and F represents the number

of features per node. The matrix h, spanning dimensions
N × F , encapsulates the features of all nodes. Conversely,
R signifies the feature of an individual node, thereby as-
suming a size of F × 1. After a graph attention layer, a
fresh feature vector is engendered, its dimension denoted
as F

′
(which might not necessarily align with F ). The

novel set of node feature vectors assumes the configuration

h
′

= (
−→
h

′

1,
−→
h

′

2, ...,
−→
h

′

N ),
−→
h

′

i ∈ RF
′

.
To effectuate the requisite input-output transformation,

a minimum of one linear conversion predicated on input
features is imperative. Hence, a weight matrix W ∈ RF

′
×F

is trained for all nodes. This matrix elucidates the interplay
between the input’s F features and the output’s F

′
features.

We then perform self-attention on the nodes-a shared atten-
tional mechanism a: RF

′

× RF
′

→ R computes attention
coefficients. The self-attention mechanism is executed for
each node, with the corresponding attention coefficients as
follows:

eij = a(W
−→
hi ,W

−→
hj) (1)

The significance of node j’s features concerning node i
is represented by eij . In this context, i and j as subscripts
refer to the i-th and j-th nodes, respectively. Computation of
eij is limited to nodes j belonging to Ni, which defines the
neighborhood of node i within the graph. To facilitate cross-
node comparability of coefficients, we employ the softmax
function:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(2)

In our experiments, we employ the attention mechanism
a as a single-layer feedforward neural network, which is
characterized by a weight vector −→a ∈ R2F ′

and utilizes
the LeakyReLU nonlinearity. The coefficients computed by
the attention mechanism may then be expressed as:

αij =
exp(LeakyReLU(−→a T [W

−→
hi ||W

−→
hj ]))∑

k∈Ni
exp(LeakyReLU(−→a T [W

−→
hi ||W

−→
hk]))

(3)

where .T represents transposition and ‖ is the concatenation
operation. The regularization of attention coefficients across
distinct nodes is achieved through the above operations.
These coefficients, once obtained, serve as the basis for
predicting the output features of each node:

−→
h

′

i = σ(
∑
j∈Ni

αijW
−→
hj) (4)

where σ(.) represents a non-linear activation function.
In our model, a multi-head graph attention mechanism was

implemented, with the number of heads set at 10.
−→
h

′

i =
K

‖
k=1

σ(
∑
j∈Ni

αkijW
k−→hj) (5)

where K is equivalent to the count of attention mechanisms
under consideration, with k signifying the k-th instance
within this set. The term akij denotes the weight coefficient
computed by the attention mechanism of the k-th group,
while W k embodies the weight coefficient associated with
the k-th module.
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TABLE I
COMPARISON MODEL

Method Published time Model Summary

SimBoost 2016 Gradient boosting regression trees Predicting continuous values of binding affinities for
compounds and proteins

KronRLS 2018 Multiple kernel learning Utilizing multiple pairwise kernels for time and memory-
efficient learning in the first approach

DeepDTA 2018 CNN Using CNNs to process protein sequences and 1D compound
structures

WideDTA 2019 CNN Combining four different textual pieces of information
related to proteins and ligands

DeepCPI 2019 GNN+CNN Mining valuable compound and protein features from vast
unlabeled corpora using NLP techniques

GANsDTA 2019 GAN+CNN Effectively learning valuable features from labeled and
unlabeled data

DeepGS 2020 GAT+Bi-GRU Extracting the topological information of the molecular
map and thelocal chemical context of the drug

GraphDTA 2021 GCN/GAT+GCN/GIN/GAT Introducing multiple models of graph neural networks

Attention-DTA 2022 CNN A multi-perspective molecular feature attention fusion
based deep learning method for predicting DTA

DeepNC 2022 GENconv/HypergraphConv Two algorithms for extracting drug characteristics
DeepGLSTM 2022 GCN+LSTM A method based on graph convolutional network and LSTM

Finally, we utilize averaging and postpone the application
of the ultimate nonlinearity until that point:

−→
h

′

i = σ(
1

K

K∑
k=1

∑
j∈Ni

αkijW
k−→hj) (6)

B. Graph Convolutional Network
Graph convolutional neural networks [7] constitute a po-

tent tool for addressing the challenge of data alignment
by leveraging vertices and edges to construct topological
graphs that encapsulate the associated relationships. Their
widespread implementation spans domains such as social
networks, information networks, and various other spheres.
The fundamental objective of GCNs resides in the acqui-
sition of node-level representations derived from a given
input graph G = (V,E). Within this context, V denotes
a node feature matrix encompassing attributes for N nodes,
while E signifies the assortment of edges connecting nodes.
Additionally, A ∈ RN×N represents the adjacency matrix
that encapsulates the structural composition of the graph.
To effectuate this, GCNs deploy weight matrices W l across
each layer l, whereby the graph convolution operation is
delineated as follows:

H1 = X (7)

H l = σ(D̃−
1
2 ÃD̃−

1
2H l−1W l−1) (8)

where Ã = A+IN symbolizes the adjacency matrix enriched
with self-loops for each node, and the identity matrix is
denoted as IN The notation W l−1 designates the weight
matrix of the GCN at the (l− 1)-th layer. D̃ =

∑
j Ãij , and

D̃ represents the degree matrix. σ(.) is a non-linear function
which is a ReLU in our later experiments.

C. Residual Blocks
Residual blocks [30], also referred to as skip connections,

assume a pivotal role within our model’s architecture. Mathe-
matically, the operation of a residual block can be represented
as follows:

y = F (x) + x (9)

where x signifies the input introduced to the block, F (x)
signifies the alterations executed by the block, and y des-
ignates the outcome emerging from the block. The operator
+ signifies element-wise addition. To ensure the validity of
the element-wise addition, x and F (x) must share identical
dimensions. Hence, in scenarios where the dimensions of x
and F (x) diverge, a linear projection can be employed on x
to harmonize its dimensions with those of F (x), preparatory
to the addition operation.

D. Generalized Aggregation Graph Networks

A Graph Convolutional Network (GCN) predicated on
the principles of message-passing that adheres to message-
passing criteria has been developed [20]. Within the context
of the l-th layer, we consider m(l)

v ∈ RD as the aggregated
message for node v, while m(l)

vu ∈ RD is designated as an
individual message corresponding to each neighbor u ∈ Nv
of node v. The messages from neighbors, alongside the
aggregated message for node v, and its associated features,
undergo updates as per the subsequent equations:

m(l)
vu = p(l)(h(l)v , h

(l)
u , h

(l)
evu

)

m(l)
u = ζ(l)(m(l)

vu)

h(l+1)
v = φ(l)(h(l)v ,m

(l)
v )

(10)

where p(l), ζ(l), and φ(l) are functions that can be learned
or differentiated, intended for the tasks of constructing mes-
sages, aggregating messages, and updating nodes at the l-th
layer.

The function ζ(l) responsible for message aggregation is
presented with two alternative forms: SoftMax aggregation
and PowerMean aggregation. These generalized functions
are defined as follows:

SoftMax Aggβ(.) =
∑

u∈N(v)

exp(βmvu)∑
i∈N(v)

exp(βmvi)

PowerMean Aggp(.) = (
1

|N(v)|
∑

u∈N(v)

mp
vu)

1
p

(11)
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where β represents a continuous variable referred to as
the inverse temperature, while p is a non-zero continuous
variable indicating the exponent of p.

To facilitate the utilization of SoftMax Aggβ and
PowerMean Aggp, a prerequisite is to ensure that the node
message value mvu remains non-negative. This requirement
mandates that the message construction function p(l) take the
form:

m(l)
vu = p(l)(h(l)v , h

(l)
u , h

(l)
evu

) = ReLU(h(l)u +ϕ(h(l)evu
)·h(l)evu

)+ε
(12)

where ReLU denotes a rectified linear unit that yields values
greater than or equal to 0. The function ϕ(.) is an indicator
function that returns 1 when edge features are present and
0 otherwise. The parameter ε signifies a minute positive
constant selected as 10−7.

During the node update stage, an additional layer for
message normalization was incorporated into the node update
function:

h(l+1)
v = φ(l)(h(l)v ,m

(l)
v ) = MLP [h(l)v +s·||h(l)v ||2·(

m
(l)
v

||m(l)
v ||2

)]

(13)
where MLP [.] denotes a multi-layer perceptron, while s
signifies a scaling factor that is amenable to learning. In prac-
tical implementations, s is assigned the role of a learnable
scalar and is initialized with a value of 1.

E. Multi-layer Bi-Directional Long Short-Term Memory Net-
work

The multi-layer bi-directional long short-term memory
(MBLSTM) represents a profound deep learning architecture
that combines the strengths of Bi-LSTMs and deep neural
networks, offering several advantages over traditional LSTM
models.

First and foremost, MBLSTM harnesses the potential of
multiple layers of LSTM units. Each layer progressively
learns more complex representations of the input sequence.
The hierarchical structure of these multiple layers empowers
the model to capture intricate dependencies and patterns
within the data, thereby enhancing its performance in tasks
requiring the understanding of long-term dependencies.

Furthermore, MBLSTM benefits from the presence of
residual connections that link the layers. These residual
blocks facilitate the seamless flow of information from one
layer to the next, mitigating the challenge of vanishing
gradients and strengthening the model’s learning capabilities.
These connections also enable the model to retain important
information from previous layers, contributing to improved
information propagation and gradient flow.

Additionally, MBLSTM exhibits the ability to handle input
sequences of variable lengths, making it suitable for tasks in-
volving natural language processing and speech recognition,
where input lengths can vary significantly. The bidirectional
nature inherent in MBLSTM allows it to generate predictions
at each time step, providing essential contextual insights for
tasks requiring sequential predictions.

Consider an input sequence denoted as x, where the hidden
state for each layer of the MBLSTM network is represented
by h, and the cell state is indicated by c. The forward

propagation process for the initial layer of the MBLSTM
network can be formally articulated as follows:

−→
h 1
t ,
−→c 1
t =
−−−−→
LSTM(−→x t,

−→
h 1
t−1,
−→c 1
t−1)

←−
h 1
t ,
←−c 1
t =
←−−−−
LSTM(←−x t,

←−
h 1
t+1,
←−c 1
t+1)

h1t =
−→
h 1
t +
←−
h 1
t

c1t = −→c 1
t +←−c 1

t

xt = h1t

(14)

The forward propagation process for the second layer of
the MBLSTM network can be articulated as follows:

−→
h 2
t ,
−→c 2
t =
−−−−→
LSTM(−→x t,

−→
h 2
t−1,
−→c 2
t−1)

←−
h 2
t ,
←−c 2
t =
←−−−−
LSTM(←−x t,

←−
h 2
t+1,
←−c 2
t+1)

h2t =
−→
h 2
t +
←−
h 2
t + h1t

c2t = −→c 2
t +←−c 2

t + c1t

xt = h2t

(15)
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Fig. 1. Schematic diagram illustrating the architecture of the MBLSTM
network

The forward propagation process for the third layer of the
MBLSTM network can be articulated as follows:

−→
h 3
t ,
−→c 3
t =
−−−−→
LSTM(−→x t,

−→
h 3
t−1,
−→c 3
t−1)

←−
h 3
t ,
←−c 3
t =
←−−−−
LSTM(←−x t,

←−
h 3
t+1,
←−c 3
t+1)

h3t =
−→
h 3
t +
←−
h 3
t + h2t

c3t = −→c 3
t +←−c 3

t + c2t

xt = h3t

(16)

Among these elements,
−−−−→
LSTM and

←−−−−
LSTM correspond

to the forward and reverse LSTM units, respectively, with
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TABLE II
EIGHT ATOMIC CHARACTERIZATIONS

Feature Descripition Size

Atom Type

C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As, Al,
I, B, V, K, Tl, Yb, Sb, Sn, Ag, Pd, Co, Se, Ti, Zn, H,
Li, Ge, Cu, Au, Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb,
or “Unknown” (one-hot)

44

Degree Number of directly bonded neighbors 11
Num of H Number of H bound to the atom 11
Implicit Valence Number of implicit H bound to the atom 11
Total Valence Number of total H bound to the atom 11
Charge Number of charge bound to the atom 11
Aromaticity Whether the atom is aromatic 1
InRing Whether the atom is in a ring 1
Total 101

t representing the time step. It is crucial to highlight that
each layer in the MBLSTM network incorporates LSTM
units in both forward and reverse directions. The mathemat-
ical expressions provided elucidate the forward propagation
process within an MBLSTM network consisting of three
layers. Each layer includes bi-directional LSTM units and
seamlessly integrates the hidden state as well as the cell
state from the previous layer into the current layer through
residual connections. The comprehensive model architecture
is visually depicted in Fig. 1.

III. MATERIALS AND METHODS

A. Methodology

HBDTA serves as a predictive framework designed for
the task of drug-target binding affinity prediction through
regression. The initial phase involves feature extraction for
drug molecules, where the first step is the conversion of
Simplified Molecular Input Line Entry System (SMILES)
notations of drug molecules into molecular graphs. Sub-
sequently, we utilize the RDKit [31] software to extract
atomic attributes and establish the molecular graph structure.
Feature representations are then obtained by subjecting the
molecular graphs to graph neural networks, which facilitate
the extraction of underlying molecular features. The resulting
feature vector passes through two fully connected layers,
culminating in the definitive feature representation for the
drug. For proteins, the feature extraction process involves
processing the amino acid sequences through MBLSTM to
discern characteristic attributes. These learned feature vectors
undergo further processing through two fully connected
layers to arrive at the ultimate feature representation for
the protein. After passing through the self-attention layer,
the resulting embedding vectors for the drug and protein
are concatenated and subsequently pass through a sequence
of four fully connected layers to generate binding affinity
predictions. An illustration of the comprehensive model
architecture is presented in Fig. 2.

B. Input Features of Drugs

To enable the computational analysis of drug compounds,
the initial step involves transforming them into the SMILES
format. This standardized format is then compatible with
molecular editing tools, allowing for the generation of 2D
or 3D molecular models. To represent pharmacological com-
pounds as graphs that capture atom interactions, we employ
the RDKit program to extract atomic-level details. The

diagonal elements of the adjacency matrix are set to 1 to
account for self-connections within the graph. Node features
are conveyed as 101-dimensional feature vectors, following
the approach used in Embed-DTI [32]. Each node’s feature
vector comprises eight distinct facets of atom information,
including the atomic symbol, degree, count of explicit and
implicit hydrogen atoms linked to the atom, total valence,
charge, aromaticity indicator, and whether the atom forms
part of a ring structure. A concise summary of these atomic
feature representations applied within our model is provided
in Table II.

C. Input Features of Proteins

Proteins are represented using the one-hot encoding tech-
nique applied to the target amino acid sequence. The protein
sequence, obtained from the UniProt database [33], is pro-
vided as a string of ASCII letters corresponding to amino
acids. To ensure optimal training conditions, we follow
the practice of standardizing the sequence length to 1000
residues through either padding or truncation. In cases where
the sequences are shorter than the designated length, we ap-
ply padding by introducing zero values. Subsequently, these
resulting integer sequences are passed through embedding
layers, resulting in the acquisition of a 128-dimensional vec-
tor representation. After vectorization, the 128-dimensional
vectors undergo further processing through the MBLSTM
architecture, ultimately yielding abstract features designed
to capture the inherent patterns embedded within the protein
sequence data.

D. Datasets

The evaluation of our proposed HBDTA model was
conducted using four well-established benchmark datasets:
Davis, KIBA, Metz, and DTC datasets. Within this evaluation
framework, 80% of the data was allocated for training pur-
poses, while the remaining 20% were set aside for validation.
Furthermore, to further assess the model’s effectiveness,
we conducted “cold experiments” on the Davis and KIBA
datasets. In addition, we selected three proteins—namely,
Nsp14, ACE2, and Spike—from the DrugBank database [34]
to evaluate the potential efficacy of drugs in COVID-19
treatment strategies.

These datasets cover a diverse range of drug-target pairs,
each characterized by varying degrees of binding affinity.
The evaluation of binding affinity between drug and target
pairs relies on different metrics, including the dissociation

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 284-295

 
______________________________________________________________________________________ 



HN

CH3

HO

O

H

O=CC2C1=CN=OC1=(OC)C2

Drug

1

2

4

3

5

RDKit

Mult i-Head GAT

Drug Representation

... ... ... ...

S K F R...

...

Protein Sequence

Embeding Layer

Protein Representations

Concatenation

Output

...

P

...

F

Global Max Pooling

Attention

MBLSTM Layer 2

MBLSTM Layer 3

Residual block 1

Residual block 2

Residual block 3

Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM

MBLSTM Layer 1

Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM

Bi-LSTM Bi-LSTM Bi-LSTM Bi-LSTM

Global Max Pooling

FC 

FC 

GCN

GCN

FC 

FC 

FC 

FC 

Global Max Pooling

GENConv

FC 

FC 

Multi-Head GAT

GENConv

FC 

FC 

Fig. 2. Comprehensive illustration of the overall architecture of the drug-target binding affinity prediction model (HBDTA)

constant (Kd) [35], half-maximal inhibitory concentration
(IC50) [35], and inhibition constant (Ki) [36]. These metrics
serve as critical indicators of the strength of interactions be-
tween drugs and targets. Specifically, the Kd value quantifies
the interaction potency, with higher values indicating lower
affinity. Similarly, the Ki value represents the inhibitor’s
strength in inhibiting the target, while the IC50 value signi-
fies the concentration required to inhibit half of the specified
biological process. In our model, we use the log-transformed
Kd as the model’s output, in line with established practices
in the field of drug-target affinity prediction. This approach
is widely accepted and enhances modeling effectiveness. For
a summary of the key details and characteristics of the two
datasets, please refer to Table III.

pKd = −log10(
Kd

1e9
) (17)

TABLE III
SUMMARY OF THE DATASETS

Dataset Drugs Targets Binding Entities
Davis(pKd) 68 442 30,056
KIBA 2,111 229 118,254
Metz 1,471 170 35,307
DTC 5,983 118 67,894

E. Experimental Settings

We standardized the protein sequence length to 1000
residues and employed MBLSTM with a hidden vector
dimension of 128. To mitigate potential overfitting, we
introduced dropout regularization with a probability rate (p)
of 0.2. In terms of optimization, we utilized the ADAM
optimizer [37] with a learning rate of 0.0005 for the Davis
and Metz datasets and 0.001 for the KIBA and DTC datasets.
Throughout the training process, all models underwent 1000
epochs of iteration. The batch size was set to 128 for the
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Davis and Metz datasets and 256 for the KIBA and DTC
datasets. The devices that are used for the experiments are
an Intel(R) Xeon(R) Platinum 8260 CPU @ 2.30 GHz and
an NVIDIA GeForce RTX 3090 GPU. We also followed
the experimental methodology of NGGNNDTA [38]. For
the “cold drug” setting, the Davis dataset was partitioned
into 54, 7, and 7 non-overlapping drugs for the training,
validation, and test sets, respectively. Similarly, the KIBA
dataset was divided into 1654, 207, and 207 non-overlapping
drugs. Under the “cold target” setting, the Davis dataset was
split into 354, 44, and 44 non-overlapping proteins for the
training, validation, and test sets, while the KIBA dataset was
separated into 182, 23, and 23 non-overlapping proteins. The
model’s performance evaluation included several key metrics,
such as Mean Square Error (MSE) [39], r2m Index [6], and
CI [6]. These metrics provide comprehensive insights into
the model’s predictive capabilities. For specific details on
the hyperparameter settings used, please refer to Table IV.

TABLE IV
HYPERPARAMETER SETTINGS

Hyperparameter Settings
Epoch 1000
Dropout 0.2
Optimizer Adam
Residual blocks in model 3
Fully connected layers after GNN 2
Hidden units in final Fully connected layers 1024,512
Bi-LSTM layers in model 3
Max length of protein sequences 1000

F. Evaluation Metrics

The consideration of drug-target binding affinity prediction
as a regression problem is a fundamental aspect of our
proposed approach. In this context, we employ a set of three
evaluation criteria to assess the performance of our model.
Among these, Mean Square Error (MSE) stands out as a
widely accepted and commonly used evaluation metric for
regression models. Importantly, MSE also serves as the loss
function within our methodology. The formulation of MSE
is articulated as follows:

MSE =
1

N

N∑
i=1

(yi − pi)2 (18)

where N is the number of samples, yi is the actual target
binding affinity value for the i-th sample, and pi is the
predicted binding affinity value for the i-th sample. The MSE
computation serves as a means to quantify the average of
the squared discrepancies between the actual and predicted
binding affinity values. It is important to underscore that
a lower MSE value is indicative of superior model perfor-
mance, signifying a more accurate prediction alignment with
the ground truth values.

The second evaluation approach we employ is the Concor-
dance Index (CI). This metric gauges the probability that, for
any pair of randomly chosen samples, the sample boasting
the higher predicted binding affinity score simultaneously
holds the higher actual binding affinity score. A CI value of 1
indicates perfect agreement between the ranking of predicted
and actual binding affinity scores. The CI can be calculated
utilizing the following equation:

CI =
1

Z

∑
δx>δy

h(bx − by) (19)

where bx represents the predicted binding affinity concerning
the actual higher binding affinity δx, while by pertains to
the predicted binding affinity about the actual lower binding
affinity δy . To normalize the value to the interval [0, 1], a
normalizing constant labeled as Z is employed. The equation
is characterized by a step function termed h(x).

h(x) =


0, if x < 0

0.5, if x = 0

1, if x > 0

(20)

The r2m index, a metric utilized in DeepDTA and also
adopted in our proposed approach for assessing model
performance, gauges the correlation existing between the
anticipated binding affinity values and the factual binding
affinity values. The calculation of r2m is articulated in the
ensuing equation:

r2m = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(21)

where n signifies the count of samples, yi corresponds to the
true binding affinity value for the i-th sample, ŷi represents
the predicted binding affinity value for the i-th sample, and
ȳ denotes the mean of the actual binding affinity values. A
r2m value of 1 serves as an indicator of perfect alignment
between predicted and actual values. Conversely, a r2m value
of 0 implies that model predictions do not surpass the efficacy
of using the mean of the actual values as a prediction. A
negative r2m value implies the model’s inferiority compared
to employing the mean value as a prediction.

IV. ANALYSIS OF EXPERMENTS AND RESULTS

A. Comparison Experiment

We evaluated two distinct algorithms, denoted as
HBDTA(GAT GCN) and HBDTA(GAT GENConv), using
three different evaluation metrics: MSE, CI, and r2m. In
the Davis dataset, our HBDTA(GAT GCN) outperformed all
the models we compared it to, achieving the best overall
performance and superior results in the testing phase. When
compared to the top-performing model, DeepGLSTM, HB-
DTA(GAT GCN) exhibited a notable reduction of 0.004 in
MSE, an improvement of 0.004 in CI, and a substantial
enhancement of 0.031 in r2m. In the KIBA dataset, the
HBDTA(GAT GCN) model showed a reduction of 0.005
in MSE, an advancement of 0.003 in CI, and a notable
increase of 0.019 in r2m. These empirical outcomes highlight
the effectiveness of combining GAT and GCN layers within
our model.

In both the Metz and DTC datasets, our model consis-
tently yielded superior results across all performance met-
rics, providing strong validation for the efficacy of com-
bining deep neural networks and graph neural networks
in HBDTA for improving DTA prediction accuracy. While
HBDTA(GAT GENConv) did not surpass the performance
achieved by HBDTA(GAT GCN), it still exhibited superior
performance compared to a significant portion of the models
we compared it to. This consistent performance underscores
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TABLE V
COMPARISON OF MSE, CI AND r2m SCORES ON DATASETS

Davis KIBA Metz DTC
Method MSE ↓ CI ↑ r2m ↑ MSE ↓ CI ↑ r2m ↑ MSE ↓ CI ↑ r2m ↑ MSE ↓ CI ↑ r2m ↑
SimBoost 0.282 0.873 0.644 0.222 0.836 0.629 0.376 0.683 0.557 0.304 0.771 0.727
KronRLS 0.379 0.869 0.407 0.411 0.782 0.342 0.459 0.675 0.411 0.482 0.694 0.412
DeepDTA 0.261 0.878 0.630 0.194 0.863 0.673 0.353 0.703 0.537 0.274 0.791 0.698
WideDTA 0.262 0.886 0.633 0.179 0.875 0.675 0.359 0.721 0.545 0.270 0.807 0.702
DeepCPI 0.293 0.867 0.607 0.211 0.852 0.657 0.391 0.696 0.514 0.307 0.774 0.673
Attention-DTA 0.245 0.887 0.657 0.162 0.882 0.735 0.326 0.724 0.573 0.262 0.825 0.728
DeepGS 0.252 0.880 0.686 0.193 0.860 0.684 0.337 0.714 0.548 0.285 0.792 0.717
GANsDTA 0.276 0.881 0.653 0.224 0.866 0.775 0.347 0.718 0.658 0.283 0.771 0.715
GraphDTA(GCN) 0.254 0.880 0.663 0.139 0.889 0.691 0.317 0.801 0.620 0.317 0.878 0.812
GraphDTA(GAT GCN) 0.245 0.881 0.677 0.139 0.891 0.701 0.333 0.795 0.602 0.200 0.857 0.790
GraphDTA(GIN) 0.229 0.893 0.649 0.147 0.882 0.684 0.317 0.800 0.645 0.176 0.876 0.798
GraphDTA(GAT) 0.232 0.892 0.662 0.179 0.866 0.671 0.393 0.775 0.549 0.195 0.859 0.788
DeepNC(GEN) 0.233 0.887 0.653 0.133 0.897 0.695 0.385 0.770 0.538 0.187 0.886 0.813
DeepNC(HGC GCN) 0.243 0.881 0.686 0.172 0.872 0.624 0.407 0.759 0.561 0.223 0.872 0.805
DeepGLSTM 0.232 0.895 0.680 0.133 0.897 0.792 0.294 0.810 0.640 0.149 0.895 0.841
HBDTA(GAT GCN) 0.226 0.899 0.711 0.128 0.900 0.811 0.283 0.872 0.653 0.142 0.899 0.891
HBDTA(GAT GENConv) 0.234 0.895 0.690 0.134 0.897 0.763 0.291 0.831 0.632 0.149 0.894 0.887

the versatility and adaptability inherent in our model, even
when operating with a diverse combination of Graph Neural
Network (GNN) algorithms. A comprehensive summary of
these experimental findings is concisely provided in Table V,
offering a succinct overview of the comparative performance
of the models under various configurations.

Furthermore, to investigate the impact of the stacked
deep network architecture on the quality of experimental
results, we conducted tests on the number of Bi-LSTM layers
employed within the HBDTA model, specifically within
the Davis and KIBA datasets. The range of configurations
included a single-layer Bi-LSTM, double-layer Bi-LSTM,
three-layer Bi-LSTM (as proposed in our study), and four-
layer Bi-LSTM. The outcomes of these tests are depicted in
Fig. 3 and Fig. 4 for reference and further insights.

From Fig. 3 and Fig. 4, we observe that when MBLSTM
is configured with three layers, the experiments yield the best
results. However, when MBLSTM is extended to four layers,
there is a decline in experimental outcomes. We attribute
this phenomenon to the increase in network depth, which
leads to diminishing or exploding gradients, rendering the
weights unstable and making the network challenging to
train, consequently impacting the results. Additionally, the
propagation of gradients across multiple layers may result
in information loss and confusion, hindering the ability of
subsequent layers to learn effectively.

B. Deeper Evaluation

Randomly dividing the dataset into training, validation,
and test sets carries the risk of inadvertently leaking infor-
mation about drugs and proteins into the test set, potentially
compromising the integrity of the evaluation process. To
address this concern, we further employ three distinct parti-
tioning methods to assess the performance of the DTA model,
aiming to demonstrate the model’s effectiveness: drug cold-
start partitioning, protein cold-start partitioning, and drug-
protein cold-start partitioning. Drug cold-start partitioning
involves separating individual drugs into training, validation,
and test sets. This partitioning ensures that drugs appearing
in the training and validation sets do not overlap with those in

the test set (and vice versa), thereby preserving the integrity
of the test set. A similar approach is applied to protein cold-
start partitioning, which is based on different proteins.

TABLE VI
THE PERFORMANCE COMPARISON BETWEEN HBDTA AND OTHER

MODELS ON THE DAVIS DATASET

Scenario Method MSE ↓ CI ↑ r2m ↑
Cold drug GraphDTA 0.920(0.030) 0.678(0.032) 0.160(0.019)

DeepGLSTM 0.861(0.019) 0.708(0.026) 0.173(0.015)
HBDTA 0.853(0.047) 0.724(0.014) 0.179(0.016)

Cold target GraphDTA 0.510(0.075) 0.729(0.032) 0.154(0.019)
DeepGLSTM 0.461(0.020) 0.810(0.023) 0.198(0.013)
HBDTA 0.458(0.027) 0.829(0.019) 0.224(0.017)

All cold GraphDTA 0.968(0.085) 0.579(0.017) 0.026(0.016)
DeepGLSTM 0.915(0.090) 0.610(0.033) 0.057(0.041)
HBDTA 0.907(0.096) 0.626(0.039) 0.063(0.048)

TABLE VII
THE PERFORMANCE COMPARISON BETWEEN HBDTA AND OTHER

MODELS ON THE KIBA DATASET

Scenario Method MSE ↓ CI ↑ r2m ↑
Cold drug GraphDTA 0.471(0.045) 0.713(0.002) 0.342(0.009)

DeepGLSTM 0.447(0.032) 0.724(0.006) 0.349(0.015)
HBDTA 0.431(0.029) 0.736(0.004) 0.358(0.011)

Cold target GraphDTA 0.469(0.089) 0.610(0.034) 0.368(0.057)
DeepGLSTM 0.457(0.035) 0.616(0.024) 0.381(0.015)
HBDTA 0.446(0.022) 0.633(0.031) 0.382(0.031)

All cold GraphDTA 0.676(0.103) 0.601(0.030) 0.149(0.067)
DeepGLSTM 0.634(0.081) 0.621(0.023) 0.164(0.039)
HBDTA 0.623(0.076) 0.625(0.019) 0.173(0.021)

To facilitate a fair and consistent comparison, our
dataset-splitting methodology remains uniform throughout
the evaluation process. Consequently, we evaluate HBDTA
(GAT GCN) against GraphDTA and DeepGLSTM under the
cold-start scenarios for drugs and proteins using the Davis
and KIBA datasets as benchmarks. Our model consistently
demonstrates superior performance across all three metrics,
as evidenced by the results presented in Tables VI and
VII. This superiority can be attributed to the inherent ad-
vantages of leveraging deep neural networks, which excel
at effectively extracting valuable information from complex
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(a)

(b)

Fig. 3. The influence of MBLSTM layers in the HBDTA(GAT GCN) model on the results from the Davis(a) and KIBA(b) datasets

(a)

(b)

Fig. 4. The influence of MBLSTM layers in the HBDTA(GAT GENConv) model on the results from the Davis(a) and KIBA(b) datasets

samples. Furthermore, Fig. 5 shows the MSE changes ex-
hibited by the GraphDTA(GAT), GraphDTA(GAT GCN),
HBDTA(GAT GCN), and HBDTA(GAT GENConv) models
on Davis, KIBA, Metz, and DTC datasets from 0 to 1000
epochs. Gray and yellow represent our proposed models with
faster-decreasing trends.

C. Case Study

To visually evaluate the efficacy of our model, HBDTA
was utilized to assess the potential effectiveness of various
drugs against COVID-19. We identified five specific proteins
(NSP14, ACE2, Spike, 3CLPro, Envelope) from DrugBank

and predicted five drugs with the highest binding affinities.
A significant discovery emerged in this study: Oxytetracy-
cline, a potent protein synthesis inhibitor, stood out as a
prominent candidate, demonstrating the highest affinity for
key proteins Nsp14, ACE2, Spike, 3CLPro, and Envelope.
Oxytetracycline achieves this by disrupting the binding of
aminoacyl-tRNA to the complex ribosomal RNA, thereby
interfering with the protein synthesis process. In addition to
Oxytetracycline, four other selected drug compounds exhibit
significant antimicrobial and anti-inflammatory properties.
However, it is crucial to emphasize that while these ex-
perimental findings may not directly translate into practical
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Fig. 5. Comparing MSE trends between HBDTA and GraphDTA on Davis, KIBA, Metz, and DTC datasets

TABLE VIII
PREDICTION OF COVID-19 TREATMENT DRUGS

Nsp14 ACE2 Spike 3CLPro Envelope
1 Oxytetracycline(13.93) Oxytetracycline(13.81) Oxytetracycline(13.70) Oxytetracycline (13.77) Oxytetracycline (13.84)
2 Doxycycline(13.68) Clomocycline(13.48) Rifabutin (13.51) Doxycycline (13.43) Doxycycline (13.67)
3 Clomocycline(13.21) Rifabutin (12.94) Clomocycline(13.34) Clomocycline (13.41) Clomocycline (13.55)
4 Demeclocycline(12.89) Tetracycline (12.65) Doxycycline(13.12) Rifabutin (13.03) Rifabutin (13.21)
5 Tetracycline(12.71) Doxycycline(12.64) Demeclocycline(12.86) Tetracycline (12.51) Demeclocycline (13.05)

efficacy against COVID-19, they provide valuable directional
insights that warrant thorough consideration and further in-
depth investigation. For detailed information regarding these
selected compounds, please refer to Table VIII, which offers
a comprehensive analysis arranged in descending order of
binding affinity values.

（a） (b)

Fig. 6. Residue-ligand interaction between P05102 and Bosutinib predicted
by blind docking

Furthermore, we employed a visualization approach to
elucidate potential binding sites of drug-target interactions,
aiming to enhance the interpretability of our model. In
Fig. 6 (a), we utilized HBDTA to randomly select the
P01502 protease from the UniProt database and predict
potential interaction sites with Bosutinib. The results indicate
that, according to the model predictions, proteins SER-305,
Gly-23, Leu-21, GLU-40, ASN-39, ASP-60, ILE-61 within
P01502 have potential binding sites with Bosutinib. This
discovery provides robust support for our understanding of
the interaction between the drug and its target. Given that
small molecules bind within hydrophobic pockets, in Fig.
6 (b), we presented the protein structure in a shell format
to demonstrate that the small molecule is indeed located
within the pocket and spatially rationalizes its presence. Such
visualization methods contribute to an intuitive display of
the drug’s positioning within the protein structure, providing
visual cues for further exploration of the binding mechanism
between the drug and the target. In conclusion, while the
model predictions of these potential sites serve as a starting
point for our research, it is crucial to carefully consider

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 284-295

 
______________________________________________________________________________________ 



the limitations and uncertainties of the model. Subsequent
research should focus on validating the accuracy and biolog-
ical significance of these potential sites through biophysical
experiments and bioactivity assays.

Lastly, in Fig. 7, graphical representations are provided
to illustrate the relationship between predicted values (p)
and measured values (m) across both the Davis and KIBA
datasets. This comparison serves as a crucial metric for
evaluating the model’s performance. A close alignment with
the black line (p = m) indicates a robust model. Therefore,
based on the distribution of predicted values and observed
values in the dataset, we conclude that HBDTA demonstrates
excellent predictive capabilities.
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Fig. 7. Plots comparing HBDTA-predicted values with measured binding
affinity values for the Davis dataset (a) and KIBA dataset (b)

V. CONCLUSIONS

The field of graph neural network models has gained
traction due to their improved interpretability in graph pro-
cessing. Our study presents a new GNN-based approach for
predicting drug-target binding affinity, utilizing three unique
GNN algorithms: multi-head graph attention network, graph
convolutional network, and generalized aggregation graph
network to construct drug molecular representations. Further-
more, we propose a deep architecture, MBLSTM, to extract
features from protein sequences. The MBLSTM structure
enhances processing and more efficiently allocates spatial
parameters to effectively address the insufficiency of most
existing shallow models for data mining. This highlights the
efficacy of deeper network architectures in specific contexts.
We validated four datasets to predict drugs with the greatest
potential to treat COVID-19 and visually interpreted drug-
target interactions. The experimental findings demonstrate
the superior performance of HBDTA compared to alternative
models in terms of both speed and the quality of generated
predicted structures. Future research should explore the po-
tential of HBDTA in diverse drug-related tasks such as drug
repurposing or toxicity prediction.
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